HOMEWORK MATH 330

- (1) Let n > 1 be an integer which is not prime. Prove that there exists a prime p such that p|n and $p \leq \sqrt{n}$.
- (2) pg 76, # 37: Let \mathbb{E} denote the set of positive even integers. An element $p \in \mathbb{E}$ is called an \mathbb{E} -prime if p cannot be written as a product of two elements of \mathbb{E} . Determine a simple criteria for when elements of \mathbb{E} can be *uniquely* factored into a product of \mathbb{E} -primes.

(3) pg 73, #15: Suppose today is Monday.

- (a) What day of the week will it be 100 days from now?
- (b) What day of the week will it be 10,000 days from now?
- (c) What day of the week will it be 1,000,000 days from now?
- (4) pg 73, #21: Show that if n is a positive odd integer than the sum of any n consecutive integers is divisible by n.
- (5) Let a, b, c be integers such that c|a and c|b. Prove that c divides any linear combination of a and b.
- (6) pg 92, # 7: Show that if $a, b, n, m \in \mathbb{N}$ such that a and b are relatively prime, then a^n and b^m are relatively prime.
- (7) pg 93, # 21.

HOMEWORK MATH 330

- (8) For each of the relations defined on \mathbb{Q} , either prove that it is an equivalence relation or show which properties of an equivalence relation fail.
 - (a) $x \sim y$ whenever $x y \in \mathbb{Z}$.
 - (b) $x \sim y$ whenever $x \leq y$.
 - (c) $x \sim y$ whenever $xy \in \mathbb{Z}$
 - (d) $x \sim y$ whenever $|x y| \leq 1$.
- (9) pg 132, #36.
- (10) pg 133, #42.
- (11) Let a and n be postive integers. Prove that $a^{\frac{1}{n}}$ is either an integer or is irrational.

(12) pg 148, # 7-10.

(13) pg 150, # 39.

 $\mathbf{2}$

(14) Section 5.1, # 43.

(15) Section 5.3, # 53.

(16) Section 7.1, # 12.

(17) Section 7.1, # 56.

(18) Section 7.1, # 57.

(19) Section 7.1, # 60.

(20) pg 248, Section 7.2, #69.

(21) pg 376, Section 9.1, #35.

(22) pg 377, Section 9.1, #38.

(23) pg 377, Section 9.1, #41.

(24) pg 377, Section 9.1, #48.

(25) pg 389, Section 9.2, #33.

(26) Prove that for all $n \ge 1$, there exists a polynomial $f(x) \in \mathbb{Q}[x]$ with deg(f(x)) = n such that f(x) is irreducible in $\mathbb{Q}[x]$.

(27) pg 453, Section 12.1, #2.

(28) pg 455, Section 12.1, #22.

(29) pg 456, Section 12.1, #48.

(30) Let F be a field and $f(x) \in F[x]$. Prove that $\alpha \in F$ is a root of f(x) if and only if $(x - \alpha)|f(x)$.

(31) pg 471, Section 12.3, #20.

(32) Determine which of the following are groups.

(a) $(\mathbb{Z}, -)$. (b) $(\mathbb{R} \setminus \{0\}, \cdot)$ (c) $(\{r \in \mathbb{Q} \mid r \ge 0\}, +)$. (d) $(\{r \in \mathbb{Q} \mid r > 0\}, \cdot)$.

(33) Prove or disprove each of the following:

- (a) $\{f \in S_n \mid f(1) = 1\}$ is a subgroup of S_n .
- (b) $\{e\} \cup \{f \in D_n \mid f \text{ is a rotation}\}\$ is a subgroup of D_n .
- (c) $\{e\} \cup \{f \in D_n \mid f \text{ is a reflection}\}\$ is a subgroup of D_n .
- (34) Prove that isomorphism is an equivalence relation on groups.
- (35) Suppose X is set with n elements. Prove that $Bij(X) \cong S_n$.
- (36) Let H and K be subgroups of a group G. Prove that $H \cap K$ is a subgroup of G.
- (37) Section 8.1, pg 291, #49.

6

- (38) Section 8.1, pg 290, #33-36 (Fill out the multiplication table of D_4 , writing each element in the form $y^i x^j$ for $0 \le i \le 3$ and $0 \le j \le 1$).
- (39) Section 8.1, pg 292, #57.
- (40) Section 8.1, pg 293, #65.
- (41) Section 8.1, pg 293, #67.
- (42) Section 8.4, pg 361, #3, 4, 8, 15
- (43) Write the permutation f from Problem 42 as a product of transpositions.

(44) Section 8.2, pg 319, #11.

(45) Section 8.2, pg 319, #24.

(46) Section 8.2, pg 320, #30.

(47) Section 8.2, pg 320, #33.

(48) Section 8.2, pg 320, #41.

(49) Section 8.2, pg 320, #43.

(50) Section 8.2, pg 321, #52.

- (51) Section 8.2, pg 321, #57.
- (52) Section 8.3, pg 344, #35, 36.
- (53) Section 8.3, pg 345, #59.
- (54) Prove the Second Isomorphism Theorem: Suppose G is a group, H ≤ G, and N ⊴ G. Then
 (a) HN ≤ G.
 (b) H ∩ N ⊴ H.
 (c) HN/N ≅ H/(H ∩ N).
- (55) Prove the Third Isomorphism Theorem: Suppose G is a group, $N \trianglelefteq G$, and $N \trianglelefteq K \trianglelefteq G$. Then (a) $K/N \trianglelefteq G/N$.
 - (b) $(G/N)/(K/N) \cong G/K$.

Let G be a group. An isomorphism $\phi: G \to G$ is called an *automorphism* of G. Let Aut(G) denote the set of all automorphisms of G.

(56) Prove that Aut(G) is a subgroup of Bij(G).

(57) Let $g \in G$ and let $\gamma_g \colon G \to G$ be the function defined by $\gamma_g(a) = g^{-1}ag$ for all $a \in G$. Prove that $\gamma_g \in Aut(G)$. γ_g is called an *inner automorphism* of G.

(58) Let Inn(G) denote the set of all inner automorphism of G, that is $Inn(G) = \{\gamma_g \mid g \in G\}$. Prove that Inn(G) is a normal subgroup of Aut(G).

(59) Prove that $Inn(G) \cong G/Z(G)$.

- (60) Let $\sigma \in S_n$ be a k-cycle. Prove that every conjugate of σ is a k-cycle.
- (61) Let x and y be conjugate elements of a group G. Prove that $x^n = e$ if and only if $y^n = e$, hence x and y have the same order.
- (62) Let G be a group acting on a set X. Let $x \in X$, and define $Stab_G(x) = \{g \in G \mid g \cdot x = x\}$. Prove that $Stab_G(x)$ is a subgroup of G.
- (63) Let G be a group acting on a set X. Let $x, y \in X$ such that $y = g \cdot x$. Prove that $Stab_G(y) = gStab_G(x)g^{-1}$.
- (64) Let $H \leq G$ and let X denote the set of left cosets of H. Define an action of G on X by $g \cdot xH = gxH$. First describe $Stab_G(H)$ and then describe $Stab_G(xH)$ for an arbitrary $x \in G$.
- (65) Let G be a finite group acting on a finite set X with exactly n distinct orbits. For $g \in G$, define $Fix(g) = \{x \in X \mid g \cdot x = x\}$. Prove that

$$n = \frac{1}{|G|} \sum_{g \in G} |Fix(g)|$$