HOMEWORK MATH 445

11/7/14

- (1) Let \mathcal{T} be a topology for \mathbb{R} defined as follows: $U \in \mathcal{T}$ iff, for each $p \in U$ there is an open interval I_p such that $p \in I_p$ and $\mathbb{Q} \cap I_p \subseteq U$. Is $(\mathbb{R}, \mathcal{T})$ Hausdorff? is it regular?
- (2) Let X be second countable, and $A \subseteq X$ an uncountable subset. Prove that $A \cap A' \neq \emptyset$. Give an example of a space X and an uncountable subset $A \subseteq X$ such that $A \cap A' = \emptyset$.
- (3) Prove that every seperable metric space is second countable. Find an example of a seperable space which is not second countable.
- (4) Prove that every compact metric space is separable.
- (5) Let $x_1, x_2, ...$ be a squence of points in the product space $\prod X_{\alpha}$. Prove that $\lim_{n \to \infty} x_n = x$ if and only if $\lim_{n \to \infty} \pi_{\alpha}(x_n) = \pi_{\alpha}(x)$ for all α .
- (6) Prove or disprove: \mathbb{R}^{ω} is separable.
- (7) Let X be a compact Hausdorff space. Prove that X is metrizable if and only if X is second countable. What happens if "compact" is replaced by "locally compact"?

2

10/10/14

- (1) Let X be a compact Hausdorff topological space. Let A, B be disjoint closed subsets of X. Prove that there exist disjoint open sets U, V such that $A \subseteq U$ and $B \subseteq V$.
- (2) Let $f: X \to Y$ and $g: X \to Y$ be continuous functions and let Y be Hausdorff. Prove that $W = \{x \in X \mid f(x) = g(x)\}$ is closed.
- (3) Let $f: X \to Y$ be a continuous map and suppose X is compact. Prove f(X) is compact.
- (4) Prove that the following spaces are pairwise not homeomorphic: [0,1], (0,1), and [0,1).
- (5) Suppose X and Y are connected, prove $X \times Y$ is connected.
- (6) Consider the following subsets of \mathbb{R}^2 . Prove if they are connected or not.

$$A = \{(x,y) \mid x,y \in \mathbb{Q}\}, \ B = \{(x,y) \mid x,y \in \mathbb{R} \setminus \mathbb{Q}\}, \ C = A \cup B, \\ D = \mathbb{R}^2 \setminus A, \ E = \mathbb{R}^2 \setminus B.$$

- (7) Classifly the letters
- $\{A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z\}$ up to homeomorphism, where each letter is given a topology by considering it as a subset in the plane.
 - (8) Prove or disprove: $GL_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad bc \neq 0 \right\}$ is connected.

9/12/14

- (1) Prove that the following collections of spaces are pairwise homeomorphic:
 - (a) $(0,1), (0,\infty), (a,b), \mathbb{R}$.
 - (b) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}, \{(x,y) \in \mathbb{R}^2 \mid (x-a)^2 + (y-b)^2 \le R^2\}, \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, z \ge 0\}.$
 - (c) $\mathbb{R}^2 \setminus \{(0,0)\}, \{(x,y) \in \mathbb{R}^2 \mid 1 < x^2 + y^2 < 4\}, \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}.$

- (2) For each of the following equivalence relations \sim on \mathbb{R}^2 , identify the the quotient space \mathbb{R}^2/\sim (it is homeomorphic to a familar space).
 - (a) $(x_1, y_1) \sim (x_2, y_2)$ if $x_1^2 + y_1^2 = x_2^2 + y_2^2$.
 - (b) $(x_1, y_1) \sim (x_2, y_2)$ if $(x_2 x_1, y_2 y_1) \in \mathbb{Z} \times \mathbb{Z}$.

(3) Let $GL_2^+(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc > 0 \right\}$ with the topology induced by considering $GL_2^+(\mathbb{R})$ and a subspace of \mathbb{R}^4 . Prove that $GL_2^+(\mathbb{R}) \cong S^1 \times \mathbb{R}^3$. Hint: show that for each such matrix there exists a unique θ , p > 0, r > 0, and q such that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} p & q \\ 0 & r \end{pmatrix}$

- (4) Prove that the following are equivalent for a function $f: X \to Y$:
 - (a) f is a continuous function.
 - (b) For all $A \subseteq X$, $f(\overline{A}) \subseteq \overline{f(A)}$.
 - (c) For all $B \subseteq Y$, $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$
 - (d) For every closed $B \subseteq Y$, $f^{-1}(B)$ is closed in X.
 - (e) For every $x \in X$ and every open set $V \subseteq Y$ such that $f(x) \in V$, there is an open set U such that $x \in U$ and $f(U) \subseteq V$.

- (5) (a) Suppose that A and B are closed subsets of X such that $X = A \cup B$. Let $f: X \to Y$ be a function such that $f|_A$ and $f|_B$ are both continuous. Prove that f is continuous.
 - (b) Suppose $f: X \to Y$ and for every $x \in X$, there exists an open set U containing x such that $f|_U$ is continuous. Prove that f is continuous.
- (6) Suppose X and Y are Hausdorff. Prove $X \times Y$ is Hausdorff.

(7) Suppose X is T_1 and $A \subseteq X$. Prove that A' is closed.

HOMEWORK MATH 445

5

8/27/14

(1) Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) , and (Z, \mathcal{T}_Z) be topological spaces. Let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Prove that $g \circ f: X \to Z$ is continuous.

- (2) Let X be a set and let $\mathcal{T}_{cofin} = \{A \subseteq X \mid |X \setminus A| < \infty\} \cup \{\emptyset\}$. Prove that \mathcal{T}_{cofin} is a topology on X.
- (3) Let $\mathcal{B} = \{(a,b) \mid a,b \in \mathbb{Q}, \ a < b\}$. Show that \mathcal{B} is a basis for the standard topology on \mathbb{R} .
- (4) Let \mathcal{A} be a basis for a topology on X and \mathcal{B} a basis for a topology on Y. Prove that $\{A \times B \mid A \in \mathcal{A}, B \in \mathcal{B}\}$ is a basis for the product topology on $X \times Y$.
- (5) Let X and Y be topological spaces. Prove that the projections $\pi_X \colon X \times Y \to X$ and $\pi_Y \colon X \times Y \to Y$ defined by $\pi_X((x,y)) = x$ and $\pi_Y((x,y)) = y$ are continuous with respect to the product topology on $X \times Y$. Furthermore, prove that π_X and π_Y are open maps, that is for every open $U \subset X \times Y$, $\pi_X(U)$ and $\pi_Y(U)$ are open.
- (6) Let X be a topological space and let A be a subset of X with the subspace topology. Let $\iota: A \to X$ be the inclusion map, that is $\iota(a) = a$.
 - (a) Prove ι is continuous.
 - (b) Given another topological space Y and a function $f: Y \to A$, prove that f is continuous if and only if $\iota \circ f$ is continuous.
 - (c) If $g: X \to Y$ is continuous, prove that the restriction $g|_A: A \to Y$ is continuous.