
Hyperbolic groups

Lecture Notes∗

M. Hull

1 Geometric group theory basics

Word metric and Cayley graphs Let G be a group generated by S ⊆ G; for convenience, we
will always assume that our generating sets are symmetric, that is S = S−1. A word in S is a finite
concatenation of elements of S. For such a word W , let ‖W‖ denote its length. If two words W
and U are letter for letter equivalent, we write W ≡ U , and if W and U represent the same element
of the group G, we write W =G U . For an element g ∈ G, let |g|S denote the length of the shortest
word in S which represents g in the group G. Given g, h ∈ G, let dS(g, h) = |g−1h|S . dS is called
the word metric on G with respect to S.

We let Γ(G,S) denote the Cayley graph of G with respect to S. This is the graph whose vertex
set is G and there is an oriented edge e labeled by s ∈ S between any two vertices of the form g
and gs. We typically identify the edges labeled by s and s−1 with the same endpoints and consider
these as the same edge with opposite orientations. Lab(e) denotes the label of the edge e; similarly,
for a (combinatorial) path p, Lab(p) will denote the concatenation of the labels of the edges of p.
Also for such a path p, we let p− and p+ denote the intial and the terminal vertex of p respectively,
and `(p) will denote the number of edges of p. The metric obtained on the vertices of Γ(G,S) by
the shortest path metric is clearly equivalent to the word metric dS ; identifying each edge with the
unit interval [0, 1] in the natural way allows us to extend this metric to all of Γ(G,S).

Metric spaces Throughout these notes, we denote a metric space by X and its metric by d (or
dX if necessary). For x ∈ X and n ≥ 0, let Bn(x) = {y ∈ X | d(x, y) ≤ n}, that is the closed ball
of radius n centered at x. For a subset A ⊆ X, we usually denote the closed n-neighborhood of A
by A+n, that is A+n = {x ∈ X | d(x,A) ≤ n}.

A path in X is a continuous map p : [a, b] → X for some [a, b] ⊆ R. We will often abuse
notation by using p to refer to both the function and its image in X. As above, we let p− = p(a)
and p+ = p(b). Similarly, a ray is a continuous map p : [a,∞) → X, and a bi-infinite path is a
continuous map p : (−∞,∞)→ X.

∗Disclaimer: Nothing in these notes is my own original work. However, most of the material is standard so I will
not attempt to provide citations for every result. The interested reader is refered to the standard text [5]. For further
resources, see [7, 11, 13, 17, 19, 25].
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Given a path p in a metric space X, the length of p, denoted, `(p), is defined as

`(p) = sup
a≤t1≤...≤tn≤b

n−1∑
i=1

d(p(ti), p(ti+1))

Where the supremum is taken over all n ≥ 1 and all possible choices of t1, ..., tn. In general this may
be infinite, but we will usually only consider rectifiable paths, that is paths p for which `(p) <∞.
A path p is called a geodesic if `(p) = d(p−, p+). Geodesic rays and bi-infinite geodesics are defined
similarly. X is called a geodesic metric space if for all x, y ∈ X, there exists a geodesic path p such
that p− = x and p+ = y. Note that geodesic metric spaces are clearly path connected. For x, y in
a geodesic metric space X, we let [x, y] denote a geodesic from x to y.

We will usually assume throughout these notes that X is a geodesic metric space. However,
most statements and proofs will also work under the weaker assumption that X is a length space,
that is a path connected space such that for any x, y ∈ X, d(x, y) = inf{`(p) | p− = x, p+ = y}.

Let X and Y be metric spaces and f : X → Y . If f is onto and for all x1, x2 ∈ X, dX(x1, x2) =
dY (f(x1), f(x2)), then f is called isometry. If f is onto and there is a constant λ ≥ 1 such that for
all x1, x2 ∈ X,

1

λ
dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ λdX(x1, x2).

Then f is called a bi-lipschitz equivalence. In this case, we say that X and Y are bi-lipschitz
equivalent and write X ∼lip Y . Now suppose there are constant λ ≥ 1, C ≥ 0, and ε ≥ 0 such that
f(X) is ε-quasi-dense in Y , i.e. f(X)+ε = Y , and for all x1, x2 ∈ X,

1

λ
dX(x1, x2)− C ≤ dY (f(x1), f(x2)) ≤ λdX(x1, x2) + C.

Then f is called a quasi-isometry, or a (λ, c, ε)-quasi-isometry if we need to keep track of the
constants.. In this case we say X and Y are quasi-isometric and write X ∼qi Y . Note that unlike
isometries and bi-lipschitz equivalences, quasi-isometries are not required to be continuous.

If the condition that f is onto (or f(X) is quasi-dense) is dropped from the above definitions,
then f is called an isometric embedding, bi-lipschitz embedding, or a quasi-isometric embedding
respectively.

Exercise 1.1. Show that ∼lip and ∼qi are both equivalence relations on metric spaces.

Exercise 1.2. Let X and Y be bounded metric spaces. Prove that X ∼qi Y .

Exercise 1.3. Suppose S ⊆ G and T ⊆ G are two finite generating sets of G. Show that (G, dS) ∼lip
(G, dT ), and hence Γ(G,S) ∼qi Γ(G,T ).

It follows from this exercise that any finitely generated group is canonically associated to a
∼qi-equivalence class of metric spaces. We will often abuse notation by considering the group G
itself as a metric space, but it should be understood that the metric on G is only well-defined up
to quasi-isometry.

Group actions Let G be a group acting on a metric space X. We will always assume that such
actions are by isometries, that is for all x, y ∈ X and g ∈ G,

d(x, y) = d(gx, gy).
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There is a natural correspondence between actions of G on X and homomorphisms ρ : G →
Isom(X), where Isom(X) denotes the group of all isometries of X. We say the action is faithful
if the corresponding homomorphism is injective. This is equivalent to saying for all g ∈ G, there
exists x ∈ X such that gx 6= x. The action is called free if for all x ∈ X, StabG(x) = {1}, where
StabG(x) = {g ∈ G | gx = x}; equivalently, for all x ∈ X and for all g ∈ G, gx 6= x. The action
is called proper1 if for any bounded subset B ⊆ X, {g ∈ G | gB ∩ B 6= ∅} is finite. The action
is called cobounded if X/G is bounded, or equivalently there exists a bounded subset B ⊆ X such
that

X =
⋃
g∈G

gB

The following lemma is fundamental to geometric group theory. It was first proved by Efremovic.

Lemma 1.4 (Milnor-Svarč Lemma). Let G be a group acting properly and coboundedly on a geodesic
metric space X. Then G has a finite generating set S and

Γ(G,S) ∼qi X.

Proof. Fix a point o ∈ X. Since the action of G is cobounded, there exists a constant K such that
for all x ∈ X, there exists g ∈ G such that d(x, go) ≤ K. Let S = {g ∈ G | d(o, go) ≤ 2K + 1}. By
properness, the set S is finite. Note that if s1, s2 ∈ S, then d(o, s1s2o) ≤ d(o, s1o) + d(s1o, s1s2o) =
d(o, s1o) + d(o, s2o) ≤ 2(2k + 1). Similarly, it is easy to show by induction that for all g ∈ 〈S〉,
d(o, go) ≤ |g|S(2K + 1).

Now fix g ∈ G, and let p be a geodesic from o to go. Choose points o = x0, x1, ..., xn = go
on p such that d(xi, xi+1) = 1 for 0 ≤ i ≤ n − 2 and d(xn−1, xn) ≤ 1. For each 1 ≤ i ≤ n − 1,
choose hi ∈ G such that d(xi, hio) ≤ K, and set h0 = 1 and hn = g. By the triangle inequality,
d(o, h−1

i hi+1o) = d(hio, hi+1o) ≤ 2K + 1 for all 0 ≤ i ≤ n− 1. Hence h−1
i hi+1 ∈ S. Furthermore,

h1(h−1
1 h2)(h−1

2 h3)...(h−1
n−1hn) = hn = g

Thus g ∈ 〈S〉, and since g is arbitrary we get that S generates G. Furthermore, |g|S ≤ n and
by our choice of xi, n − 1 < d(o, go) ≤ n. Let f : G → X be the function defined by f(g) = go.
Then we have shown that

|g|S − 1 ≤ d(o, go) ≤ (2K + 1)|g|S .

Furthermore, our choice of K implies that f(G) is K-quasi-dense in X. It follows easily that the
map f is a quasi-isometry from G with the metric dS to X.

Corollary 1.5. 1. If G is finitely generated and H is a finite index subgroup of G, then H is
finitely generated and G ∼qi H.

2. If N E G is a finite normal subgroup of G and G/N is finitely generated, then G is finitely
generated and G ∼qi G/N .

3. If M is a closed Riemannian manifold with universal cover M̃ , then π1(M) is finitely generated

and π1(M) ∼qi M̃ .

1This is the metric version of properness. There is also a topological version, where bounded is replaced by
compact.
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4. If G is a connected Lie group with a left-invariant Riemannian metric and Γ ≤ G is a uniform
lattice in G, then Γ is finitely generated and Γ ∼qi G.

Exercise 1.6. Prove parts (1) and (2) of Corollary 1.5.

Group presentations and algorithmic problems Given a set S, we denote the free group on
S by F (S). Recall that the elements of this group are equivalence classes of words in S, where words
two words are equivalent if you can obtain one from the other by adding or removing subwords
of the form ss−1 finitely many times. Equivalently, F (S) can be defined as the unique group
(up to isomorphism) such that for any group G and any function f : S → G, there is a unique
homomorphism f̄ : F (S)→ G extending f . If S = {s1, ..., sn}, we typically denote F (S) by Fn.

Given a subset R ⊆ G, where G is a a group, the normal closure of R, denoted 〈〈R〉〉, is defined
as the intersection of all normal subgroups of G which contain R. Equivalently,

〈〈R〉〉 = {f−1
1 r1f1f

−1
2 r2f2...f

−1
k rkfk | k ≥ 0, fi ∈ G, ri ∈ R±1}.

Given a set S and R ⊆ F (S), we say that

〈S | R〉 (1)

is a presentation of the group G if G ∼= F (S)/〈〈R〉〉. In this case S is called the set of generators and
R is called the set of relations of the presentation. The presentation is called finite if both S and
R are finite sets, and G is called finitely presentable if G has a finite presentation. For convenience
we will always assume that our set of relations is symmetric, that is r ∈ R implies r−1 ∈ R.

The following are classical problems in group theory; the first three were introduced by Max
Dehn in 1912.

Word Problem: Given a presentation 〈S | R〉 of a group G, find an algorithm such that for
any word W in S, the algorithm determines whether or not W =G 1.

Conjugacy Problem: Given a presentation 〈S | R〉 of a group G, find an algorithm such that
for any two words W and U in S, the algorithm determines whether or not W and U represent
conjugate elements of the group G.

Isomorphism Problem: Find an algorithm which accepts as input two group presentations
and determines whether or not they represent isomorphic groups.

Membership Problem: Given a presentation 〈S | R〉 of a group G and words U1, ..., Un in
S, find an algorithm such that for any word W in S, the algorithm determines whether or not W
belongs to the subgroup of G generated by U1, ..., Un.

Exercise 1.7. Describe an algorithm which solves the word problem for the standard presentation
of Zn, that is 〈a1, ..., an | [ai, aj ], 1 ≤ i < j ≤ n〉.

It is known that there are finite group presentations for which the word probelm is undecidable.
Note that the word problem can be viewed as a special case of the conjugacy problem, since W =1 G
if and only if W is conjugate to 1 in G. It follows that any group with undecibable word problem
will also have undecidable conjugacy problem. Simlarly, The word problem can also be viewed
as a special case of the membership problem corresponding to the trivial subgroup. There do,

4



however, exist group presentations with decidable word problem but undeciable conjugacy and/or
membership problems.

Similarly, the isomorphism problem is undecidable in general, though as with the other algo-
rithmic problems it can solved in certain special cases, that is if one only considers presentations
which represent groups belonging to a specific class of groups.

Van Kampen Diagrams and Dehn functions Suppose 〈S | R〉 is a presenation for a group
G and W is a word in S. Then W =G 1 if and only if there exist r1, ..., rk ∈ R and f1, ..., fk ∈ F (S)
such that

W =F (S) f
−1
1 r1f1...f

−1
k rkfk. (2)

We now show how this can be encoded geometrically. Let ∆ be a finite, connected, simply
connected, planar 2-complex in which every edge is oriented and labeled by an element of S. If e is
an edge of ∆ with label s and ē is the same edge with the opposite orientation, then Lab(ē) = s−1.
Labels of paths in ∆ are defined the same as in Cayley graphs. If Π is a 2-cell of ∆, then Lab(∂Π)
is the word obtained by choosing a base point v ∈ ∂Π and reading the label of the path ∂Π starting
and ending at v. Note that a different choice of basepoint results in a cyclic permutation of the
word Lab(∂Π), so we consider Lab(∂Π) as being defined only up to cyclic permutations. Lab(∂∆)
is defined similarly. ∆ is called a van Kampen diagram over the presentation 〈S | R〉 if for every
2-cell Π of ∆, (a cyclic permutation of) Lab(∂Π) belongs to R. In this case it can be shown by a
reasonably straightforward induction on the number of 2-cells of ∆ that Lab(∂∆) =G 1. It turns
out the converse is also true.

Exercise 1.8. Suppose G is a group with presentation 〈S | R〉 and ∆ is a van Kampen diagram over
〈S | R〉. Prove that Lab(∂∆) =G 1.

Lemma 1.9 (van Kampen Lemma). Suppose 〈S | R〉 is a presentation for a group G and W is a
word in S. Then W =G 1 if and only if there exists a van Kampen diagram ∆ over the presentation
〈S | R〉 such that Lab(∂∆) ≡W .

Proof. If W is the boundary label of a van Kampen diagram, then W =G 1 be the previous exercise.
Now suppose that W =G 1. Then there exist r1, ..., rk ∈ R and f1, ..., fk ∈ F (S) such that

W =F (S) f
−1
1 r1f1...f

−1
k rkfk.

Each word of the form f−1
i rifi is the label of a van Kampen diagram consisting of a path labeled

by fi connected to a 2-cell with boundary label ri. glueing the initial points of each of these paths
together produces a van Kampen diagram with boundary label f−1

1 r1f1...f
−1
k rkfk (sometimes called

a “wedge of lollipops”). Now f−1
1 r1f1...f

−1
k rkfk can be transformed into the word W by a finite

sequence of moves consisting of adding or deleting subwords of the form ss−1. One can check that
if one of these moves is applied to a word U produces U ′ and U is the boundary label of a van
Kampen diagram, then there is a natural move on the diagram which produces a new van Kampen
diagram with boundary label U ′. It follows that the “wedge of lollipops” diagram can be modified
by a finite sequence of moves to produce a van Kampen diagram with boundary label W .
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Exercise 1.10. Suppose ∆ is a van Kampen diagram over a presentation 〈S | R〉 for a group G, and
p is a closed (combinatorial) path in ∆. Prove that Lab(p) =G 1.

From this exercise, it follows that if you fix a vertex v ∈ ∆, there is a well-defined, label
preserving map from the 1-skeleton of ∆ to Γ(G,S) which sends v to 1.

Given a van Kampen diagram ∆, let Area(∆) be the number of 2-cells of ∆. For a fixed group
presentation 〈S | R〉 and a word W in S, let

Area(W ) = min{Area(∆) | ∆ is a van Kampen diagram over 〈S | R〉 and Lab(∂∆) ≡W}.

equivalently, Area(W ) is equal to the minimal k such that is equal to a product of k conjugates
of elements of R (see (2)). The Dehn function of a finitely presented group G, denoted δG, is the
function δG : N→ N defined by

δG(n) = max
‖W‖≤n

Area(W )

Of course, this depends not only on G, but also on the chosen presentation of G. In order
to make the Dehn function of G independent of the presentation (as is suggested by the notation
δG), we consider this function as defined only up to the following equivalence relation: functions
f, g : N→ N are equivalent if there exist constant A1, B1, C1 and A2, B2, C2 such that for all n ∈ N,

f(n) ≤ A1g(B1n) + C1n and g(n) ≤ A2f(B2n) + C2n.

Note that the linear term in the above equivalence is indeed necessary, since even the trivial
group has the presentation 〈s | s = 1〉 and Area(sn) = n.

Exercise 1.11. (a) Show that this is indeed an equivalence relation.

(b) Show that f1(n) = 1, f2(n) = logn, and f3(n) = n are all equivalent.

(c) Show that two polynomials p and q are equivalent if and only if they have the same degree.

(d) Show that 2n and 3n are equivalent.

Exercise 1.12. Prove that a finite group has at most linear Dehn function.

Exercise 1.13. Prove that a finitely generated abelian group has at most quadratic Dehn function,
and that the Dehn function of Z2 is equivalent to n2.

Examples 1.14. 1. If G is nilpotent of class c, then δG(c) ≤ nc+1

2. If G is the fundamental group of a compact, orientable surface of genus g ≥ 2, then Dehn’s
algorithm shows that δG is linear.

3. The Dehn function of BS(1, 2) = 〈a, t | t−1at = a2〉 is equivalent to 2n

4. For G = 〈a, b, c | ab = c, ac = a2〉, δG is equivalent to 22.
..
2n

, where this tower has length
log2(n).

It can be shown using Tietze transformations that up to this equivalence, the choice the Dehn
function of a finitely presented group G is independent of the choice of finite presentation. Furth-
more, the Dehn function is also invariant under quasi-isometry.
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Theorem 1.15. Suppose G is finitely presented and H is finitely generated. If G ∼qi H, then H
is finitely presented and δG is equivalent to δH .

Proof. Let 〈S | R〉 be a finite presentation for G and let T a finite generating set for H. Let
M = max{‖r‖ | r ∈ R}. Let f : Γ(H,T )→ Γ(G,S) be a (λ, c, ε) quasi-isometry. Let p be a closed
(combinatorial) path in Γ(H,T ), and let v1, v2, ..., vn, vn+1 = v1 denote the vertices of p. Let q
be the closed path in Γ(G,S) formed by connecting each f(vi) to f(vi+1) by a geodesic. Since
dT (vi, vi+1) = 1, dS(f(vi), f(vi+1)) ≤ λ + c, and hence `(q) ≤ (λ + c)n. Since q is a closed path,
Lab(q) =G 1, so there exists a van Kampen diagram ∆ with Lab(∂∆) ≡ Lab(q). We also choose ∆
such that Area(∆) ≤ δG((λ+c)n). We identify the 1-skeleton of ∆ with its image in Γ(G,S) under
the natural map ∆(1) → Γ(G,S) which sends ∂∆ to q. Now we build a map g : ∆(1) → Γ(H,T )
for each interior vertex v ∈ ∆, choose a vertex u ∈ Γ(H,T ) such that dS(v, f(u)) ≤ ε, and set
g(v) = u. Each exterior vertex v ∈ ∆ lies on some geodesic [f(vi), f(vi+1)]; if v is closer to f(vi) we
set g(v) = vi, otherwise we set g(v) = vi+1. Now if two vertices v and u are adjacent, then we join
g(v) and g(u) by geodesics in Γ(H,T ). Note that for such u and v, dS(f(g(u)), f(g(v))) ≤ 2ε+ 1,
and hence dT (g(u), g(v)) ≤ (2ε+ 1 + c)λ. It follows that if Π is a 2-cell of ∆, there is a closed loop
in g(∆(1)) corresponding to the image of ∂Π of length at most (2ε+1+c)λ`(∂Π) ≤ (2ε+1+c)λM .

Let R′ = {r ∈ F (T ) | ‖r‖ ≤ (2ε + 1 + c)λM and r =H 1}. From above, we have that there is
a van Kampen diagram ∆′ whose 1-skeleton is g(∆(1)) and each two cell is labeled by an element
of R′. Hence ∆′ is a van Kampen diagram over 〈T | R′〉 and W ≡ Lab(∂∆′). Thus 〈T | R′〉 is a
presentation for H, in particular H is finitely presented. Furthermore,

Area(W ) ≤ Area(∆′) = Area(∆) ≤ δG((λ+ c)n)

since W is an arbitrary word of length n, we get that δH(n) ≤ δG((λ + c)n). Reversing the
roles of G and H in the above proof will result in the reverse inquality (with possibly different
constants), hence δG is equivalent to δH .

Given a van Kampen diagram ∆, we define the type of ∆ by the ordered pair of natural numbers
(Area(∆), `(∂∆)).

Exercise 1.16. Show that for a finite presentation 〈S | R〉 and a fixed type (k, n), there are only
finitely many van Kampen diagrams over 〈S | R〉 of type (k, n).

A function f : N → N is called recursive is there exists an algorithm which computes f(n) for
all n ∈ N.

Theorem 1.17. Let G be a finitely presented group. The following are equivalent.

1. δG is recursive.

2. There exists a recursive function f : N→ N such that for all n ∈ N, δG(n) ≤ f(n).

3. The word problem in G is solvable.
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Proof. Fix a finite presentation 〈S | R〉 for the group G.

(1) =⇒ (2)

Trivial.

(2) =⇒ (3)

Let W be a word in S with ‖W‖ = n. By assumption, there exists a van Kampen diagram ∆
with Lab(∂∆) ≡ W and Area(∆) ≤ δG(n) ≤ f(n). However, by the previous exercise there are
only finitely many van Kampen diagrams of type (k, n) with 1 ≤ k ≤ f(n). Hence one can list all
of these diagrams; if a some diagram in this list has boundary label W , then W =G 1, otherwise
W 6=G 1.

(3) =⇒ (2).

Fix n ∈ N, and let Rn be the set of words W in S such that ‖W‖ ≤ n and W =G 1. This
set can be explicitly computed by applying the algorithm which solves the word problem in G to
each word of length at most n. Now for each W ∈ Rn, we can compute Area(W ) by listing all van
Kampen diagrams of type (1, ‖W‖), then type (2, ‖W‖) etc. Since we know W =1 G, there must
be some k such that this list produces a van Kampen diagram with boundary label W and area k;
if k is the smallest natural number for which such a diagram occurs, then Area(W ) = k. Hence we
can compute the area of each of the the finitely many words in Rn, and by definition δG(n) is the
maximum of these areas.

2 Geometry of hyperbolic metric spaces

2.1 Definitions

Before we define hyperbolic groups, we need to defined hyperbolic metric spaces and study some
basic properties of their geometry. In particular, we need to show that hyperbolicity is invariant
under quasi-isometry in order for hyperbolicity to be well-defined in the world of groups.

We will start by listing several equivalent definitions of hyperbolicity for metric spaces.

Let X be a metric space and let x, y, o ∈ X. The Gromov product of x and y with respect to o
is defined as

(x|y)o =
1

2
(d(o, x) + d(o, y)− d(x, y)).

Loosely speaking, (x|y)o measures how long geodesics [o, x] and [o, y] would fellow travel before
diverging, and hence the Gromov product should be thought of as a type of angle between [o, x]
and [o, y]. Indeed, in the special case where X is a tree (i.e. a geodesic metric space where there
is a unique arc between any two points), then the triangle obtained by connecting o, x and y is
actually a tripod, that is a wedge of three arcs. In this case (x|y)o is exactly the distance from o to
the center point of the tripod. It is important to note, however, that the definition of the Gromov
product does not require X to be geodsic.

Definition 2.1. Let δ ≥ 0. We say that a metric space X satisfies Hyp1(δ) if for all x, y, z, o ∈ X,

(x|y)o ≥ min{(x|z)o, (y|z)o} − δ.
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Assume now that X is a geodesic metric space and x, y, z ∈ X. Let T be the triangle with sides
[x, y], [x, z] and [y, z].

Exercise 2.2. Show that for any such triangle T is a geodesic metric space, there always exist points
ox ∈ [y, z], oy ∈ [x, z] and oz ∈ [x, y] such that

d(x, oy) = d(x, oz)

d(y, ox) = d(y, oz)

d(z, ox) = d(z, oy)

In fact, a solution to this exercise will also show that d(x, oy) = d(x, oz) = (y|z)x, d(y, ox) =
d(y, oz) = (x|z)y and d(z, ox) = d(z, oy) = (x|y)z.

Now we can construct a tripod T ′, called a comparison tripod by taking a center point c and
attaching arcs [x′, c], [y′, c], and [z′, c], where the length of [x′, c] is d(x, oy) = d(x, oz), the length
of [y′, c] is d(y, ox) = d(y, oz), and the length of [z′, c] is d(z, ox) = d(z, oy). There is a natural map
T → T ′ which sends each side of T isometrically onto the corresponding side of T ′, that is [x, y]
is set isometrically onto [x′, y′], etc. ox, oy, and oz all map to c, the center point of the tripod T ′.
Every other point of T ′ will have a preimage consisting of at most 2 points.

Definition 2.3 (Thin Triangles). Let δ ≥ 0. We say that a geodesic metric space X satisfies
Hyp2(δ) if for any geodesic triangle T in X with two points a, b ∈ T which map to the same point
of the comparison tripod T ′, d(a, b) ≤ δ.

A triangle T which satisfies the conditions in this definition is called δ-thin.

The following is the mostly commonly cited definition of hyperbolicity and is attributed to Rips.

Definition 2.4 (Slim Triangles or the Rips Condition). Let δ ≥ 0. We say that a geodesic metric
space X satisfies Hyp3(δ) if for any geodesic triangle T in X with sides p, q, r and any point a ∈ p,
there exists b ∈ q ∪ r such that d(a, b) ≤ δ.

A triangle T which satisfies the conditions in this definition is called δ-slim.

Proposition 2.5. For any geodesic metric space X and any δ ≥ 0,

1. Hyp1(δ) =⇒ Hyp2(4δ).

2. Hyp2(δ) =⇒ Hyp1(δ).

3. Hyp2(δ) =⇒ Hyp3(δ).

4. Hyp3(δ) =⇒ Hyp2(6δ).

Proof. (1) Suppose X satisfies Hyp1(δ). Let T be a geodesic triangle in X with vertices x, y, z, and
let a, b be points of T which have the same image in the comparison tripod. For concreteness, we
assume that a ∈ [x, z], b ∈ [x, y] such that d(x, a) = d(x, b) ≤ (y|z)x. That is, a and b are such that
they map to the same point on the arc [x′, c] of the comparison tripod T ′. Let N = d(x, a) = d(x, b).
Then

(a|b)x =
1

2
(d(x, a) + d(x, b)− d(a, b)) = N − 1

2
d(a, b).

9



Note that a ∈ [x, z], b ∈ [x, y] implies that (a|z)x = N = (b|y)x. Now applying Hyp1(δ) twice
gives

(a|b)x ≥ min{(a|y)x, (b|y)x} − δ ≥ min{(y|z)x, (a|z)x, (b|y)x} − 2δ = N − 2δ

Combining this with the above inequality gives that N − 2δ ≤ N − 1
2d(a, b), so d(a, b) ≤ 4δ. The

proof can be easily modified to apply to pairs of points which map to the other two arcs of the
comparison tripod, hence X satisfies Hyp2(4δ).

(2) Suppose X satisfies Hyp2(δ) and x, y, z, o ∈ X. Without loss of generality, we assume that
(y|z)o ≤ (x|z)o. Let T1 be a geodesic triangle with vertices o, x, z and T2 a geodesic triangle with
vertices o, y, z. Let bz, by be points on [o, z] and [o, y] respectively which map to the center point
of the comparison tripod for T2. Let u ∈ [o, x] such that d(o, u) = d(o, bz) = (y|z)o ≤ (x|z)o. In
particular this means that u and bz map to the same point in the comparison tripod for T1, so
d(u, bz) ≤ δ by Hyp2(δ). Similarly d(bz, by) ≤ δ, so d(u, by) ≤ 2δ. Applying the triangle inequality
and the fact that u ∈ [o, x] and by ∈ [o, y] we get

d(x, y) ≤ d(x, u) + 2δ + d(by, y)

= d(o, x)− d(o, u) + 2δ + d(o, y)− d(o, by)

= d(o, x) + d(o, y)− 2(y|z)o + 2δ

Plugging this inequality to the definition of (x|y)o yeilds

(x|y)o ≥ (z|y)o − δ

Hence X satisfies Hyp1(δ)

(3) Trivial.

(4) Suppose X satisfies Hyp3(δ). Let T be a geodesic triangle in X with vertices x, y, z,
and let ox ∈ [y, z], oy ∈ [x, z], and oz ∈ [x, y] be the points provided by exercise 2.2, that
is the points which map to the center of the comparison tripod. We will first show that
max{d(ox, oy), d(ox, oz), d(oy, oz)} ≤ 4δ. Let u be a point on [x, y] ∪ [x, z] such that d(ox, u) ≤ δ.
Suppose for concreteness that u ∈ [x, z]; a similar proof works when u ∈ [x, y]. There are two cases
to consider.

Case 1: u ∈ [oy, z]. In this case, we see that d(z, u) + d(u, oy) = d(z, oy) = d(z, ox) ≤ d(z, u) + δ,
hence d(u, oy) ≤ δ, so d(ox, oy) ≤ 2δ.

Case 2: u ∈ [x, oy]. In this case, we get that d(z, oy) + d(oy, u) + d(u, x) = d(z, x) ≤ d(z, ox) +
δ + d(u, x) = d(z, oy) + d(u, x) + δ, hence again d(u, oy) ≤ δ, so d(ox, oy) ≤ 2δ.

Now a similar proof applied to oz will show that oz is within 2δ of either ox or oy. Whichever
one is within 2δ of oz, by the triangle inequality oz will be within 4δ of the other one, hence
max{d(ox, oy), d(ox, oz), d(oy, oz)} ≤ 4δ.

Let a, b be points of T which have the same image in the comparison tripod. For concreteness,
we assume that a ∈ [y, z], b ∈ [x, z] such that d(z, a) = d(z, b) ≤ (x|y)z. That is, a and b are such
that they map to the same point on the arc [z′, c] of the comparison tripod T ′. Let u be a point of
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[x, y]∪ [x, z] such that d(a, u) ≤ δ. If u ∈ [x, z], then same proof as above with ox replaced by a and
oy replaced by b will show that d(a, b) ≤ 2δ. It only remains to deal with the case where u ∈ [x, y].
The proof is again similar to above. There are two cases, corresponding to u ∈ [x, oz] or u ∈ [oz, y].
We will show the first case and leave the second as an exercise for the reader. If u ∈ [x, oz], then
d(z, oy) + d(oy, x) = d(z, x) ≤ d(z, a) + δ + d(u, x) = d(z, ox) − d(ox, a) + δ + d(oz, x) − d(oz, u) =
d(z, oy)− d(ox, a) + δ+ d(oy, x)− d(oz, u). This implies that d(ox, a) + d(oz, u) ≤ δ. Finally, we get

d(a, b) ≤ d(a, u)+d(u, oz)+d(oz, oy)+d(oy, b) = d(a, u)+d(u, oz)+d(oz, oy)+d(ox, a) ≤ δ+δ+4δ = 6δ.

Exercise 2.6 (optional). Let T be a geodesic triangle in X with vertices x, y, z and let
ox ∈ [y, z], oy ∈ [x, z] and oz ∈ [x, y] be the points from exercise (2.2). De-
fine Size(T ) = max{d(ox, oy), d(ox, oz), d(oy, oz)}. Define MinSize(T ) as the infimum of
max{d(a, b), d(a, c), d(c, b)} over all a ∈ [x, y], b ∈ [x, z], c ∈ [y, z]. We say X satisfies Hyp4(δ)
if for every geodesic triangle T in X, Size(T ) ≤ δ, and X satisfies Hyp5(δ) if for every geodesic
triangle T in X, MinSize(T ) ≤ δ. Prove that these are equivalent to the above hyperbolicity
conditions.

Definition 2.7. A metric space X is called δ-hyperbolic if X satisfies Hyp1(δ). If X is a geodesic
metric space, we will also assume that δ is chosen such that X satisfies the conditions Hyp2(δ) and
Hyp3(δ). We say that X is hyperbolic if X is δ-hyperbolic for some δ ≥ 0.

Exercise 2.8. Let X be a δ-hyperbolic geodesic metric space and P = p1p2...pn a geodesic n-gon in
X for n ≥ 3. Let a be a point on pi for some 1 ≤ i ≤ n. Prove that there exists j 6= i and b ∈ pj
such that d(a, b) ≤ (n− 2)δ. (In fact, n− 2 can be replaced by log2(n)).

Examples 2.9. 1. If X is a bounded metric space, then X is δ-hyperbolic for δ = diam(X).

2. R with the standard metric is 0-hyperbolic.

3. Is X is a simplicial tree, that is a connected graph with no cycles equipped with the combi-
natorial metric, then X is 0-hyperbolic (equivalently, every triangle is a tripod).

4. Generalizing the previous two examples, a 0-hyperbolic geodesic metric space is called a
R-tree. Some more examples of R-trees:

(a) X = {(x, y) | x ∈ [0, 1], y = 0} ∪ {(x, y) | x ∈ Q, y ∈ [0, 1]} with the metric
d((x1, y1), (x2, y2)) = |y1|+|x2−x1|+|y2| when x1 6= x2 and d((x1, y1), (x2, y2)) = |y2−y1|
otherwise.

(b) X = R2 with the following metric: If the line containing (x1, y1) and (x2, y2) passes
through the origin, then d((x1, y1), (x2, y2)) is the usual Euclidean distance. Otherwise,
d((x1, y1), (x2, y2)) =

√
x2

1 + y2
1 +

√
x2

2 + y2
2.

5. Rn with the Euclidean metric is not hyperbolic for any n ≥ 2.

6. The classical hyperbolic space H2 is δ-hyperbolic. Recall that a triangle T in H2 with angles
α, β, and γ has area = π − α − β − γ. For a point x on T , consider the largest semi-circle
contained in T and centered at x. This semi-circle has area at most the area of T which
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is at most π; this provides a bound on the radius of the semi-circle, which can be explicity

computed to show that H2 satisfies Hyp3(δ) for δ = 4 logϕ, where ϕ = 1+
√

5
2 is the golden

ratio.

7. From the previous example, it follows that Hn is δ-hyperbolic for all n ≥ 2.

8. If (X, d) is any metric space, then we can define a new metric d̂ on X by d̂(x, y) = log(1 +
d(x, y)). Then (X, d̂) is 2 log 2 hyperbolic.

9. O(n, 1), U(n, 1), SP (n, 1) are all hyperbolic when given left-invariant Riemannian metrics.

2.2 Quasi-geodesic stability

Definition 2.10. Suppose X is a metric space and p is a path in X. p is called a (λ,C) quasi-
geodesic if for any subpath q of p,

`(q) ≤ λd(q−, q+) + C

Definition 2.11. Suppose X is a metric space and p is a path in X. p is called a k-local geodesic
if every subpath of p of length ≤ k is a geodesic.

Remark 2.12. Quasi-geodesic rays, bi-infinite quasi-geodesics, local geodesic rays, and bi-infinite
local geodesics are all similarly defined in the obvious ways.

Definition 2.13. Let X be a metric space and A, B closed subsets of X. The Hausdorff distance
between A and B is the infimum of all ε such that A ⊆ B+ε and B ⊆ A+ε. We denote this distance
by dHau(A,B).

We will assume for the rest of this section that X is a geodesic and δ-hyperbolic metric space.

Lemma 2.14. Let p be a (rectifiable) path in X from x to y. Then for any geodesic [x, y] and any
point a ∈ [x, y], there exists b ∈ p such that

d(a, b) ≤ δ| log2(`(p))|+ 1

Proof. We assume that p is paramterized such that p : [0, 1] → X and for all 0 ≤ i < j ≤ 1,
`(p|[i,j]) = 1

j−i`(p). Choose N such that 2N ≤ `(p) ≤ 2N+1. Let z1 = p(1
2). Let T1 be a triangle

with sides [x, y], [x, z1], and [z1, y]. Since T1 is δ-slim, there exists a point b1 ∈ [x, z1] ∪ [z1, y] with
d(a, b1) ≤ δ. If b1 ∈ [x, z1], let z2 = p(1

4) and T2 = [x, z1][x, z2][z1, z2]; if b1 ∈ [z1, y], let z2 = p(3
4)

and T2 = [z1, y][z1, z2][z2, y]. We apply slimness to T2 and b1 to find a point b2 on one of the
other two sides of T2 that is δ close to b1. We then define z3 as the midpoint of the subpath of p
that is “above” the side of T2 containing b2 and T3 as the triangle which contains the side of T2

that contains b2 and geodesics connecting the endpoints of this side to z3. Continue this process
inductively until we obtain bN .

Note that by construction, for each 1 ≤ i ≤ N − 1, d(bi, bi+1) ≤ δ, and hence d(a, bN ) ≤ Nδ ≤
δ| log2(`(p))|. Furthermore, bN belongs to a geodesic q with endpoints on p such that `(q) ≤ `(p)

2N
.

Let b ∈ p be the closest endpoint of q to bN , hence d(b, bN ) ≤ 1
2`(q) ≤ 1. Thefore,

d(a, b) ≤ d(a, bN ) + d(bN , b) ≤ δ| log2(`(p))|+ 1.
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Theorem 2.15 (Morse Lemma). Let X be a δ-hyperbolic metric space. Then for any λ ≥ 1,
C ≥ 0, there exists K = K(δ, λ, C) such that for any geodesic p and any (λ,C)-quasi-geodesic q
with p− = q− and p+ = q+, dHau(p, q) ≤ K.

Proof. Let D = supx∈p{d(x, q)}; our first goal will be to bound D in term of δ, λ and C. Since
p and q are compact, there is point x0 ∈ p which realizes this supremum. In particular, the the
interior of BD(x0) does not intersect q. Now choose y ∈ [p−, x0] such that d(x0, y) = 2D, or if no
such y exists then set y = p−. Choose z ∈ [x0, p+] similarly. By definition of D, there exists some
y′, z′ ∈ q such that d(y, y′) ≤ D and d(z, z′) ≤ D. By the triangle inequality,

d(y′, z′) ≤ d(y′, y) + d(y, z) + d(z, z′) ≤ 6D

If q′ is the subpath of q joining y′ to z′, then since q is a (λ,C)-quasi-geodesic, `(q′) ≤ 6λD+C.
Let c = [y, y′]q′[z′, z], and note that l(c) ≤ 6λD + C + 2D and d(x0, c) = D. By Lemma 2.14,
d(x0, c) ≤ δ| log2(`(c))|+ 1, and combinging this with the previous estimates gives

D ≤ δ| log2(6λD + 2D + C)|+ 1.

This equation implies that D must be bounded in terms of δ, λ and C.

It remains to show that q is contained in a bounded neighborhood of p. Suppose q = q1q2q3

such that q2 is a maximal subpath of q which lies outside p+D. Now every point of p is within D
of some point on either q1 or q3; by connectedness of p, there must exist some x ∈ p and y ∈ q1,
z ∈ q3 such that d(x, y) ≤ D and d(x, z) ≤ D. In particular, this means that `(q2) ≤ λ(2D) + C.
It follows that q is contained in the 2λD +D + C neighborhood of p.

Corollary 2.16. Let X be a δ-hyperbolic metric space. Then for any λ ≥ 1, C ≥ 0, there exists
κ = κ(δ, λ, C) such that for any (λ,C)-quasi-geodesics p and q with p− = q− and p+ = q+,
dHau(p, q) ≤ κ.

Exercise 2.17. Prove that there exist λ ≥ 1 and C ≥ 0 such that for any K ≥ 0, there exists a
(λ,C)-quasi-geodesic q in R2 such that dHau(q, [q−, q+]) ≥ K.

Exercise 2.18. Let X be a geodesic metric space. Prove X is hyperbolic if and only if for all λ ≥ 1,
C ≥ 0 that there exists δ′ such that for any triangle T in X whose sides are (λ,C)-quasi-geodesics
is δ′-slim.

Proposition 2.19. Suppose Y is a geodesic metric space and X ∼qi Y . Then Y is hyperbolic.

Proof. Let f : Y → X be a (λ, c, ε) quasi-isometry and let T = pqr be any geodesic triangle in Y .
Choose points p− = a0, a1, ..., an1 = p+ ∈ p such that dY (ai, ai+1) = 1 for 0 ≤ i ≤ n1 − 1 and
dY (an1−1, an1) ≤ 1. For each ai, let a′i = f(ai), and let p′ be the path in X obtained by connected
each ai to ai+1 by a geodesic. We will first show that p′ is a quasi-geodesic. Let q be a subpath of
p′, and let a′i and a′j be the closest points to q− and q+ respectively. Then q is composed of at most
|j − i|+ 2 geodesic segments, each of length at most (λ+ c). Hence `(q) ≤ (|j − i|+ 2)(λ+ c). On
the other hand, |j − i| − 1 ≤ dY (ai, aj) ≤ |j − i|, so dX(a′i, a

′
j) ≥ 1

λ(|j − i| − 1)− c. It follows that

dY (q−, q+) ≥ 1
λ(|j − i| − 1) − c − λ − c, which we rewrite as |j − i| ≤ λdY (q−, q+) + λ2 + 2cλ + 1.

Comparing these estimates gives that
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`(q) ≤ (λ+ c)|j − i|+ 2(λ+ c) ≤ (λ+ c)(λdY (q−, q+) + λ2 + 2cλ+ 1) + 2(λ+ c).

This shows that p is a (λ′, c′) quasi-geodesic for λ′ and c′ depending only on λ and c.

Choose points q− = b0, b1, ..., bn2 = q+ ∈ q and r− = c0, c1, ..., cn3 = r+ ∈ r similarly, and define
q′ and r′ as before. Then T ′ = p′q′r′ is a (λ′, c′)-quasi-geodesic triangle, and hence is δ′-slim for
some δ′ = δ′(δ, λ′, c′) by Exercise (2.18).

Now, let x ∈ p. Then there exists some ai ∈ p such that dY (x, ai) ≤ 1. Since T ′ is δ′-slim, there
exists some z ∈ q′ ∪ r′ such that dX(a′i, z) ≤ δ′. For concreteness we assume z ∈ q′ and choose b′j
such that dX(z, b′j) ≤ λ+ c, and hence dX(a′i, b

′
j) ≤ δ′ + λ+ c. It follows that

dY (x, bj) ≤ 1 + dY (ai, bj) ≤ 1 + λ(δ′ + λ+ 2c).

In particular, we have shown that Y satisfies Hyp3(1 + λ(δ′ + λ+ 2c)).

Remark 2.20. By the same proof as above, if X and Y are geodesic metric spaces such that Y is
hyperbolic and f : X → Y is a quasi-isometric embedding, then X is hyperbolic.

Definition 2.21. A finitely generated group G is hyperbolic if for some (equivalently, any) finite
generating set S, Γ(G,S) is a hyperbolic metric space.

Remark 2.22. By the Milnor-Svarc Lemma, a group G is hyperbolic if and only if G admits a
proper, cobounded action on a geodesic hyperbolic metric space.

Examples 2.23. 1. Finite groups are hyperbolic.

2. Z is hyperbolic. More generally, any group which is virtually Z, such as Z/2Z ∗ Z/2Z.

3. Fn is hyperbolic for any n ≥ 1.

4. If M is a closed hyperbolic manifold, then π1(M) is hyperbolic. In particular, if S is an
orientable surface of genus g, then π1(S) is hyperbolic if and only if g ≥ 2.

5. Zn is hyperbolic if and only if n = 1.

Lemma 2.24. Suppose p is a k-local geodesic in X from x to y for k > 8δ. Then

1. p ⊆ [x, y]+2δ.

2. [x, y] ⊆ p+3δ.

3. p is a (λ, c)-quasi-geodsic for λ = k+4δ
k−4δ and c = 2δ.

Proof. (1) Choose a point a ∈ p which maximizes the distance to [x, y]. Choose b, c ∈ p such that a
is the midpoint of the subpath of p from b to c and 8δ < d(b, c) ≤ k. (if such points do not exist, we
use the endpoints of p instead and an obvious modification of the following arguement will work).
Choose b′, c′ as the points on [x, y] closest to b and c respectively, and consider the quadrilateral
(b′, b, c, c′). a must be 2δ from one of the other sides of this quadrilateral by hyperbolicity. If a
is within 2δ of a point on [b′, b] or [c, c′], it would contridict our choice of a as the point which
maximizes the distance to [x, y]. Hence a is within 2δ of a point on [b′, c′] ⊆ [x, y].
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(2) Now let a ∈ [x, y]. Since p is connected, there exists some b ∈ p such that d(b, [x, a]) ≤ 2δ
and d(b, [a, y]) ≤ 2δ. Applying hyperbolicity to the triangle spanned by b and the two points which
realize these inequalities produces the desired result.

(3) We subdivide p into subpaths p = p1p2...pn+1 such that `(pi) = k′ = k
2 + 2δ for 1 ≤ i ≤ n

and 0 ≤ `(pn+1) = η < k′. Note that
`(p) = nk′ + η

Now let ai = (pi)−, and let a′i be a point on [x, y] with d(ai, a
′
i) ≤ 2δ. We first need to show

that each a′i is “between” a′i−1 and a′i+1 on [x, y], which will imply that x = a′1, a
′
2...a

′
n+1, y forms

a monotone sequence along [x, y].

Let x0 ∈ pi−1 with d(ai−1, x0) = 2δ and y0 ∈ pi with d(ai+1, y) = 2δ. Note that d(x0, y0) =
2k′ − 4δ = k, hence a geodesic [x0, y0] can be chosen as a subpath of p. Consider the triangle T
with endpoints ai−1, a

′
i−1, and x0. By hyperbolicity, T ⊆ B3δ(ai−1). Since d(ai−1, ai) = k′ > 6δ, T

does not intersect B3δ(ai). Similarly, a triangle with endpoints ai+1, a
′
i+1, and y0 will not intersect

B3δ(ai). Now we apply hyperbolicity to the quadrilateral with vertices a′i−1, x0, y0, a
′
i+1 and the

point ai, we get a point a′′i ∈ [a′i−1, a
′
i+1] with d(ai, a

′′
i ) ≤ 2δ. By hyperbolicity of the triangle

(ai, a
′
i, a
′′
i ), d(ai, z) ≤ 3δ for any point z which is between a′i and a′′i . In particular, neither a′i−1 nor

a′i+1 are between a′i and a′′i , and since a′′i ∈ [a′i−1, a
′
i+1], we must also have a′i ∈ [a′i−1, a

′
i+1].

Since x = a′1, a
′
2...a

′
n+1, y forms a monotone sequence along [x, y], we get that

d(x, y) =

n∑
i=1

d(a′i, a
′
i+1) + d(a′n+1, y)

Now for each 1 ≤ i ≤ n, d(a′i, a
′
i+1) ≥ k′ − 4δ, and d(a′n+1, y) ≥ η − 2δ. Hence,

d(x, y) ≥ nk′ − 4δn+ η − 2δ = `(p)− 4δn− 2δ

Finally, since n ≤ `(p)
k′ ,

d(x, y) ≥ (
k′ − 4δ

k′
)`(p)− 2δ.

Finally, it only remains to note that every subpath of p is again a k-local geodesic to which the
above proof applies.

Corollary 2.25. Suppose p is a k-local geodesic in X for k > 8δ. Then either p is constant or
p− 6= p+.

3 Algorithmic and isoperimetric characterizations of hyperbolic
groups

Given a group presentation 〈S | R〉 and a word W in S, Dehn’s algorithm is the following procedure:
First freely reduce W ; if this produces the empty word, the algorithm stops. Now if W is freely
reduced and non-empty, search W for subwords U such that U is also a subword of relation (or a
cyclic shift of a relation) r ∈ R and ‖U‖ > 1

2‖r‖. If no such subword exists, the algorithm stops.
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If such a U exists, then there is a (possibly empty) word V (the complement of U in r) such that
UV −1 =G 1 and ‖V ‖ < ‖U‖. In this case, the algorithm replaces U with V and repeats.

If the presentation 〈S | R〉 is finite, then Dehn’s algorithm terminates after finitely many steps
for any word W .

Definition 3.1. Let 〈S | R〉 be a finite presentation for a group G. Dehn’s algorithm solves the
word problem for 〈S | R〉 if for any non-empty word W for which Dehn’s algorithm stops, W 6=G 1.

Exercise 3.2. Find a group presentation for which Dehn’s algorithm does not solve the word prob-
lem.

Exercise 3.3. Suppose 〈S | R〉 is a finite presentation for a group G for which Dehn’s algorithm
solves the word problem. Prove that G has linear Dehn function.

Theorem 3.4. For any finitely generated group G, the following are equivalent.

1. G is hyperbolic.

2. G has a finite presentation 〈S | R〉 for which Dehn’s algorithm solves the word problem.

3. G is finitely presented and has linear Dehn function.

4. G is finitely presented and has subquadratic Dehn function.

Exercise 3.5. Suppose G and H are hyperbolic. Prove that G ∗H is hyperbolic.

Proof. (1) =⇒ (2)

Let S be a finite, symmetric generating set of G, and let δ be the hyperbolicity constant of
Γ(G,S). Let R = {U | U is a word in S , ‖U‖ ≤ 16δ, U =G 1}. We will show that 〈S | R〉 is a
presentation for G for which Dehn’s algorithm solves the word problem.

Let W be a non-empty word in S such that W =G 1. Let p be the path in Γ(G,S) with p− = 1
and Lab(p) ≡ W . By assumption, p is not constant and p− = p+, so by Corollary 2.25, p is not a
k-local geodesic for any k > 8δ. This means that p contains a subpath q with `(q) ≤ 8δ such that
q is not a geodsic. Let r be a geodesic from q− to q+. Then `(r) < `(q) ≤ 8δ, so qr−1 is a closed
loop with `(qr−1) ≤ 16δ. This means that Lab(qr−1) ∈ R, and since `(r) < `(q), Dehn’s algorithm
will not stop on W .

Thus we have shown that every word in S which is equal to 1 in G by be reduced to the empty
word via Dehn’s algorithm using only relations from R. Therefore, 〈S | R〉 is a finite presentation
for G and Dehn’s algorithm solves the word problem for 〈S | R〉.

(2) =⇒ (3) by Exercise 3.3.

(3) =⇒ (4) is trivial.

We will need a few auxillary results before proving the final implication. First, however, I
would like to highlight the following consquence of the above theorem, which is a purely algebraic
consequence of the geometric assumption of hyperbolicity.
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Corollary 3.6. If G is a hyperbolic group, then G is finitely presented.

In fact, this corollary is a special case of a more general finiteness phenomenon for hyperbolic
groups which we will see later when we introduce the Rips complex.

Now, we return to the proof of Theorem 3.4. It will be convienent to use the following charac-
terization of hyperbolic metric spaces.

Definition 3.7. Let X be a geodesic metric space. Given a triangle T = pqr in X, a point o ∈ p is
called a bisector if d(o, q) = d(o, r). We say that X satisfies Hyp6(δ) if for every geodesic triangle
T = pqr in X and ever bisector point o ∈ p, d(o, q) = d(o, r) ≤ δ.

Exercise 3.8. Show that Hyp6(δ) is equivalent to previous characterizations of hyperbolicity.

Given a polygon P = p1p2...pn in X, we say P is t-slim if for any point a ∈ pi, there exists
j 6= i and a point b ∈ pj such that d(a, b) ≤ t. We define the thickness of P , denoted t(P ), as the
minimal constant t such that P is t-slim. Clearly, if X is non-hyperbolic it will have triangles of
arbitrarily large thickness. We will show that in this case there are polygons or arbitrarily large
thickness t whose perimeter length is linear in t. Next we will show that the area of a polygon P
is bounded below by a quadratic function of the thickness of P . These results together will finish
the proof of Theorem 3.4.

For the next two lemmas I am following the proofs from [21].

Lemma 3.9 (Thick polygons with linear perimeter). Suppose a geodesic metric space X is not
hyperbolic. Then for all t0 ≥ 0, there exists t ≥ t0 such that X contains a polygon of thickness t
whose perimeter length is at most 46t.

Proof. Let T = pqr be a geodesic triangle in X with x = p− = q−, y = q+ = r−, and z = p+ = r+.
Let a ∈ p a point such that d(a, q) = d(a, r) = t ≥ t0, and b ∈ q, c ∈ r such that d(a, b) = t = d(a, c).
Let e ∈ [b, y] such that d(d, e) = 7t (or e = y if no such point exists). Let f be the point of [y, c]
which is closest to e.

Case 1: d(e, f) ≥ 4t. In this case we analyze the triangle with vertices b, c, and y. Choose a
point o ∈ [b, y] which maximizes d(o, [y, c]). Note that by our assumption, d(o, [y, c]) ≥ 4t ≥ 1

2d(b, c)

(hence this is an example of a wide triangle). Let D = d(o, [y, c]), and let g ∈ [o, y] with d(o, g) = 3d
2

and i ∈ [o, b] with d(o, i) = 3D
2 (as usual, choose g and i to be the endpoints if needed). By definition

of o, there exist h, j ∈ [y, c] with d(g, h) ≤ D and d(i, j) ≤ D. In case i = b, we set j = c, and if
g = y, then h = g = y.

Now we show the quadrilateral Q with vertices [g, h, i, j] is D
2 -thick. Indeed, d(o, [h, j]) ≤

d(o, [y, c]) = 2D. Since d(o, g) = 3D
2 and d(g, h) ≤ D, d(o, [g, h]) ≥ D

2 . Similarly, if i 6= b,
d(o, [i, j]) ≥ D

2 . For the case i = b, observe that d(b, c) ≤ D
2 , and since d(o, c) ≥ D we must have

d(o, [b, c]) ≥ D
2 . Hence, t

2 ≤
D
2 ≤ t(Q).

Finally, d(g, h) and d(i, j) are both bounded by D, d(g, i) ≤ 3D, and hence the triangle inequal-
ity gives d(h, j) ≤ 5D. Therefore the length of the perimeter of Q is at most 10D ≤ 20t(Q).

Case 2: d(e, f) ≤ 4t. First, we are going to show that for any k ∈ [e, f ], d(a, k) ≥ t. First note
that d(f, c) ≥ d(b, e)− d(b, c)− d(e, f) ≥ 7t− 2t− 4t = t.
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Now, the following two inequalities can be extracted via applying the triangle inequality to the
relevent sequences of points, which can be easily traced out if the right picture is drawn.

d(x, z) ≤ d(x, b) + d(b, c) + d(c, z) ≤ d(x, b) + d(c, z) + 2t. (3)

d(x, e) + d(z, f) ≤ d(x, a) + d(a, k) + d(k, e) + d(z, a) + d(a, k) + d(k, f)

substituting d(b, e) + d(c, f) ≥ 7t + t, d(e, f) ≤ 4t, and d(x, z) = d(x, a) + d(a, z) into the above
equation gives

d(x, b) + d(z, c) + 8t ≤ d(x, z) + 2d(a, k) + 4t

Summing this with 3 produces d(a, k) ≥ t, as desired.

We now continue constructing the desired polygon. Let g ∈ [x, a] and i ∈ [a, z] with d(g, a) =
d(a, i) = 3t (as usual, we may need to choose the end points, and the proof is easily modified to
work in this case). Furthermore, we can assume that there are points h ∈ [x, b] and j ∈ [z, c] such
that d(g, h) ≤ 2t and d(i, j) ≤ 2t. If these points do not exists, then we will get a wide triangle,
and we can then procede as in Case 1.

Now the inequalites d(a, g) = 3t and d(g, h) ≤ 2t implie that d(a, [g, h]) ≥ t. Similarly,
d(a, [i, j]) ≥ t. It follows that the hexigon H with vertices [g, h, e, f, j, i] is at least t-thick, since the
distance from a to any other side of H is at least t.

It only remains to esitmate the perimeter of H. I will leave this as an exercise, but using known
lengths and estimating the rest with the triangle inequality will produce a bound on the perimeter
of 46t.

Exercise 3.10. Show the hexegon H constructed in the above proof as perimeter ≤ 46t.

The following lemma can be proved in the context of general geodesic metric spaces. However,
we will restrict our attention to the case of Cayley graphs of finitely presented groups. This
restriction is purely for convenience of notation, there are no essential differences in the following
proofs for general geodesic metric space once a suitable notion of area is defined.

Given a polygon P = p1...pn in a Cayley graph Γ(G,S), let Lab(P ) ≡ Lab(p1)...Lab(pn). Also,
we slightly modify our notion of thickness for such polygons by only measuring distance between
points which are vertices of the Cayley graph. This change decreases the thickness of a polygon by
at most 1, so it clearly does not affect our previous result.

Lemma 3.11 (Thick polygons have quadratic area). Let G be a group given by a finite presentation
〈S | R〉, and let M = maxr∈R{‖r‖}. Let P be a polygon in Γ(G,S) of thickness t with W ≡ Lab(P ).
Then Area(W ) ≥ 4

M3 t
2.

Proof. By definition of thickness, there exists some side p of P and a vertex a ∈ p such that
d(a, P \ p) ≥ t. Let q be the remaining sides of P , so P = pq.

We now fill the closed loop pq with a van Kampen diagram ∆. We now set x0 = y0 = a and
inductively define a sequence of simple closed paths, zi = xiyi for 0 ≤ i ≤ 2t

M + 1 which satisfy the
following properties:

1. xi is a subpath of p containing xi−1.
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2. For every vertex b ∈ yi, d(a, b) ≤ Mi
2 .

3. The subdiagram ∆i bound by zi = xiyi contains the maximal area over all simple closed
paths which satisfy the first two properties.

Increasing xi is necessary, we can assume that each yi has no edges in common with p. Further-
more, if i ≤ 2t

M then yi does not intersect q, since if b ∈ yi, d(a, b) ≤ Mi
2 < t. Suppose b is a vertex

of both yi−1 and yi. Then b is a vertex of ∂∆i, and since b does not belong to the boundary of ∆,
there must exist some 2-cell Π such that b ∈ ∂Π but Π does not belong to ∆i. But since b ∈ yi−1,

d(a, b) ≤ M(i−1)
2 , and the definition of M gives that for any vertex c ∈ ∂Π, d(b, c) ≤ M

2 . Hence
∆i could be enlarged by adding Π without violating the first two conditions, which contradicts the
third condition of the definiton of ∆i. Thus the vertices of yi and yi−1 are disjoint.

It follows that every edge of yi belongs to the boundary of a 2-cell which is contained in ∆i

but not in ∆i−1. Let mi be the number of such faces , and note that mi is at least `(yi)
M . Since yi

and yi−1 are disjoint, xi must contain at least 2 more vertices then xi−1, one on each end. Thus,
`(xi) ≥ 2i, and since each xi is a subpath of a geodesic, d((xi)−, (xi)+) ≥ 2i. yi has the same
endpoints as xi, so `(yi) ≥ 2i, which implies that mi ≥ 2i

M . Finally, we get

Area(∆) ≥

2t
M

+1∑
i=1

mi ≥

2t
M

+1∑
i=1

2i

M
≥ 4t2

M3
.

Combining the previous two lemmas gives the following corollary, which finishes the proof of
Theorem 3.4 (in particular, it shows that (4) =⇒ (1) part the proof of Theorem 3.4).

Corollary 3.12. Let G be a finitely presented group which is not hyperbolic. Then the Dehn
function of G is at least quadratic.

Exercise 3.13. Suppose G has a presentation 〈S | R〉 with sublinear Dehn function. Prove that
R = ∅, so in fact G is the free group on S.

Theorem 3.4 shows that hyperbolic groups have solvable word problem. In fact, they also have
solvable conjugacy problem.

Lemma 3.14. Suppose G is group generated by a finite set S and Γ(G,S) is δ-hyperbolic. Let W ,
U , and V be words in S such that no shorter words in S represents the same elements of G as U
and V , W−1UW =G V , and W is the shortest word which conjugates a cyclic shift of U to a cyclic
shift of V . Then either:

1. ‖W‖ ≤ ‖U‖+ ‖V ‖+ 4δ + 2

or

2. There exists words Y and Z in S with ‖Z‖ ≤ 4δ and ‖Y ‖ < ‖W‖ such that Y −1UY =G Z.
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Proof. Suppose ‖W‖ ≥ ‖U‖+‖V ‖+4δ+2. Let Q = s1q(s2)−1p−1 be a quadrilateral in Γ(G,S) such
that Lab(p) ≡ U , Lab(q) ≡ V , and Lab(s1) ≡ Lab(s2) ≡ W . Also s1 is the shortest path which
connects p to q, otherwise there would be a word shorter then W which conjugates a cyclic shift of
U to a cyclic shift of V . In particular, s1 and s2 are geodesic, so Q is a geodesic quadrilateral.

Let x ∈ s1 such that d(x, (s1)−) = ‖U‖+ 2δ + 1. Then d(x, p) > 2δ, and similarly d(x, q) > 2δ.
By hyperbolicity, there must exist a point y ∈ s2 such that d(x, y) ≤ 2δ. Let z ∈ s2 be the point
“parallel” to x, that is d(z, (s2)−) = d(x, (s1)−). We will show that y must be close to z.

Let s1 = σ1σ2 where (σ1)+ = (σ2)− = x, and let s2 = τ1τ2 where (τ1)+ = (τ2)− = y. If
d(y, z) > 2δ, then one of the two paths σ1[x, y]τ2 or τ1[y, x]σ2 will be a path from p to q which is
shorter then s1. Since we assumed that no such path exists, we get that d(y, z) ≤ 2δ, and hence
d(x, z) ≤ 4δ.

Let Z ≡ Lab([x, z]) and Y ≡ Lab(σ1). Note that Y is also the label of the initial segment of s2

which ends at z, which give the desired equality Y −1UY =G Z. Finally we note that ‖Y ‖ < ‖W‖,
since σ1 is a proper subpath of s1.

Exercise 3.15. Let G be a hyperbolic group. Describe an algorithm which solves the conjugacy
problem in G.

Theorem 3.16. If G is a hyperbolic group, then the conjugacy problem is solvable in G.

4 The Rips complex and finiteness properties

Let X be a metric space and d > 0. The Rips complex is the simplicial complex Pd(X) which
has a vertex for every point in X and an n-simplex corresponding to every n+ 1 tuple of vertices
{x0, x1, ..., xn} which satisfies d(xi, xj) ≤ d for all 0 ≤ i < j ≤ n.

Proposition 4.1. Let Y be a geodesic and δ-hyperbolic metric space and X and r-dense subset of
Y . Then for all d ≥ 4δ + 2r, Pd(X) is contractible.

Proof. The space Pd(X) is contractible if and only if πn(Pd(X) is trivial for all n ≥ 1. Since any
continuous map Sn → Pd(X) has compact image, it suffices to show that every finite subcomplex
of Pd(X) is contractible.

Let x0 be a fixed vertex of Pd(X), and let K be a finite subcomplex of Pd(X). Let v be the
vertex of K of maximal distance (using the metric from Y ) to x0.

Case 1: d(x0, v) ≤ d
2 . In this case, K is contained in a single simplex of Pd(X), hence K is

contractible.

Case 2: d(x0, v) > d
2 . In this case, let [x0, v] be a geodesic in Y from x0 to v, and let y be a

point on this geodesic such that d(y, v) = d
2 . Let v′ be a point in X such that d(y, v′) ≤ r. We

are going to show that any simplex σ of K containing v is a face of a larger simplex obtained by
joining v′ to σ.

Suppose u is a vertex in K and d(u, v) ≤ d. Considering the triangle in Y with vertices at x0,
v and u, there is a point w ∈ [x0, u]∪ [v, u] such that d(y, w) ≤ δ. Suppose first that w ∈ [x0, u]. In
this case, the fact that d(x0, u) ≤ d(xo, v) by our choice of v and the triangle inequality yields:
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d(x0, v) ≤ d(x0, w) + d(w, y) + d(y, v) ≤ d(x0, u)− d(u,w) + δ +
d

2
≤ d(x0, v)− d(u,w) + δ +

d

2
.

Subtracting d(x0, v)− d(u,w) from both sides of this equation gives d(u,w) ≤ δ + d
2 . Hence

d(v′, u) ≤ d(v′, y) + d(y, w) + d(w, u) ≤ r + δ + δ +
d

2
≤ d.

Now suppose w ∈ [v, u]. In this case, d(v, w) ≥ d
2 − δ, otherwise there would be a shortcut from

y to v. Then

d(u,w) = d(u, v)− d(v, w) ≤ d− d

2
+ δ =

d

2
+ δ.

Which implies

d(v′, u) ≤ d(v′, y) + d(y, w) + d(w, u) ≤ r + δ +
d

2
+ δ ≤ d.

Hence, if σ is a simplex of Pd(X) containing v, then σ ∪ {v′} is also a simplex of Pd(X). Let
σ′ = (σ \ {v}) ∪ {v′}, that is the simplex where v is replaced by v′. There is a natural affine
homotopy which takes σ to σ′ through the simplex σ ∪ {v′}. Hence we get a homotopy K → K ′,
where K ′ is the finite subcomplex obtained by replacing v with v′ in every simplex of K which
contains v. Note d(x0, v

′) < d(x0, v), so applying the above procedure finitely many times (since
K is a fintie complex) will show that K is homotopic to a subcomplex that is contained in a single
simplex of Pd(X) as in Case 1.

In particular, if G is a hyperbolic group generated by a finite set S, we apply this theorem
where X is the set of vertices of the Cayley graph Y = Γ(G,S). The corresponding Rips complex
Pd(X) will be locally finite and finite dimensional because there are only finitely many vertices in
any ball of radius d in Γ(G,S). Furthermore, the natural action of G on X extends to a simplicial
action of G on Pd(X) with compact quotient. This action is free and transitive on the set of
vertices of Pd(X), and it follows that the stabilizer of any simplex is finite; in particular, if G is
torsion-free then the action of G on Pd(X) is free, hence the quotient is a K(G, 1) whenever Pd(X)
is contractible. We collect these properties in the following theorem.

Theorem 4.2. Let G be a hyperbolic group. Then there exists a simplicial complex P such that

1. P is locally finite, finite dimensional, and contractible.

2. G acts simplicially and cocompactly on P .

3. G acts freely and transitively on the vertices of P , hence the stabilizer of any simplex of P is
finite.

4. If G is torsion-free then the quotient P/G is a finite K(G, 1).
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We will now mention some applications of Theorem 4.2 to topological finiteness properties of
hyperbolic groups. For more background on finiteness properties of groups, see [10].

Recall that a CW-complex Y is called a K(G, 1) if π1(Y ) = G and Y is aspherical, that is
the universal cover Ỹ is contractible (equivalently, πn(Y ) is trivial for all n ≥ 2). Every group G
admits a K(G, 1), and such a space is unique up to homotopy equivalence. If Y is a K(G, 1), then
the homology (respectively, cohomology) of G can be defined by Hn(G) := Hn(Y ) (respectively,
Hn(G) := Hn(Y )). For our purposes, we will only consider homology with coefficients in Z.

Definition 4.3. A group G is said to be of type Fm for m ∈ N ∪ {∞} if G admits a K(G, 1) with
finitely many cells in each dimension ≤ m. G is said to be of type F if G admits a finite K(G, 1).

Note that G satisfies F1 if and only if G is finitely generated, and G satisfies F2 if and only if
G is finitely presented. Also, if G is type Fn then Hn(G) is finitely generated.

Clearly there are natural implications:

F1 ⇐= F2 ⇐= F3 ⇐= ... ⇐= F∞ ⇐= F.

The geometric dimension of G, denoted gd(G), as the minimal d such that G has a d-dimensional
K(G, 1), or∞ if G has no finite-dimensional K(G, 1). Clearly gd(G) = d implies that Hn(G) = {0}
for all n ≥ d. It is well-known that this can only happen for groups that are torsion-free, hence we
get the following:

F =⇒ finite geometric dimension =⇒ torsion-free.

If G is a torsion-free hyperbolic group, then the quotient of the Rips complex Pd(G)/G is a
finite K(G, 1) for sufficiently large d, hence we get the following.

Corollary 4.4. If G is a torsion-free hyperbolic group, then G is type F . Hence G has finite
geometric dimension, and Hn(G) = {0} for all n > gd(G).

If G is a hyperbolic group with torsion, then it cannot be type F . Howeve the action on the
Rips complex is still sufficient to prove it is type F∞, see [10, Remark 7.3.2].

Corollary 4.5. If G is any hyperbolic group, then G is type F∞, hence Hn(G) is finitely generated
for all n ≥ 1.

4.1 Hyperbolicity of subgroups

Exercise 4.6. Find the mistake in the following proof.

Claim: if G is hyperbolic and H ≤ G, then H is hyperbolic.

Proof. Let S be a finite generating set, and consider H with the metric dS . Equivalently, you can
consider H with the metric induced by considering H as a subspace of Γ(G,S). Since Γ(G,S) is
hyperbolic, every subspace with the induced metric is hyperbolic; this follows immediately from
Hyp1(δ). Furthermore, it is easy to check that the natural action of H on (H, dS) is proper and
cobounded. Hence by the Milnor-Svarc lemma, H is finitely generated and a Cayley graph of H is
quasi-isometric to (H, dS), therefore this Cayley graph is hyperbolic.
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It is natural to ask whether all subgroups of hyperbolic groups are hyperbolic. The answer
is no, simply because even the free group F2 contains infinitely generated subgroups, for example
[F2, F2]. A better question is whether all finitely generated subgroups of hyperbolic groups are
hyperbolic. In this case the answer is yes for free groups, as all subgroups of free group are free.
It is also yes for fundamental groups of compact orientable surfaces of genus ≥ 2, as all subgroups
are either free or are fundamental groups of compact orientable surfaces of higher genus.

However in general the answer to this question is no, as there are finitely generated subgroups
of hyperbolic groups which are not finitely presented. We will see how to constuct such examples
in the next section using small cancellation theory.

This raises another natural question: are all finitely presented subgroups of hyperbolic groups
hyperbolic? The answer again is no, as there are examples of subgroups of hyperbolic groups which
are finitely presented but not type F3. The first such examples were constructed by Brady [4], and
more examples were constructed recently by Lodha [16].

Again, this leads to another natural question which is currently open.

Question 4.7. If G is a hyperbolic group and H ≤ G is type F3, is H hyperbolic?

This question is also open if 3 is replaced by any n ≥ 3. One can also ask whether any finiteness
property is sufficient to guarantee hyperbolicity of subgroups, which leads to another open question.

Question 4.8. If G is a hyperbolic group and H ≤ G is type F , is H hyperbolic?

5 Small cancellation theory

5.1 Small cancellation conditions, hyperbolicity and asphericity

Throughout this section, for all group presentations 〈S | R〉 the set of relations R is assumed to be
cyclically reduced that is, every r ∈ R is cyclically reduced. Also, we denote by R the symmetrized
closure of R, that is the set of all cyclic shifts of elements of R and their inverses.

Definition 5.1. Given a group presentation 〈S | R〉, a word U is called a piece if there exist
r, r′ ∈ R and (possibly empty) words V,W, V ′,W ′ such that

1. r ≡ V UW .

2. r′ ≡ V ′UW ′.

3. WV −1 6≡W ′(V ′)−1.

Exercise 5.2. Describe which words are pieces for the following presentations.

1. 〈a, b | aba−1b−1〉.

2. 〈a, b | (ab)4〉.

3. 〈a, b | abab10ab100〉.
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4. 〈a1, a2, b1, b2 | [a1, b1][a2, b2]〉.

The main idea of small cancellation theory is to put restrictions on the ways that pieces can
occur in a group presentation. These restrictions then imply a number of group theoretic properties,
and it is usually straightforward to construct presentations which satisfy these restrictions. Hence,
small cancellation theory provides a set of tools for building a large variety of examples (and
counterexamples) in group theory.

The following is the most commonly used small cancellation condition, sometimes called the
metric small cancellation condition.

Definition 5.3. Let 0 ≤ λ ≤ 1. A presentation 〈S | R〉 satisfies the C ′(λ)-condition if any piece U
which is a subword of a relation r ∈ R satisfies ‖U‖ < λ‖r‖.

Exercise 5.4. For each presentation in the previous exercise, find the optimal λ such that the pre-
sentation satisfies C ′(λ). Also find the optimal λ for the standard presentation of the fundamental
group of a compact, orientable, genus g surface.

Exercise 5.5. Let r be a cyclically reduced word in S which is not a proper power in F (S). Then
〈S | rn〉 satisfies C ′( 1

n).

Let ∆ be a van Kampen diagram. Suppose Π1 and Π2 are cells of ∆ whose boudaries intersect
in a path q. Let ∂Π1 = qp1 and ∂Π2 = qp2. If Lab(p1) ≡ Lab(p2), then (Π1,Π2) are called a
cancellable pair of cells. Note that if this happens, then ∂(Π1 ∪ Π2) = p1p

−1
2 which is labeled by

a freely trivial word. Hence the cells Π1 and Π2 can be removed and the resulting hole can be
“sewed” together by attaching each edge in p1 to the edge in p2 which freely cancels its label. Note
that this process does not affect any part of ∆ outside of Π1 ∪Π2.

More generally, (Π1,Π2) is a cancellable pair if there is a path t in ∆ from Π1 to Π2 such that
Lab(t) =F (S) 1 and the label of ∂Π1 read counterclockwise starting at t− is the same as the label
of ∂Π2 read counterclockwise starting at t+. This means that the label of ∂Π1t∂Π2t

−1 is freely
trivial, and the same procudure as above can be applied to remove such pairs of cells.

A van Kampen diagram is called reduced if it contains no cancellable pair. Since we have seen
that a cancellable pair of cells can be removed to produce a van Kampen diagram with fewer cells
and the same boundary label, it follows that if ∆ has the minimal area among all diagrams with a
given boundary label, then ∆ must be reduced. Hence the get the following strengthening of the
van Kampen lemma.

Lemma 5.6. If G = 〈S | R〉 and W =G 1, then there exists a reduced van Kampen diagram ∆
with Lab(∂∆) ≡W .

The reason we want to consider reduced diagrams is the following: If Π1 and Π2 are cells of
∆ and q is a maximal connected component of Π1 ∩ Π2, then Lab(q) is a piece if and only if
(Π1,Π2) is not a cancellable pair. Hence we obtain the following geometric interpretation of the
C ′(λ)-condition.

Lemma 5.7. Suppose ∆ is a reduced van Kampen diagram over a presentation 〈S | R〉 which
satisfies C ′(λ). If Π2 and Π2 are 2-cells of ∆ and q is a subpath of ∂Π1 ∩ ∂Π2, then

`(q) < λmin{`(∂Π1), `(∂Π2)}.
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Exercise 5.8. Let Φ be a finite, connected, planar graph and let v, e, and f denote the number of
vertices, edges, and faces of Φ. Show that if Φ has no 1-gons, 2-gons, or vertices of degree 1, then

e < 3(v − 1). (4)

The following is a fundamental result in small cancellation theory.

Theorem 5.9 (Greendlinger Lemma). Let G be a group defined by a presentation 〈S | R〉 which
satisfies C ′(λ) for some 0 ≤ λ ≤ 1

6 . Then for any cyclically reduced non-empty word W with
W =G 1 and no proper subword of W trivial in G, W contains a subword V such that V is also a
subword of some relation r ∈ R and

‖V ‖ > (1− 3λ)‖r‖.

Proof. Without loss of generality, we assume that λ = 1
n for some n ∈ N, n ≥ 6. Let W be a word

in S with W =G 1, and let ∆ be reduced a van Kampen diagram over 〈S | R〉 with Lab(∂∆) ≡W .

We will first prove the result under the following assumption, then we will show how to remove
this assumption:

(∗) For every cell Π of ∆, ∂Π is a simple path.

We build a planar graph Φ duel to ∆ in the following way: we put one vertex inside each 2-cell
of ∆ and one vertex O in the exterior of ∆. We put an edge between the vertex inside Π1 and Π2

for each maximal conneced component of ∂Π1∩∂Π2 which contains at least one edge. Similarly, we
put an edge between the vertex inside Π and O for each maximal connected compenent of ∂Π∩∂∆.
Φ is clearly a finite planar graph, since it can be naturally realized as a graph duel to the planar
graph obtained from the 1-skeleton of ∆ by replacing degree 2 vertex by a singe edge.

(∗) implies that Φ has no 1-gons and no vertices of degree 1. If Φ contained a 2-gon, then the
arcs corresponding to these edges would not be maximal, which contridicts our construction of Φ.
Therefore the formula (4) applies to Φ.

Now, we suppose towards a contridiction that for every 2-cell Π every maximal connected
component q ⊂ ∂Π ∩ ∂∆ satisfes `(q) ≤ (1− 3

n)`(∂Π). We are going to show that this assumption
contradicts (4).

For a vertex y 6= O of Φ, define the exterior degree of y, e(y), as the number of edges connecting
y to O, and define the interior degree as the number of edges joining y to vertices inside other
2-cells of ∆. Define the weight of a vertex as w(y) = e(y) + 1

2 i(y). The point of this weight is that∑
y 6=O w(y) = e.

If e(y) = 0, then the C ′( 1
n)-condition implies the i(y) ≥ n + 1, since the arc corresponding to

any edge of Φ adjacent to e is labeled by a piece. Hence w(y) ≥ (n+1
2 ) ≥ 3 since n ≥ 6.

If e(y) = 1, then i(y) ≥ 4 by the C ′( 1
n)-condition and the bound on the length of the exterior

arc of the corresponding 2-cell. Hence w(y) ≥ 1 + 4
2 = 3.

If e(y) = 2, then i(y) ≥ 2, since there must be at least two adjacent 2-cells in order to separate
these arcs on the boundary. Hence w(y) ≥ 3.

If e(y) ≥ 3, then clearly w(y) ≥ 3.
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Thus we have shown that for every y 6= O, w(y) ≥ 3. It follows that

e =
∑
y 6=O

w(y) ≥ 3(v − 1)

which clearly contradicts (4). Thus we have shown that the desired result holds whenever ∆ satisfies
(∗).

We show now that every such graph Φ satisfies (∗). Suppose not; then ∆ contains a 2-cell Π
such that some subpath q ⊂ ∂Π is a simple closed path. It follows that q is the boundary of a
subdiagram ∆′ of ∆. If ∆′ is chosen as a minimal such subdiagram, then ∆′ satisfies (∗). Hence
the proof above shows that some 2-cell Π′ of ∆′ contains a subpath q ⊆ ∂Π′∩∂∆′ ⊆ ∂Π′∩∂Π with
`(q) > 1

2`(∂Π′), which clearly violates the C ′-condition.

Corollary 5.10. Let G be a group given by a presentation 〈S | R〉 which satisfies C ′(1/6). Then
G is hyperbolic.

Proof. If W is a word in S with W =G 1, then the words V and r provided by the Greendlinger
Lemma satisfy

‖V ‖ > (1− 3

6
)‖r‖ =

1

2
‖r‖.

This is precisely what it means for Dehn’s algorithm to solve the word problem for the presentation
〈S | R〉, hence G is hyperbolic by Theorem 3.4.

Corollary 5.11. Let G be a group given by a fniite C ′( 1
n) presentation 〈S | R〉 for some n ≥ 6, and

let ρ = min{‖r‖ | r ∈ R}. If f : F (S)� G is the natural quotient map and B = {g ∈ F (S) | |g|S ≤
n−3
2n ρ}, then f |B is injective.

Proof. Suppose W and U are words in S with W 6=F (S) U but W =G U . Let V be the word
obtained by freely and cyclicaly reducing WU−1. Then V =G 1 so by Theorem 8.3 V contains a
subword of length n−3

n ρ, hence ‖WU−1‖ ≥ ‖V ‖ ≥ n−3
n ρ. It follows that at least one of W or U has

length ≥ n−3
2n ρ.

Remark 5.12. While there are some results for C ′(λ) groups when 1
6 < λ ≤ 1

5 (including solvability
of the word problem), the C ′ condition becomes useless for larger λ. Indeed, if λ > 1

5 , then every
finitely presented group G can be given a presentation which satisfies C ′(λ) (see [21]).

A spherical diagram is a van Kampen diagram which is embedded on the sphere instead of on
the plane. Equivalently, this can be viewed as an ordinary van Kampen diagram ∆ with the extra
requirement that Lab(∂∆) ∈ R. Hence spherical diagrams encode “relations among relations.”

The notion of a cancellable pair and a reduced diagram are the same for spherical diagrams as
for ordinary van Kampen diagrams. Applying the same proof as in Theorem 8.3 together with the
fact that the constructed graph Φ will have no “exterior” vertex will produce a contradiction with
the existence of a reduced spherical diagram.

Proposition 5.13. If 〈S | R〉 satisfies C ′(1
6), then there are no reduced spherical diagrams over

〈S | R〉.
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Given a group presentation 〈S | R〉 for a group G, there is an associated CW-complex Y with
π1(Y ) ∼= G, called the presentation complex. This Y contains a single vertex v, one edge (labeled
by s) with both ends glued to v for each s ∈ S, and one 2-cell Π for each r ∈ R, glued to the
1-skeleton of Y such that ∂Π is labeled by r.

The universal cover Ỹ is called the Cayley complex associated to 〈S | R〉. Note that the 1-
skeleton of the Cayley complex can be naturally identified with Γ(G,S), and the 2-skeleton of Ỹ is
obtained by gluing, for each g ∈ G and r ∈ R, a 2-cell with boundary a loop based at g and labeled
by r.

The presentation 〈S | R〉 is called asperical if the associated presentation complex Y is as-
pherical, or equivalently if the Cayley complex Ỹ is contractible2. Since Y is a 2-dimensional CW
complex, Y is aspherical if and only if π2(Y ) = π2(Ỹ ) = {1}.

Now any map S2 → Ỹ can be encoded as a spherical diagram. If 〈S | R〉 is a C ′(1
6) presentation,

this diagram must be reducible (as long as it is non-empty), and “cancelling” a cancellable pair
of 2-cells corresponds to a homotopy in the Cayley complex unless the diagram contains exactly 2
2-cells. In this case, the boundary of these 2 cells, which we picture as the equator of the spherical
diagram, is a loop in Γ(G,S) and the upper and lower hemispheres of the sphere are mapping to
discs corresponding to relations whose boundary in this loop. If these are both the same disc, then
this map is homotopically trivial. However, Ỹ may have two different discs with the same boundary
label, which will produce a non-homotopically trivial sphere in Ỹ .

If two discs can be glued to the same boundary in Ỹ , there must be some r, r′ ∈ R are proper
cyclic shifts of each other. There are essentially two ways that this can happen. The first is that
r and r′ are distinct as elements of R. To rule this out we assume that R is concise, that for any
r ∈ R, no cyclic shift of r or r−1 belongs to R (equivalently, for all R0 ( R, R0 6= R). Clearly from
any presentation we can obtain a concise presentation by removing unnecessary elements of R.

The second way for two discs to be glued to the same boundary label is if some relation r is
equal to a proper cyclic shift of itself, which will imply that that r is a proper power, that is r ≡ rn0
for some word r0 and some n ≥ 2. Such a relation will produce an essential sphere in Caley complex
Ỹ , hence it is necessary to rule out these relations if we want 〈S | R〉 to be aspherical.

Theorem 5.14. Suppose 〈S | R〉 is a concise, C ′(1
6) presentation and no r ∈ R is a proper power.

Then 〈S | R〉 is an apherical presentation.

In particular, this theorem implies that the corresponding presentation complex Y is a K(G, 1).
Since Y is clearly 2-dimensional, this implies that gd(G) ≤ 2, and hence G is torsion-free.

Corollary 5.15. If G has a C ′(1
6) presentation in which no relation is a proper power, then

gd(G) ≤ 2.

Corollary 5.16. If G has a C ′(1
6) presentation 〈S | R〉, then G is torsion-free if and only if no

relation r ∈ R is a proper power.

If G is the fundamental group of a closed hyperbolic n-dimensional manifold M , then M is a
K(G, 1), hence gd(G) = n.

2There are actually a few different defintions of an aspherical presentation, the relationship between then is
examined in [6].
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Corollary 5.17. There are hyperbolic groups which do not admit a C ′(1
6) presentation.

5.2 Rips construction

The Rips construction uses small cancellation theory to transfer pathological subgroups of finitely
presented groups to create pathological subgroups of hyperbolic groups.

Theorem 5.18 (The Rips Construction). Let Q be a finitely presented group. There there exists
a short exact sequence

1→ N → G→ Q→ 1

such that N is 2-generated and G is given by a C ′(1
6) presentation.

Remark 5.19. It will be obvious from the proof that C ′(1
6) can be replaced by C ′(λ) for any λ > 0

and the theorem will still hold.

Proof. Let 〈s1, ..., sn | r1, ..., rm〉 be a finite presentation for Q, and let M = max{‖ri‖}. Let G be
the group given by the following presentation:

〈s1, ..., sn, a, b | r1w1, ..., rmwm, s
−1
1 as1u1, ..., s

−1
n asnun, s

−1
1 bs1v1, s

−1
n bsnvn〉 (5)

where each wi, ui, and vi is chosen as a word in {a, b} such that each of these words has
length much larger then M , and the whole set {w1, ..., wm, u1, ..., un, v1, ..., vn} satisfies C ′(λ) for
sufficiently small λ. It follows in the presentation 5, if a piece is a subword of some ri, then is is
short compared to any relation it occurs in, and the pieces which do not occur as subwords of ri
are short compared to the relation they occur in by construction of the words wi, ui, and vi. There
may be a piece which is partially a subword of some ri and partially a subword of some wi, ui, or
vi, but then this piece is composed of 2 short pieces. Hence can choose sufficiently long words wi,
ui, and vi and sufficiently small λ such that the presentation 5 satisfies C ′(1

6).

Let N = 〈a, b〉 ≤ G. Note that if we conjugate a or b by any generator of G we obtain an
element of N , hence N is normal in G. If we add the relations a = 1 and b = 1 to the presentation
5, then we obtain a presentation of the group Q. Thus, G/N ∼= Q.

Exercise 5.20. Show how to explicitly construct the words w1, ..., wm, u1, ..., un, and v1, ..., vn used
in the previous proof.

Exercise 5.21. Let Q be a finitely presented group, and let G be the group provided by the Rips
construction and ϕ : G � Q the natural quotient map. Then for any finitely generated subgroup
H ≤ Q, prove that ϕ−1(H) is a finitely generated subgroup of G.

In order to apply our strategy of transferring pathological subgroups from finitely presented
groups to hyperbolic groups, we first need a way to construct pathological subgroup of finitely
presented groups. It is much easier to construct infinitely presented groups with desired properties,
and the following allows us to embed these groups into finitely presented groups.

A presentation 〈S | R〉 is called recursive if S is finite or countable and indexed by N and there
exists an algorithm which lists the elements of R.
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Theorem 5.22 (Higman embedding theorem). Every recursively presented group embeds into a
finitely presented group.

We now apply the Rips construction to build various examples.

Corollary 5.23. 1. There exists a hyperbolic group G and finitely generated subgroups H1, H2

such that H1 ∩H2 is not finitely generated.

2. There exists a hyperbolic group G and a finitely generated subgroup H which is not finitely
presented.

3. There exists a hyperbolic group G and a finitely generated subgroup N such that the member-
ship problem for N is not solvable.

4. There is no algorithm which can accept as input a finite presentation of a hyperbolic group G
and determines the rank of G.

Proof. (1) Consider the amalgamated product of two copies of F2 over an infinitely generated
subgroup, for example

P = 〈a, b, c, d | b−iabi = d−icdi, i ∈ N〉
This group is clearly recursively presented, and H1 ∩H2 is not finitely generated for H1 = 〈a, b〉,
H2 = 〈c, d〉. Let Q be a finitely presented group which contains P as a subgroup, and let G be
the group provided by the Rips constuction. Then ϕ−1(H1) and ϕ−1(H2) is finitely generated, but
ϕ−1(H1) ∩ ϕ−1(H2) cannot be finitely generated since it surjects onto H1 ∩H2.

(2) Let H be any finitely generatd, recursively presented group which is not finitely presented.
For example, we can choose H to be the lamplighter group (Z/2Z)oZ. Apply the Higman embedding
theorem to obtain a finitely presented group Q which contains H, and the Rips construction to
obtain G. Then ϕ−1(H) is finitely generated, and if this group was finitely presented then we could
add the relation a = 1, b = 1 to obtain a finite presentation of H.

(3) LetQ be a finitely presented group such that the word problem inQ is not solvable. Applying
the Rips construction to get G and N , and it follows immediatly that the membership problem for
N is not solvable.

(4) Let P be a group given by a finite presentation 〈S | R〉, and let Q be the free-product of
k copies of P . By Grushko’s theorem, rank(Q) ≥ k if and only if P 6= {1}. Applying the Rips
construction to Q, we get a group G where rank(G) ≥ k if P 6= {1} and rank(G) ≤ 2 if P = {1}.
Since there is no algorithm to determine if a given presentation represents the trivial group, the
rank problem is undecidable for hyperbolic groups.

Remark 5.24. In fact, it can be shown that the finitely generated normal subgoup N provided by
the Rips construction will not be finitely presented as long as Q is infinite.

5.3 Random groups

It is commonly said that “almost every (finitely presented) group is hyperbolic.” The “almost every”
here is meant in a statistical sense, and in order to make this precise one needs a suitble notion of
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a “random group.” There are a few different models of random groups, we will mention here two
of the most commonely used models, the few relators model and the density model both of which
were introduced by Gromov. For more information about random groups as well as proofs of the
following theorems, see the survey by Ollivier [18] and references therein.

For each model of random groups, we fix a finite set S with |S| ≥ 2, and we probabilistically
choose some set of freely reduced words in S of length ≤ l as a set of relations. If P is some property
of groups, we say that a random group has P (in this model) if the probability that a presentation
chosen in this way defines a group with P goes to 1 as l→∞.

In the few relators model, we fix some constant k and choose r1, ..., rk uniformly at random
among all reduced words in S of length ≤ l. It is not hard to see that as l gets large, the pieces
which occur in these relations will typically be very small.

Theorem 5.25. A random group in the few relators model satisfies C ′(λ) for any λ > 0. In
particular, a random group in this model is hyperbolic, torsion-free, and has geometric dimension
2.

The few relator model is quite restrictive, it is usually more interesting to let the number of
relations grow (in a controlled way) with l. This leads to the density model, which is actually a
continuous family of models of randoms groups, depending on some constant 0 ≤ d ≤ 1. Let f(l) be
the number of reduced words in S of length l. Now for a fixed density d, we choose f(l)d relations
of length l uniformly at random.

In this model a random group will only satisfy small cancellation conditions at sufficiently low
densities. Specifially,

Proposition 5.26. [18, Proposition 10] A random group in the density model with density d
satisfies C ′(λ) if d < λ

2 and does not satisfy C ′(λ) if d > λ
2 .

Hence we get the same conclusion as in Thereorm 5.25 in the case where the density d < 1
12 .

Despite not satisfying small cancellation conditions, it turns out that random groups in the density
model are still almost always hyperbolic.

Theorem 5.27. 1. If d < 1
2 , a random group in the density model with density d is hyperbolic,

torsion-free, and has geometric dimension 2.

2. If d > 1
2 , a random group in the density model with density d is trivial or Z/2Z.

The “trivial or Z/2Z” part of the conclusion is a parity issue, depending on whether l is even
or odd.

6 Boundaries and isometries of hyperbolic spaces

6.1 Definitions and properties of ∂X

Throughout this sections, we will assume that any path or ray γ is parameterized by arc length, that
is for any a < b in the domain of γ, |b− a| = `(γ|[a,b]). Also, we will assume that X is a geodesic,
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δ-hyperbolic metric space wihich is proper, that is all closed balls are compact. The reason we
assume this is that we will need to use the Arzelà-Ascoli theorem.

Recall that a sequence of functions fi : Y → X converges uniformly on compact sets to f if
for every compact K ⊂ Y and for all ε > 0, there exists N such that for all i ≥ N and y ∈ K,
dX(fi(x), f(x)) ≤ ε.

Theorem 6.1 (Arzelà-Ascoli). If Y is separable and X is compact, every equicontinuous sequence
of maps Y → X has a subsequence which converges uniformly on compact sets to a continuous map
Y → X.

Corollary 6.2. Suppose o ∈ X and γi : [0,∞) → X is a sequence of geodesic rays with γi(0) = o
for all i. Then there exists a subsequence of (γi) which converges uniformly on compact sets to a
geodesic ray γ.

Proof. For all i and for all n, γi([o, n]) ⊆ Bn(o), whcih is compact since X is proper. Hence a
subsequence of γi|[0,1] converges to a continuous function by Arzelà-Ascoli. Now we pass to furhter
subsequence which converges when restricted to [0, 2], and repeat for all n ≥ 1. Finally we take the
diagonal sequence corresponding to this process, which is converge uniformly on compact sets to a
continuous function γ. Showing that γ is a geodesic is an exercise.

Exercise 6.3. Suppose γi : [0,∞) → X is a sequence of geodesics which converges uniformly on
compact sets to a continuous function γ : [0,∞)→ X. Prove that γ is a geodesic.

Let γ1, γ2 be rays in X. We say that γ1 and γ2 are equivalent and write γ1 ∼ γ2 if dHau(γ1, γ2) <
∞. Clearly this defines an equivalence relation on geodesic rays.

Exercise 6.4. Suppose γ1, γ2 : [0,∞) → X are geodesic rays parameterized by arc length with
γ1(0) = γ2(0). Prove that dHau(γ1, γ2) <∞ if and only if d(γ1(t), γ2(t)) ≤ 2δ.

Remark 6.5. Modifying the above proof, you can also show that for any λ ≥ 1 and c ≥ 0, there
exists a constant M such that if γ1, γ2 : [0,∞)→ X are (λ, c)-quasi-geodesic rays parameterized by
arc length, then dHau(γ1, γ2) <∞ if and only if d(γ1(t), γ2(t)) ≤M .

Let o ∈ X be a fixed base point. Let ∂g,oX denote the set of equivalence classes of geodesic
rays γ : [0,∞)→ X with γ(0) = o.

Let ∂gX denote the set of all equivalence classes of geodesic rays in X.

Let ∂q(X) denote the set of equivalence classes of quasi-geodesic rays in X. By a quasi-geodesic
ray, we mean that γ is a (λ, c)-quasi-geodesic ray for some λ ≥ 1 and c ≥ 0.

Exercise 6.6. Let o, o′ ∈ X. Prove that for any x, y ∈ X,

(x|y)o ≤ (x|y)o′ + d(o, o′)

Given a sequence (xi) of points in X, we say that (xi) converges to infinity if for some o ∈ X
(equivalently, any o ∈ X) (xi|xj)o → ∞ as i, j → ∞. Two sequences (xi) and (yi) are equivalent
if (xi|yj)o → ∞ as i, j → ∞, in which case we write (xi) ∼ (yi). (Note that transitivity of this
relation follows from Hyp1(δ)). Let ∂sX denote the set of all equivalence classes of sequences of
points in X.

Clearly there are natural inclusion maps ∂g,oX ↪→ ∂gX ↪→ ∂qX. Furthermore there is map
∂qX → ∂s which sends a quasi-geodesic ray γ to the sequence (γ(i)).
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Lemma 6.7. The map ∂qX → ∂sX is well-defined.

Proof. Let γ1 and γ2 be equivalent (λ, c) quasi-geodesic rays. Let M be the constant from the
Remark 6.5. Let xi = γ1(i) and yi = γ2(i). Then d(xi, yi) ≤ M . Let K = K(λ, c, δ) be the
constant provided by the Morse Lemma 2.15. Then for all j ≥ i, there exists a point ai,j ∈ [o, yj ]
such that d(yi, ai,j) ≤ K, and hence d(xi, ai,j) ≤M +K. Now d(xi, yj) ≤ d(xi, ai,j) + d(ai,j , yj) =
d(xi, ai,j) + d(o, yj)− d(o, ai,j), hence

(xi|yj)o ≥ d(xi, o) + d(yj , o)− (d(xi, ai,j) + d(o, yj)− d(o, ai,j)) ≥ d(o, xi) + d(o, yi)−M − 2K

Therefore, (xi|yj)o →∞ as i, j →∞.

Proposition 6.8. The maps ∂g,oX ↪→ ∂gX ↪→ ∂qX → ∂sX are all bijections.

Proof. Let f denote map ∂qX → ∂sX. It suffices to show that f is injective and f |∂g,oX is surjective.

Suppose that γ1 and γ2 are (λ, c) quasi-geodesic rays and f(γ1) = f(γ2), that is (γ1(i)|γ2(j))o →
∞ as i, j →∞. After possibly increasing the constant c, without loss of generality, we can assume
that γ1 and γ2 both originate at o. Let δ′ be the constant where all (λ, c)-quasi-geodesic triangles
are δ′-thin. Let pi ∈ γ1 and qi ∈ γ2 be the points such that d(o, pi) = d(o, qi) = (γ1(i)|γ2(i))o.
Then thinness of the triangle [o, γ1(i), γ2(i)] implies that d(pi, qi) ≤ δ′. Since pi and qi are both
unbounded sequences, it follows that dHau(γ1, γ2) ≤ ∞.

Now suppose (xi) is a sequence converging to infinity in X. Let γi : [0, d(o, xi)] → X be a
geodesic from o to xi. By the Arzelà-Ascoli-theorem, after passing to a subsequence γi will converge
uniformly on compact sets to a geodesic ray γ. It is straightforward to check that (xi|(γ(j))o →∞,
hence f(γ) = (xi).

∂g,oX, ∂gX, ∂qX, and ∂sX are all models for the boundary of X. From now on we will use
these model interchangable and denote the boundary simply by ∂X. Given a (quasi-)geodesic ray
γ or a sequence (xi), we denote the corresponding element of ∂X by γ(∞) or x∞ respectively, and
we say that γ converges to γ(∞) and (xi) converges to x∞.

Given any two non-equivalent γ1, γ2 ∈ ∂g,oX, we can construct a sequence of geodesics
σi : [ai, bi] → X which connect γ1(i) to γ2(i). We parameterize each σi such that for ai ≤ t ≤ 0,
d(σi(t), γ1) ≤ δ and for 0 ≤ t ≤ bi, d(σi(t), γ2(t)) ≤ δ. Since γ1 6∼ γ2, there exists t0 such that for all
t > t0, d(γ1(t), γ2(t)) > 2δ. In particular, this gives a bound on d(σ1(0), o) which is independent of
i and hence for all n and all i, ci([−n, n]) maps to bounded subset of X. So we can apply Arzelà-
Ascoli to get a subsequence of σi converging to a bi-infinte geodesic σ such that σ(−∞) = γ1(∞)
and σ(∞) = γ2(∞).

Lemma 6.9. For any ξ1, ξ2 ∈ ∂X, there exists a bi-infinite geodesic γ : (−∞,∞) → X such that
γ(−∞) = ξ1 and γ(∞) = ξ2.

Our next goal is to describe the topology on ∂X. The simpliest description is to give ∂gX the
topology induced by the compact-open topology on the set of all continuous maps [0,∞) → X.
Equivalently, given a geodesic ray γ and a fixed constant k > 2δ, we can define a basis for the
neighborhood system of γ(∞) to be {V (γ(∞), r) | r ≥ 0}, where

V (γ(∞), r) = {γ′(∞); | γ(0) = γ′(0), d(γ(r), γ′(r)) < k}.
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Examples 6.10. 1. If X is a bounded metric space, ∂X = ∅.

2. ∂R = {−∞,∞}, that is a discrete space with 2 points.

3. If T is a regular tree where each vertex has degree ≥ 3, then ∂T is a Cantor set.

4. ∂Hn is homeomorphic to Sn−1.

Furthermore, there is a natural topology on X = X ∪ ∂X. In this space, a basis for the
neighborhood system of γ(∞) ∈ ∂X can be defined as {V ′(γ(∞), r) | r ≥ 0}, where

V ′(γ(∞), r) = {γ′(t); | γ(0) = γ′(0), d(γ(r), γ′(r)) < k, r < t ≤ ∞}.

Equivalently, we can identify X with the set of geodesic paths with a fixed base points, where two
such paths are equivalent if they have the same endpoint. The following is just a restatement of
Corollary 6.2, it shows that X is a compactification of X.

Lemma 6.11. X and ∂X are both compact.

In the classical hyperbolic space Hn, there is a unique geodesic γ ∈ ∂g,oHn representing each
point of the boundary. We can use the angles between any two such geodesics to define a metric
on ∂Hn which is isometric to the standard metric on Sn−1.

For general (proper) δ-hyperbolic metric spaces, the boundary is still metrizable in a similar
way. In order to state this result, we extend the Gromov product to points on the boundary in
order to have a notion of “angle” between two points ξ1, ξ2 ∈ ∂X.

Given ξ1, ξ2 ∈ ∂X, we can define

(ξ1|ξ2)o = sup lim inf
i,j→∞

(xi|yj)o

Where the supremum is taken over all sequences (xi), (yi) with x∞ = ξ1 and y∞ = ξ2.

Proposition 6.12. ∂X admits a metric (called a visual metric) d such that for some constants
k1, k2 and parameter a,

k1a
−(ξ1|ξ2)o ≤ d(ξ1, ξ2) ≤ k2a

−(ξ1|ξ2)o .

For all ξ1, ξ2 ∈ ∂X.

We refer to [5] for the proof.

One particularly useful aspect of the boundary of a hyperbolic space is that it provides a quasi-
isometry invariant.

Theorem 6.13. Suppose X and Y are proper, geodesic, hyperbolic metric spaces and f : X → Y
is a quasi-isometry. Then f induces a homeomorphism f∂ : ∂X → ∂Y .

Proof. Let f : X → Y be a (λ, c, ε) quasi-isometry, and let δ be a constant such that X and Y are
both δ-hyperbolic. For any geodesic ray γ in X, f ◦ γ will be a (λ, c)-quasi-geodesic ray in Y 3. It

3Formally, we defined quasi-geodesics as continuous maps, and f ◦ γ may not be continuous. In this case we think
of f ◦ γ as the quasi-geodesic constructed by connecting f(γ(i)) to f(γ(i+ 1)) by a geodesic for each i ∈ N.
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is not hard to see that γ1 ∼ γ2 if and only if (f ◦ γ1) ∼ (f ◦ γ2), hence f induces a well-defined,
injective map f∂ : ∂gX → ∂qY .

For i = 1, 2, let γi ∈ ∂g,oX and γ′i a geodesic ray such that γ′i ∼ f ◦ γi and γ′i(0) = f(o).
There exists a constant M such that for all t, d(γ′i(t), f(γi(t))) ≤ M (see Remark 6.5). Suppose
d(γ1(r), γ2(r)) < k. Then d(γ′1(r), γ′2(r)) ≤ 2(λk + c + M). Let s = (γ′1(r)|γ′2(r))f(o); using thin
triangles, d(γ′1(s), γ′2(s)) ≤ δ < k. Furthermore,

s = (γ′1(r)|γ′2(r))f(o) = r − 1

2
d(γ′1(r), γ′2(r)) ≥ r − (λk + c+M)

In particular, we have shown that f∂(V (ξ, r)) ⊆ V (f(ξ), r − λk − c−M)) for any ξ ∈ ∂X and
r > 0, which implies that f is continuous.

Now, if we let g be a quas-inverse of f , then g∂ = (f∂)−1. Therefore f is a homeomorphism.

Remark 6.14. If f : X → Y is a quasi-isometric embedding, then the induced map ∂f : ∂X → ∂Y
is a topological embedding.

Corollary 6.15. Hn ∼qi Hm if and only if n = m.

Corollary 6.16. If T is a regular tree where each vertex has degree ≥ 3, then T 6∼qi Hn for any
n ≥ 1.

As a consequence, we get that hyperbolic groups have boundaries that are well-defined (up
to homeomorphism). That is for any hyperbolic group G, we define ∂G to be ∂Γ(G,S) for some
(equivalently, any) finite generating set S ⊆ G.

Examples 6.17. 1. ∂Z = {−∞,∞}.

2. ∂Fn is a cantor set for any n ≥ 2.

3. ∂π1(S) = S1 for any closed, orientable surface S of genus ≥ 2.

4. ∂G ∼= Sn−1 for any group that acts properly and cocompactly on Hn.

We will mention a few further results about boundaries without proofs. For more information,
see the survey [15].

Exercise 6.18. Let A and B be hyperbolic groups, and let G = A ∗ B. Prove that ∂G is not
connected.

Recall that Ends(X) is defined as the set of proper4 rays γ : [0,∞), where two rays γ1 and γ2

represent the same end if for any compact set C, there exists N ≥ 0 such that γ1([N,∞)) and
γ2([N,∞)) lie in the same path component of X \ C.

Lemma 6.19. Two geodesic rays represent the same end of X if and only if they are contained in
a connected component of ∂X.

4a function f is proper if f−1(C) is compact whenever C is compact
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A group G splits over a subgroup C if either there are subgroups A and B which both contain
C and G ∼= A ∗C B or G has a subgroup A containing C and G = A∗C . A famous theorem of
Stallings is that a finitely generated group splits over a finite subgroup if and only if it has more
then one end. Rephrasing this in terms of boundaries, we get the follwing:

Theorem 6.20. A hyperbolic group G splits over a finite subgroup if and only if ∂G is not con-
nected.

There are more connections between connectedness properties of boundaries and splittings of
hyperbolic groups, see [15].

For any hyperbolic group G, |∂G| ∈ {0, 2,∞}, where |∂G| = 0 if and only if G is finite and
|∂G| = 2 if and only if G is virtually Z. When |∂G| =∞, G is called non-elementary ; in this case
∂G will be an infinite, perfect, compact, metrizable space. Since G acts by isometries on Γ(G,S),
Theorem 6.13 implies that each element of G induces a homeomorphism on ∂G.

Proposition 6.21. If G is a non-elementary hyperbolic group, then G acts by homeomorphism on
a infinite, perfect, compact, metrizable space, namely ∂G.

In fact, Bowditch showed that this action can be used to give a characterization of hyperbolic
groups purely in terms of topological dynamics. See [15] for the definition of a uniform convergence
action.

Theorem 6.22. Suppose a group G acts by homeomorphisms on an infinite, perfect, compact,
metrizable space X. Then this is a uniform convergence action if and only if G is a non-elementary
hyperbolic group and X is G-equivariantly homeomorphic to ∂G.

We have seen that ∂π1(S) = S1 for any closed, orientable surface S of genus ≥ 2. It turns
out that the converse of this statement is also (virtually) true, which is a very deep result which
combines the work of several people (see [15])

Theorem 6.23. Suppose G is a hyperbolic group and ∂G ∼= S1. Then G is virtually the fundamental
of a closed hyperbolic surface.

The analogue of this result for S2 is a famous open problem known as the Cannon conjecture:

Conjecture 6.24. Suppose G is a hyperbolic group and ∂G ∼= S2. Then G acts properly and
cocompactly on H3.

In particular, this conjecture implies that modulo the (finite) kernel of the action, G is the
fundamental group of a compact hyperbolic 3-orbifold, and if G is torsion-free then G is the fun-
damental group of a compact hyperbolic 3-manifold. This conjecture was one of the major steps
in Cannon’s approach to Thurston’s Hyperbolization conjecture, now proved by Perelman.

Finally, we mention that Bestvina-Mess showed that ∂G can be viewed as a boundary of the
Rips complex, which allows one to connect homological properties of G and topological properties
of ∂G.

Theorem 6.25. If G is hyperbolic and torsion-free, dim(∂G) = cd(G)− 1.
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Combining this with a theorem of Stallings gives:

Corollary 6.26. dim(∂G) = 0 if and only if G is virtualy free.

Corollary 6.27. If G is a random group, dim(∂G) = 1.

6.2 Isometries of H2

Consider the Poincaré upper-half plane model for H2, that is identify H2 with {z ∈ C | im(z) > 0}
with the metric ds2 = dx2+dy2

y2
. Recall that PSL(2,C) acts on the Riemann sphere C ∪ {∞} by

Möbius transformations (
a b
c d

)
· z =

az + b

cz + d
.

Furthermore, the subgroup which fixes the upper-half plane is PSL(2,R). This action also preserves
the metric on H2 and furthermore every orientation preserving isometry of H2 can be given by a
Möbius transformation. Hence we can identify PSL(2,R) with Isom+(H2), the group of orientation
preserving isometries of H2.

We consider a few specific isometries of H2 and the corresponding Möbius transformations:

Translation: z → z + t for some t ∈ R,

(
1 t
01

)
.

Dilation: z → λ2z for some λ ∈ R,

(
λ 0
0 1

λ

)
.

Exercise 6.28. For any a, b ∈ H2, there exists a translation T and a dilation D such that b =
T (D(a)).

Rotation: about i of angle θ:

(
cos θ − sin θ
sin θ cos θ

)
is a rotation about i of angle θ. Conjugating a

rotation by translations and dilations produces a rotation about any point.

It is an exercise to show that PSL(2,R) is generated by translations, reflections, and dilations.
There is one more type of isometry, which is not orientation preserving:

Refection about a line: for example, z → 1
z̄ is a reflection about unit circle, x + yi → −x + yi

is a reflection about y-axis.

Proposition 6.29. Isom(H2) is generated by translations, dilations, reflections, and rotations,
and Isom+ is generated by translations, dilations, and rotations.

sketch. If g fixes 3 non-colinear points, g is the identity.

If g fixes at least 2 points, then g fixes the geodesic between them, and hence g is either the
identity or the reflection about this line. Hence if g fixes two points and preserves orientation, g is
the identity.

If g fixes a unique point, then g must be a rotation about this point.

If g has no fixed points, then there is a translation T and a dilation D such that T ◦D ◦ g has
a fix point, and hence belongs to one of the above cases.

36



Now given any element

(
a b
c d

)
∈ PSL(2, R), we need to determine where the corresponding

Möbius transformation has any fixed points.

az + b

cz + d
= z ⇐⇒ cz2 + (d− a)z − b = 0

If this quadratic has a non-real root, then will be two conjugate complex roots and exactly one of

them will have positive imaginary part. If this happens, then

(
a b
c d

)
must represent a rotation.

This will happen if and only if the discriminant is negative, that is

(d− a)2 + 4bc = d2 − 2ad+ aa + 4bc = (d+ a)2 − 4 < 0

or in other words, |trace(A)| = |a+ d| < 2. We now consider the case Trace(A) ≥ 2. For this, we
consider the characteristic polynomial

(λ− a)(λ− d)− bc = λ2 − (a+ d)λ+ 1

For A to have a real eigenvalue, (a + d)2 − 4 ≥ 0, or in other words |trace(A)| ≥ 2. Suppose
trace(A) > 2. Then A has 2 distinct real eigenvalues; since the product of these is det(A) = 1,
the eigenvalues must be λ and 1

λ . So A is similar to a diagonal matrix, that is for some S,

S−1AS =

(
λ 0
0 1

λ

)
. Furthermore, after scaling S we can assume S ∈ PSL(2,R). So the matrix A

acts as a dilation “along” the image of the y-axis under S. points on this line are translated long
it by a distance of lnλ2.

The final case is when trace(A) = 2, that is A has a single real eigenvalue which hence must

be 1. In this case A will be similar to

(
1 t
0 1

)
, that is a translation, and A itself will translate

perpindicular to the image of the y-axis under the conjugating matrix S.

Based on this anaylsis, we have the following terminology: Let A ∈ Isom+(H2) = PSL(2,R).
We now discuss each of these cases in more detail. Let τ0(A) = infz∈H2 d(z,A · z), called the
translation length of A.

A is called elliptic if A has a fixed point. In this case the the fixed point is unique, and A acts as
a rotation around this point. This happens if and only if |trace(A)| < 2. If we consider orientation
reversing isometries, this case also includes reflections. Elliptic isometries clearly have translation
length 0.

A is called loxodromic (or hyperbolic) if S−1AS =

(
λ 0
0 1

λ

)
for some S ∈ PSL(2,R) and some

λ ∈ R \ {1}. This case happens if and only if |trace(A)| > 2. In this case, lA = S(y − axis) will be
a bi-infinite geodesic which is preserved by A, and points on lA are shifted along lA by a distance
of ln(λ2). Furthermore, lA is exactly the subset of H2 which minimizes the translation length of A,
so τ0(A) = ln(λ2). lA defines two points ξ−ξ+ ∈ ∂H2 which are fixed by A. All other points on ∂H2

are moved away from ξ− and towards ξ+. In other words, the induced action of A on ∂H2 exhibits
north-south dynamics.
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A is called parabolic if S−1AS =

(
1 t
0 1

)
for some S ∈ PSL(2,R) and t ∈ R \ {0}. This case

happens if and only if |trace(A)| = 2. In this case τ0(A) = 0; indeed, consider d(ki, S−1AS · ki),
which goes to 0 as k → ∞. In this case, A fixes a unique point ξ ∈ ∂H2; if ∞ is the point on the
boundary defined by the y-axis, then ξ = S(∞). A preserves horoballs based at ξ, so in this case
A can be viewed as a “rotation” about a point at infinity.

Note that for every isometry A, τ0(An) = τ0(A) and τ0(A) = τ0(S−1AS).

6.3 Isometries of δ-hyperbolic metric spaces

Our next goal is to understand the analogue of the above classification for a δ-hyperbolic metric
space X instead of H2. Here we now longer have tools from linear algebra such as trace, so we
replace this with translation length. In fact since we are not interested in small distances, we work
instead with stable translation length:

Definition 6.30. Let f : X → X be an isometry. The (stable) translation length of f , denoted
τ(f), is defined as

lim
n→∞

1

n
d(x, fn(x))

for some (equivalently, any) x ∈ X

Note that for any isometry of H2, τ = τ0. This will not be true in arbitrary hyperbolic metric
spaces, but it will be true up to an additive error depending only on δ. Also note that unlike
translation length, stable translation length is independent of the base-point.

Exercise 6.31. Prove that for any isometry f : X → X and any x, y ∈ X,

lim
n→∞

1

n
d(x, fn(x)) = lim

n→∞

1

n
d(y, fn(y))

Exercise 6.32. Let X be a δ-hyperbolic metric space, and let f, g ∈ Isom(X). Prove that τ(f) =
τ(g−1fg) and τ(fn) = nτ(f).

We now categorize the isometries of a δ-hyperbolic metric space X. Let f ∈ Isom(X).

f is called elliptic if f has a bounded orbit. In this case, τ(f) = 0. Unlike H2, f may have no
fixed points. However, it does have a point whose orbit is bounded in terms of δ.

Lemma 6.33. f is elliptic if and only if there exists x ∈ X such that rad(〈f〉 · x) ≤ 4δ + 1.

f is called loxodromc (or hyperbolic) if τ(f) > 0. In this case, f will preserve a bi-infinite
quasi-geodesic axis, and hence have exactly 2 fixed points on ∂X. equivalently, the map Z → X
defined by n→ fn(x) is a quasi-isometry for some (equivalently, any) x ∈ X.

f is called parabolic if τ(f) = 0 but f has no bounded orbit. In this case, f preserves a unique
point ξ ∈ ∂X.
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7 Elements and subgroups of hyperbolic groups

7.1 Elliptic elements

Throughout this section, let G denote a group generated by a finite set S such that Γ(G,S) is
δ-hyperbolic.

Next we study the elements of a hyperbolic group G under the action of G on Γ(G,S), or
equivalently under any proper, cobounded action of G. This equivalence follows from the exercise.

Exercise 7.1. Suppose G acts on X and Y , and f : X → Y is a G equivariant isometry. Then for
any g ∈ G, g is elliptic (resp. parabolic, loxodromic) with respect to the action on X if and only if
g is elliptic (resp.parabolic, loxodromic) with respect to the action on Y .

In particular, the type of an element of a hyperbolic group is well-defined. We first consider the
case of elliptic elements:

Exercise 7.2. Let G be a hyperbolic group. Prove that g ∈ G is elliptic if and only if g has finite
order.

Given a hyperbolic space X and a bounded subset A ⊂ X, let rad(A) = inf{ρ | A ⊆
Bρ(x) for some x ∈ X}. A point y ∈ X is called an ε- quasi-center of A if A ⊆ Brad(A)+ε(y).

Lemma 7.3. Let X be a δ-hyperbolic metric space, and let A be a bounded subset of X. Then for
any ε > 0 and any two ε-quasi-centers of A x and y, d(x, y) ≤ 4δ + 2ε.

Proof. Let x, y be quasi-centers of a bounded set A. Let rA = rad(A), Fix a geodesic [x, y], and
let m be the midpoint of this geodesic. Let a ∈ A, and consider the geodesic triangle [x, y, a].
Then there exists some b ∈ [a, x] ∪ [a, y] such that d(a, b) ≤ δ. Without loss of generality, suppose
b ∈ [a, x]. Then d(b, x) ≥ d(x,m)− δ = 1

2d(x, y)− δ, hence

d(a, b) = d(a, x)− d(x, b) ≤ d(a, x)− 1

2
d(x, y) + δ ≤ rA + ε+ δ − 1

2
d(x, y)

It follows that for any a ∈ A,

d(a,m) ≤ d(a, b) + δ ≤ rA + ε+ 2δ − 1

2
d(x, y)

However for some a ∈ A, d(a,m) ≥ rA by definition of rA. Therefore d(x, y) ≤ 4δ + 2ε.

Theorem 7.4. If g ∈ G is an element of finite order, then g is conjugate to an element h ∈ G such
that |h|S ≤ 4δ + 1. In particular, the set of conjugacy classes of torsion elements in G is finite.

Proof. Choose k such that k is a 1-quasi-center of the bounded set 〈g〉 ⊆ Γ(G,S). Then gk is also
a 1-quasi-center, hence d(1, k−1gk) = d(k, gk) ≤ 4δ + 1.
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7.2 Quasi-convex subgroups

Definition 7.5. Let X be a metric space and σ ≥ 0. A subset Y ⊆ X is called σ-quasi-convex if
for every x, y ∈ Y and every geodesic [x, y], [x, y] ⊆ A+σ.

Exercise 7.6. Let X be a δ-hyperbolic metric space. Prove that a subset Y is quasi-convex if and
only if there exists (λ, c) such that for every x, y ∈ Y there exists a (possibly non-continuous) (λ, c)
quasi-geodesic γ from x to y such that γ ⊆ Y .

Theorem 7.7. Let G be a hyperbolic group and H ≤ G. Then H is quasi-convex in Γ(G,S) if and
only if H is generated by a finite set T and the inclusion map (H, dT ) ↪→ (G, dS) is a quasi-isometric
embedding.

Proof. First, suppose H is σ-quasi-convex in G. Let T = {h ∈ H | |h|S ≤ 2σ + 1}. Now fix h ∈ H,
and let p be a geodesic from 1 to h with vertices v0 = 1, v1, ..., vn = h. For each 1 ≤ i ≤ n − 1,
choose hi ∈ H such that d(hi, vi) ≤ σ. Then |h−1

i hi+1|S ≤ 2σ + 1, and

h = h1(h−1
1 h2)...(h−1

n−1h)

Hence h ∈ 〈T 〉, and |h|T ≤ n = |h|S . Now for all h ∈ H, |h|S ≤ (2σ + 1)|h|T . Thus H is
quasi-isometrically embedded in G.

Conversely, suppose H is generated by a finite set T and H is quasi-isometrically embedded
in Γ(G,S). Then any two points in H can be joined by a quasi-geodesic in H, and by the Morse
Lemma any geodesic in G must stay a bounded distance from this quasi-geodesic.

In particular, quasi-convexity is independent of the choice of generating set of G. Furthermore,

Corollary 7.8. Every quasi-convex subgroup of G is hyperbolic

Corollary 7.9. If H is a quasi-convex subgroup of G, then there is a topological embedding ∂H ↪→
∂G.

Exercise 7.10. Suppose H1 ≤ H2 ≤ G such that [H2 : H1] <∞. Prove that H1 is quasi-convex if
and only if H2 is quasi-convex.

Proposition 7.11. Let H1 and H2 be quasi-convex subgroups of G. Then H1∩H2 is quasi-convex.

Proof. Let H1 and H2 be σ-quasi-convex in Γ(G,S). Let q be a geodesic in Γ(G,S) from 1 to some
h ∈ H1 ∩H2. Let v be a vertex on q, and let p be the shortest path from v to H1 ∩H2 with the
property that for every vertex v′ on p, max{d(v′, H1), d(v′, H2)} ≤ σ. Note that the subpath of q
starting at v has this property, so such a path does exist.

Let r and r′ be two initial seqments of p with `(r) < `(r′). Let u and u′ be the elements of G
such that u = r− and u′ = r′−. respectively. By assumption, for each i = 1, 2, there are elements
ui, u

′
i ∈ Hi such that d(u, ui) ≤ σ and d(u′, u′i) ≤ σ. Suppose that u−1ui = (u′)−1ui for i = 1, 2.

Then for any g ∈ G,

d(ug,Hj) = d(g, u−1uiHi) = d(g, (u′)−1u′iHi) = d(u′g,Hi)
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In particular, if p = r′s′, then the path p′ = rs′ is stricly shorter then p, and by previous
calculation this contradicts our choice of p. Hence, for every vertex on p we can associate a ordered
pair of elements of length at most σ, corresponding to the shortest paths from this vertex to H1

and H2. In order for all of these pairs to be unique, we must have `(p) ≤ |Bσ(1)|2.

Lemma 7.12. Let [x, y, z, w] be a geodesic quadrilateral in a δ hyperbolic metric space. Let a ∈ [x, y]
and b ∈ [w, z] such that d(x, a) = d(w, b). Then

d(a, b) ≤ 2 max{d(x,w), d(y, z)}+ 4δ

Proof. By δ-hyperbolicity, there exists a point c ∈ [y, z] ∪ [w, z] ∪ [x,w] with d(a, c) ≤ 2δ. First we
suppose that c ∈ [w, z], and that c occurs between w and b (the case where c is between b and z is
similar). Then

d(x, a) ≤ d(x,w) + d(w, c) + 2δ = d(x,w) + d(w, b)− d(b, c) + 2δ

Hence, d(b, c) ≤ d(x,w) + 2δ, so d(a, b) ≤ d(x,w) + 4δ.

Suppose now that c ∈ [x,w]. Then d(w, b) = d(x, a) ≤ d(x,w) + 2δ. Hence d(a, b) ≤ 2δ +
d(x,w) + d(w, b) ≤ 2d(x,w) + 4δ. By symmetry, the case c ∈ [y, z] is the same.

The following was implicit in our solution to the conjugacy problem in hyperbolic groups.

Lemma 7.13. For any g and h in G, there exists a constant K = K(|g|S , |h|S , δ) such that g and
h are conjugate if and only if there is some x ∈ G with |x|S ≤ K and x−1gx = h.

Recall that for an element g ∈ G, C(g) denotes the centralizer of g, that is {h ∈ G | gh = hg}.

Proposition 7.14. For every g ∈ G, C(g) is quasi-convex in G.

Proof. Let p be a geodsic from 1 to h ∈ C(g). Let q be a geodesic from 1 to g. Consider
the geodesic quadrilateral with sides q, gp, hq, and p. Let v be a vertex on p. By Lemma 7.12,
d(v, gv) ≤ 2|g|S + 4δ. Hence, by Lemma 7.13, there x ∈ G such that xgx−1 = v−1gv and |x|S ≤ K,
where K = K(|g|S , δ). Futhermore,

(vx)g = vxgx−1x = g(vx)

Hence vx ∈ C(g), and d(v, vx) ≤ K. Thus C(g) is K-quasi-convex.

Theorem 7.15. For any g ∈ G, 〈g〉 is quasi-convex. In particular, if g has infinite order, then the
map Z→ Γ(G,S) given by n→ gn is a quasi-isometric embedding.

Corollary 7.16. g ∈ G is loxodromic if and only if g has infinite order.
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Proof. If g has finite order, then 〈g〉 is bounded and hence quasi-convex. Suppose now that g has
infinite order. Since C(g) is quasi-convex, it is generated by a finite set T . By Proposition 7.11,
Z(C(g)) = ∩h∈TC(h) is quasi-convex and hence hyperbolic. However, Z(C(g)) is abelian and it is
easy to see that every abelian hyperbolic group is isomorphic to Z× A where A is a finite abelian
group. Therefore, 〈g〉 is a finite index subgroup of Z(C(g)), and since Z(C(g)) is quasi-convex so
is 〈g〉.

Corollary 7.17. If g ∈ G has infinite order and x−1gkx = gl, then k = ±l.

Proof.
|k|τ(g) = τ(gk) = τ(x−1glx) = τ(gl) = |l|τ(g)

Corollary 7.18. If g ∈ G has infinite order, [C(g) : 〈g〉] <∞.

Proof. Passing to a sufficiently high power of g, g is not conjugate to any element of length ≤ 4δ.
If h ∈ C(g) v is a vertex on [1, h] such that d(1, v) = d(v, h) > d(1, g) + 2δ, then d(v, gv) ≤ 4δ,
contradicting our assumption about g.

Recall that the Baumslag-Solitar groups are groups given by the presentations

BS(n,m) = 〈a, t | t−1ant = am〉

For some n,m ∈ Z.

Theorem 7.19. Let G be a hyperbolic group. Then for any n,m ∈ Z, G has no subgroups isomor-
phic to BS(n,m). In particular, G has no subgroup isomorphic to Z2.

Proof. First, if g is infinite order, then [C(g) : 〈g〉] <∞, so G contains no subgroup isomorphic to
Z2. Now if n = ±m, then 〈an, t2〉 ∼= Z2, so G does not contain a subgroup isomorphic to BS(n,±n).
If n 6= ±n, then G does not contain BS(n,m) by Lemma 7.17.

The following is a well-known open question which generalizes Question 4.8.

Question 7.20. Is every group of type F which contains no Baumslag-Solitar subgroups hyperbolic?

7.3 Elementary (sub)groups

A group G is called elementary if G is virtually cyclic. Every such group is a finite extension of
either Z or the infinite dihedral group D∞ ∼= Z/2Z ∗ Z/2Z ∼= Isom(Z) ∼= Z o Z/2Z.

Lemma 7.21. Let E be a torsion-free elementary group. Then E is cyclic.

Proof. Let g ∈ E such that 〈g〉 is an infinite cyclic normal subgroup of minimal index. In this case
g is central, since if x−1gx = g−1 and xn = gk, then x2n = 1. Let F = E/〈g〉. If F is cyclic, then
E is abelian since it is generated by the central element g and the pre-image of the generator of F .
Clearly every torsion-free abelian virtually cyclic group is cyclic.
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If F contains a non-trivial proper normal cyclic subgroup H/〈g〉, then H is a normal subgroup
of E which is cyclic previous argument. But this contradicts the minimality of the index of 〈g〉.

If F contains a non-trivial proper normal abelian subgroup H/〈g〉, then every cyclic subgroup
of H/〈g〉 is normal in H/〈g〉. Hence by the previous argument H/〈g〉 is cyclic so H is cyclic, so
again we contradict the minimality of the index of 〈g〉.

Now if F is a non-abelian finite group, then it contains a non-abelian subgroup L such that L
contains a normal abelian subgroup M . But then the previous arguements show that the inverse
image of L in E is cyclic, which contradicts the fact that L is non-abelian.

Exercise 7.22. Show that every non-abelian finite group F contains a non-abelian subgroup L such
that L contains a normal abelian subgroup M .

Theorem 7.23. Let E be an elementary group. Then E contains normal subgroups T ≤ E+ ≤ E
such that [E : E+] ≤ 2, T is finite, and E+/T ∼= Z. Furthermore, if E 6= E+, then E/T ∼= D∞.

Proof. Let g ∈ E such that 〈g〉 is an infinite cyclic normal subgroup. By normality, for all x ∈ E,
x−1gx = g±1. Let

E+ = {x ∈ E | x−1gx = g}.

Clearly E+ is a subgroup of index at most 2, hence it is normal in E. Let T be the set of elements
of E+ of finite order. Note that |T | ≤ [E : 〈g〉], so T is finite. Since the center of E+ has finite
index in E+, it follows that T is a subgroup of E+. T is clearly normal, so E+/T is torsion-free
and elementary, hence cyclic by Lemma 7.21.

T is also normal in E, since x−1Tx ≤ E+ for all x ∈ E and conjugation preserves orders of
elements. Now if E+ 6= E, then E/T contains E+/T as a cyclic subgroup of index 2. This implies
that E/T ∼= Z o Z/2Z ∼= D∞.

Exercise 7.24. Suppose G is a group such that [G : Z(G)] < ∞. Prove that the set of torsion
elements of G is a subgroup of G.

Next we show that every infinite order element of g is contained in a unique, maximal, elemen-
tary subgroup.

Definition 7.25. Let G be a hyperbolic group and g ∈ G be an element of infinite order. Then

E(g) = {x ∈ G | x−1gnx = g±n for some n = n(x) ∈ Z}.

The following observations are elementary, the proof is left as an exercise.

Lemma 7.26. Let g ∈ G be an element of infinite order.

1. E(g) is a subgroup of G.

2. E+(g) := {x ∈ G | x−1gnx = gn for some n = n(x) ∈ Z} is a subgroup of E(g) of index ≤ 2.

3. E(g) = E(gk) for any k ∈ Z \ {0}.
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4. E(y−1gy) = y−1E(g)y for any y ∈ G.

5. 〈g〉 ≤ C(g) ≤ E+(g) ≤ E(g).

Theorem 7.27. [E(g) : 〈g〉] < ∞. Furthermore, E(g) is the unique, maximal, virtually cyclic
subgroup of G containing g.

Proof. It suffices to show that [E+(g) : 〈g〉] < ∞. Let x ∈ G such that x−1gnx = gn. Let W be a
geodesic word representing g and X a geodesic word representing x. Choosing m as a sufficiently
large multiple of 2n, there is a (λ, c) quasi-geodesic quadrilateral with the top and bottom sides
labeled by Wm, and the sides labeled by X. Furthermore, if u and v are the middle vertices on the
top and bottom respectively, there is a and a path from u to v labeled by X. Let K = K(δ, λ, c)
be the constant such that every (λ, c)-quasi-geodesic triangle in a δ hyperbolic space is K-slim.
Choosing m large enough we can ensure that d(x, u) ≥ 2K + ‖X‖, so by hyperbolicity there exists
a vertex w on the bottom path such that d(u,w) ≤ 2K. Then there is a vertex z on the bottom

path such z = gl for some l and d(z, w) ≤ ‖W‖2 = |g|S
2 . Then z−1u = g−lx and d(z, u) ≤ 2K + |g|S

2 .
Therefore [E+(g) : 〈g〉] ≤ |B

2K+
|g|S
2

(1)| <∞.

Finally, if E is any elementary group containing g, then for some n ∈ N 〈gn〉 is normal in E.
This implies that E ≤ E(g).

Let g be an element of infintie order in G, and let γg be the bi-infinite quasi-geodesic obtained
by connecting gi to gi+1 by a translate of a fixed geodesic [1, g] for all i ∈ Z. Then E(g) = {x ∈
G | dHau(γg, xγg) <∞}.

We let g±∞ denote the points γ(±∞) ∈ ∂X. Hence, E(g) = StabG({g+∞, g−∞}). E+(g) is the
pointwise stabilizer of {g+∞, g−∞}.

7.4 Torsion subgroups are finite

The following proposition says that a concatenation of geodesics will be a global quasi-geodesic as
long as the angles at the concatenation points are sufficiently small. This is similar to the fact
that local geodesic in a hyperbolic space are global quasi-geodesics, i.e. Lemma 2.24. Given points
x1, ..., xn ∈ X, let [x1, ..., xn] denote the path p obtained by concatenating geodesics from xi to
xi+1. Such a path p is called a broken line.

Proposition 7.28. [21] Let p = [x0, x1, ..., xn] be a broken line such that d(xi, xi+1) ≥ c1 and
(xi−1|xi+1)xi ≤ c0 where c1 > 2c0 + 2δ. Then d(x0, xn) ≥ n(c1 − 2c0 − 2δ).

Proof. We induct on n. If n = 1 the statement is obvious. For n = 2,

c0 ≥ (x0|x2)x1 =
1

2
(d(x0, x1) + d(x1, x2)− d(x0, x2)) ≥ c1 −

1

2
d(x0, x2)

Which implies that d(x0, x2) ≥ 2(c1 − c0).

Suppose now n ≥ 3 and that the statement holds for all k ≤ n−1. By the inductive hypothosis,
d(x0, xn−2) < d(x0, xn−1). It follows that

(x0|xn−2)xn−1 =
1

2
(d(xn−1, x0) + d(xn−1, xn−2)− d(x0, xn−2)) >

1

2
c1 > c0 + δ.
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Applying Hyp1(δ), c0 ≥ (xn|xn−2)xn−1 ≥ min{(x0|xn)xn−1 , (xn−2|x0)xn−1} − δ. By the previous
calculation, this minimum cannot be realized by (x0|xn−2)xn−1, and hence (x0|xn)xn−1 ≤ c0 + δ.

Using this and the inductive hypothesis,

d(x0, xn) = d(x0, xn−1) + d(xn−1, xn)− 2(x0|xn)xn−1 ≥ d(x0, xn−1) + c1 − 2(c0 + δ).

For g, h ∈ G, let (g|h) = (g|h)1.

Lemma 7.29. Suppose g ∈ G such that (g−1|g) < 1
2 |g| − δ. Then g has infinite order.

Proof. By Proposition 7.28 applied to [1, g, g2, ..., gn], d(1, gn) > n(|g| − 2(g−1|g) − 2δ) > 0, so
gn 6= 1 for all n ∈ N.

Lemma 7.30. Let g, h ∈ G be elements of finite order such that (h−1|g) ≤ 1
2 min{|g|, |h|} − 3δ.

Then gh has infinite order in G.

First, applying Hyp1(δ) twice gives

(h−1|g) ≥ min{(g−1|g), (h−1|h), (g−1|h)} − 2δ

By the previous lemma and the fact that g and h have finite order, this minimum must be
realized by (g−1|h). Hence (g−1|h) ≤ (h−1|g) + 2δ ≤ 1

2 min{|g|, |h|} − δ. This means that we can
apply Proposition 7.28 to [1, g, gh, ghg, ...(gh)n] to get that d(1, (gh)n) > 0 for all n ∈ N.

Proposition 7.31. Let M be a subset of a hyperbolic group G such that M = M−1 and M and
MM both consist of torsion elements. Then there exists u ∈ G such that u−1Mu ⊆ B16δ(1). In
particular, |M | ≤ |B16δ(1)|.

Proof. It suffices to assume that M if a finite set. Let LM = max{|g| | g ∈ M}; after conjugating
M , we assume that LM ≤ LM ′ for any M ′ which is conjugate to M . Let M1 = {g ∈ G | |g| > 6δ}.
If M1 is empty then we are done. By the previous two lemmas, for all g, h ∈M1,

(h−1|g) ≥ 1

2
min{|g|S , |h|S} − 3δ > 3δ

Otherwise gh ∈MM would have infinite order.

Now fix g0 ∈ M1, and let u be a vertex on [1, g1] such that d(1, u) = 3δ. By the previous
calculation, for any h ∈ M1, there exists o1 ∈ [1, h] with d(o1, u) ≤ δ. Similarly, there exists
o2 ∈ [1, h] such that d(o2, hu) ≤ δ.

Now d(1, o1) ≥ d(1, u)− d(u, o1) ≥ 2δ and d(o2, h) ≥ 2δ. Thus d(o1, o2) ≤ |h| − 4δ, therefore

d(u, hu) ≤ 2δ + |h| − 4δ = |h| − 2δ

Also, for all g ∈ M \M1, |u−1gu| ≤ |g| + 6δ ≤ 12δ. Therefore, if M contains an element of
length ≥ 12δ, then Lu−1Mu < LM , a contradiction.

45



Corollary 7.32. G contains only finitely many conjugacy classes of finitie subgroups.

Theorem 7.33. Let H be an infinite subgroup of a hyperbolic group. Then H contains an element
of infinite order.

Exercise 7.34. Let G be a hyperbolic group, and let G∞ = {g ∈ G | g has infinite order}

1. Suppose g, h ∈ G∞ such that E(g) 6= E(h). Prove that E(g) ∩ E(h) is finite.

2. Let g ∈ G∞ and let N be a finite normal subgroup of G. Prove that N ≤ E(g).

3. Let
K(G) =

⋂
g∈G∞

E(g).

Prove that K(G) is the unique, maximal finite normal subgroup of G.

7.5 Free subgroups, ping-pong, and the Tits alternative

Lemma 7.35. Suppose g, h ∈ G are elements of infinite order such that g+∞ = h+∞. Then
E(g) = E(h); in particular, g−∞ = h−∞.

Proof. Let M be a constant such that for all t > 0, d(γg(t), γh(t)) ≤M . Note that gγ(t) = γ(t+|g|),
and similarly for h and γh. Now for any r > 0,

d(g−rhgr, h) = d(hgr, grh) = d(hγg(r|g|), grγh(|h|))

≤ d(hγh(r|g|), grγg(|h|)) + 2M = d(γh(|h|+ r|g|), γg(|h|+ r|g|)) + 2M ≤ 3M.

Since B3m(h) is finite, there exists some r > s > 0 such that g−rhgr = g−shgs, and hence
hgr−sh−1 = gr−s, that is h ∈ E(g). Therefore E(h) = E(g) by maximality.

Proposition 7.36. Suppose a ∈ ∂G such that StabG(a) is infinite. Then there exists b ∈ ∂G and
an element of infinite order g ∈ G such that a = g+∞ and b = g−∞. In particular, StabG(a) =
StabG(b) = E+(g).

Loxodromic elements g, h are called independent if g±∞ and h±∞ are all distinct; equivalently,
E(g) 6= E(h).

Exercise 7.37. Suppose g ∈ G has infinite order and x−1gx ∈ E(g). Then x ∈ E(g). Therefore, if
x ∈ G \ E(g), then g and x−1gx are independent.

The following is one of the fundamental tools of geometric group theory. The proof is straight-
forward, it is left as an exercise.

Lemma 7.38 (Ping-Pong Lemma). Let G be a group acting on a set X. Suppose X has disjoint
subsets A+, A−, B+, B− such that for some g, h ∈ G, g · (X \ A−) ⊆ A+, g−1 · (X \ A+) ⊆ A−,
h · (X \B−) ⊆ B+, and h · (X \A+) ⊆ A−. Then 〈g, h〉 ∼= F2.
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Given a closed subset Y ⊆ X, let projY : X → Y be a function such that for each x ∈ X,
d(x, Y ) = d(x, projY (x)).

Proposition 7.39. Let G be a group acting on a geodesic hyperbolic metic space X, and suppose
g and h are independent loxodromic isometries. Then there exists N ∈ N such that 〈gN , hN 〉 ∼= F2.

Proof. Fix a basepoint o ∈ X, and let γg and γh be the bi-infinite quasi-geodesics formed by
connecting adjacent points in Og = 〈g〉 · o and Oh = 〈h〉 · o by geodesics respectively. Let K be the
constant such that all (λ, c) quasi-geodesic triangles are K-slim where λ and c are the quasi-geodesic
constants for γg and γh. For all x ∈ X, let xg = projOg(x) and xh = projOh(x).

Let M > 0 be a large constant. Let

A± = {x ∈ G | d(o, xg) = g±no for some n ≥M}

B± = {x ∈ G | xh = h±no for some n ≥M}

If xg = gno, then (gx)g = gn+1o. Hence there exists some N = N(M) such that g±N ·X \A∓ ⊆
A± and h±N ·X \B∓ ⊆ B±. In order to apply the ping-pong lemma, it only remains to show that
(for sufficiently large M these sets are disjoint.

First we show that there exists R such that for any y ∈ γg, z ∈ γh, [y, z] ∩ BR(o) 6= ∅. Since
γg(∞) 6= γh(∞), there exists y0 ∈ γg such that d(y0, γh) ≥ K. Then if d(o, y) ≥ d(o, y0), then y0

must be within K of a point on the geodesic triangle with sides γg, γh, and [y, z]. So we can choose
R = d(o, y0) +K.

Now let x ∈ X, and let u ∈ BR(o)∩[xg, xh]. Then in the geodesic triangle [x, xg, xh], there exists
v ∈ [x, xg] ∪ [x, xh] such that d(u, v) ≤ δ. Suppose v ∈ [x, xg]. Then d(o, v) ≤ R + δ. By definition
of the projection, d(v, xg) ≤ d(v, o), so d(o, xg) ≤ 2d(o, v) ≤ 2(R + δ). Similary, if v ∈ [x, xh], then
d(o, xh) ≤ 2R+ 2δ.

We have shown that for all x ∈ X, either xh or xg belongs to B2R+2δ(o). Hence it suffices to
choose M such that for all n ∈ Z with |n| ≥M , d(o, gno) ≥ 2R+ 2δ and d(o, hno) ≥ 2R+ 2δ.

Theorem 7.40 (Strong Tits alternative). Let G be a hyperbolic group and let H ≤ G. Then either
H is elementary or H contains F2.

Proof. If H is non-elementary, then H contains an element of infinite order g and some x ∈ G\E(g).
Let h = x−1gx. Since h /∈ E(g), E(h) 6= E(g), and hence g and h are independent. Therefore, by
the previosu proposotion there exists N ∈ N such that 〈gN , hN 〉 ∼= F2.

Theorem 7.41. Let G be a hyperbolic group. The following are equivalent:

1. |∂G| ≥ 3

2. G is non-elementary.

3. G contains F2.
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4. G contains infinitely many pairwise independent loxodromic elements.

5. |∂G| =∞.

Proof. 1 =⇒ 2 If G is elementary, then |∂G| ∈ {0, 2}.
2 =⇒ 3 follows from Theorem 7.40.

3 =⇒ 4: If E(g) = E(h), then for some n, k, gn = hk. Thus any g, h ∈ F2 ≤ G which are
independent in F2 are also independent in G. Clearly F2 has infintiely many pairwise independent
loxodromic elements, hence so does G.

4 =⇒ 3 If {g1, ...} is an infinte sequence of pairwise independent loxodromic elements in G,
then {g+∞

1 , ...} is an infinite sequence of distinct points in ∂G.

5 =⇒ 1 Obvious.

Corollary 7.42. Suppose G is a hyperbolic group. Then exactly one of the following occurs:

1. |∂G| = 0, equivalently G is finite.

2. |∂G| = 2, equivalently G is virtually infinite cyclic.

3. |∂G| =∞, equivalently G is non-elementary.

Moreover, one can show that {g±∞ | g ∈ G} is a dense subsetset of ∂G. Furthermore, from the
proof one can derive that in this case ∂G is perfect, that is every point is a limit point.

Corollary 7.42 should be compared to the following general classification of group acting on
hyperbolic spaces:

Given G acting on a hyperbolic metric space X, ΛG = G · o ∩ ∂X, where o ∈ X is any fixed
base point and the closure is taken in the compacitification X = X ∪ ∂X of X. If G is acting on
Γ(G,S), then ΛG = ∂G, and if H is a quasi-convex subgroup of G, then ΛH = ∂H under the
natural inclusion H ↪→ G.

Theorem 7.43. Suppose G acts on a hyperbolic metric space X. Then exactly one of the following
occurs:

1. |ΛG| = 0, equivalently G is elliptic (i.e., G has bounded orbits).

2. |ΛG| = 1, equivalently G has unbounded orbits but contains no loxodromic elements. In this
case the action is called parabolic.

3. |ΛG| = 2, equivalently G contains loxodromic elements and any two loxodromic elements have
the same limit points on ∂X.

4. |ΛG| =∞. Here there are two subcases:

(a) There exists ξ ∈ ∂X which is fixed under the action of G. Equivalently, for any loxo-
dromic element g ∈ G, ξ ∈ {g+∞, g−∞}. In this case the action is called quasi-parabolic.

(b) G contains infiniitely many pairwise independent loxodromic elements.
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Actions of type 1-3 are called elementary.

Finally, conclude this section by highlighting a few more immediate consequences of the Tits
alternative.

Given a fintie subset A ⊂ Γ(G,S), let ∂A be the set of vertices v in Γ(G,S) with d(v,A) = 1.

Definition 7.44 (Folner condition). A finitely generated group G is amenable if there exists a
sequence of finite subsets An ⊆ G such that

lim
n→∞

|∂A|
|A|

= 0

Some examples: Z is amenable; more generally, all solvable groups are amenable. F2 and any
group which contains F2 is not amenable.

Corollary 7.45. Every amenable subgroup of a hyperbolic group is elementary.

Corollary 7.46. If G is a non-elementary hyperbolic group, then every infinite normal subgroup
of G is non-elementary. In particular, G has no infinite amenable normal subgroups.

8 Quotients of hyperbolic groups

8.1 Small cancellation over hyperbolic groups

In this section, we show how the generalize classical small cancellation theory to study quotients of
hyperbolic groups. This generalization has roots in the work of Gromov [11], but the presentation
we give here is due to Olshanskii [20]. Our goal is to give a brief overview of the main tools and
ideas of this area, so we will omit most of the proofs. Proofs for all of these facts can be found in
[20] (see also [24]).

Recall that a set of words R in an alphabet S, is symmetrized if for any R ∈ R, R contains all
cyclic shifts of R±1. Further, if G is a group generated by a set S, we say that a word R is (λ, c)–
quasi–geodesic in G if any path in the Cayley graph Γ(G,S) labeled by R is (λ, c)-quasi-geodesic.

Definition 8.1. Let G be a group generated by a set S, R a symmetrized set of words in S. For
ε > 0, a subword U of a word R ∈ R is called an ε-piece if there exists a word R′ ∈ R such that:

(1) R ≡ UV , R′ ≡ U ′V ′, for some V,U ′, V ′.

(2) U ′ =G Y UZ for some words Y, Z in S such that max{‖Y ‖, ‖Z‖} ≤ ε.

(3) Y RY −1 6=G R
′.

Similarly, a subword U of R ∈ R is called an ε′–piece if:

(1′) R ≡ UV U ′V ′ for some V,U ′, V ′.

(2′) U ′ =G Y U
±1Z for some Y, Z satisfying max{‖Y ‖, ‖Z‖} ≤ ε.
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Definition 8.2. We say that the set R satisfies the C(ε, µ, λ, c, ρ)–condition for some ε ≥ 0, µ > 0,
λ > 0, c ≥ 0, ρ > 0, if

(1) ‖R‖ ≥ ρ for any R ∈ R.

(2) Each R ∈ R is (λ, c)–quasi–geodesic.

(3) For any ε-piece U of any word R ∈ R, the inequality max{‖U‖, ‖U ′‖} < µ‖R‖ holds (using
the notation of Definition 8.1).

Further the set R satisfies the C1(ε, µ, λ, c, ρ)–condition if in addition the condition (3) holds
for any ε′-piece of any word R ∈ R.

Suppose that G is a group defined by

G = 〈S | O〉. (6)

Given a set of words R, we consider the quotient group of G represented by

G = 〈S | O ∪ R〉. (7)

A cell in a van Kampen diagram over (7) is called an R-cell if its boundary label is a word from
R. Let ∆ be a van Kampen diagram over (7) and Π an R-cell of ∆. Suppose that there is a simple
closed path

p = s1q1s2q2 (8)

in ∆, where q1 is a subpath of ∂Π, q2 is a subpath of ∂∆, and

max{`(s1), `(s2)} ≤ ε (9)

for some constant ε > 0. By Γ we denote the subdiagram of ∆ bounded by p. If Γ contains no
R-cells, we say that Γ is an ε–contiguity subdiagram (or simply a contiguity subdiagram if ε is fixed)
of Π to ∂∆ and q1 is the contiguity arc of Π to q. The ratio `(q1)/l(∂Π) is called the contiguity
degree of Π to ∂∆ and is denoted by (Π,Γ, ∂∆). Since Γ contains no R-cells, it can be considered
a diagram over (6).

A van Kampen diagram ∆ over (7) is said to be reduced if ∆ has minimal number of R-cells
among all diagrams over (7) having the same boundary label. When dealing with a diagram ∆ over
(7), it is convenient to consider the following transformations. Let Σ be a subdiagram of ∆ which
contains no R-cells, Σ′ another diagram over (6) with Lab(∂Σ) ≡ Lab(∂Σ′). Then we can remove
Σ and fill the obtained hole with Σ′. Note that this transformation does not affect Lab(∂∆) and
the number of R-cells in ∆. If two diagrams over (7) can be obtained from each other by a sequence
of such transformations, we call them O-equivalent. The following is an analogue of the well-known
Greendlinger Lemma from classical small cancellation theory.

Lemma 8.3 (Greendlinger-Olshanskii Lemma). Let G be a group with presentation (6). Suppose
that the Cayley graph Γ(G,S) of G is hyperbolic. Then for any λ ∈ (0, 1], c ≥ 0, and µ ∈ (0, 1/16],
there exists ε ≥ 0 and ρ > 0 with the following property. Let R be a symmetrized set of words in S
satisfying the C(ε, µ, λ, c, ρ)-condition, ∆ a reduced van Kampen diagram over the presentation (7)
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such that ∂∆ is (λ, c)-quasi-geodesic. Assume that ∆ has at least one R-cell. Then up to passing
to an O-equivalent diagram, then there is an R-cell Π of ∆ and an ε-contiguity subdiagram Γ of Π
to ∂∆ such that

(Π,Γ, ∂∆) > 1− 13µ.

It is worth noting that the proof of this Lemma does not require S to be finite (see [24]),
which allows for generalizations of small cancellation theory to the relatively hyperbolic setting
and beyond.

Proposition 8.4. Suppose G = 〈S | O〉 is a hyperbolic group. Then for all λ, c, there exists ε, µ
and ρ such that if R is a symmetrized set of words satisftying the C(ε, µ, λ, c, ρ) condidtion, then
the group G = 〈S | O ∪ R〉 satisfies:

1. G is hyperbolic.

2. If W is a word in S with ‖W‖ ≤ 1
2λρ− c− 2ε, then W =G 1 if and only if W =G 1.

3. If in addition R satisfies C1(ε, µ, λ, c, ρ), then every element of G of finite order is the image
of an element of G of finite order.

sketch. (1) Suppose ∆ is a minimal van Kampen diagram over (7). If ∆ has no R-cells, then ∆ is
also a diagram over (6) and hence the area of δ is linear in the length of ∂∆ by the hyperbolicity of
G. If ∆ contains an R-cell, the Greendlinger-Olshanskii Lemma can be used (for sufficiently small
ε and µ and sufficiently large ρ) to find an R-cell Π with most of the boundary of Π close to the
boundary of ∆. Then we can “cut out” Π to produce a new diagram ∆′ such that ∆′ has fewer
R-cells then ∆ and `(∂∆′) < `(∂∆). It follows that G will have linear Dehn function and hence be
hyperbolic.

(2) If W =G 1 and W 6=G 1, then every van Kampen diagram over (7) must contain an R-cell.
By the Greendlinger-Olshanskii Lemma, such a diagram ∆ has a 2-cell Π with most of the boundary
of Π close to the boundary of ∆. Since `(∂Π) ≥ ρ, we can derive a lower bound on `(∂∆).

(3) If ∆ is a van Kampen diagram over (7) which contains an R-cell and whose boundary label
is a proper power, then the 2-cell Π provided by the Greendlinger-Oshanskii Lemma can be used
to violate the C1-condition. For details of this proof, see [24, Lemma 6.3].

For classical small cancellation theory, checking whether a set of words satisfies a given small
cancellation condition is fairly straightforward. For small cancellation over hyperbolic groups, this
is much harder. In fact, even showing that there exists a set of words which satisfies these small
cancellation conditions is non-trivial

Lemma 8.5. [20, Lemma 4.1] Let G be a non-elementary hyperbolic group, let g ∈ G be an infinite
order element, and let W be a geodesic word in representing g. Then there exists λ, c such that for
any ε, µ, ρ, there exists N such that the set of cyclic shifts of WN satisfies C(ε, µ, λ, c, ρ).

We now show how to find words which satisfy the stronger C1-condition.

Given a subgroup H ≤ G, let KG(H) := ∩{EG(g) | g ∈ H is an element of infinite order } =
{1}. Equivalently, KG(H) is the maximal finite subgroup of G normalized by H.
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Definition 8.6. A subgroup H ≤ G of a hyperbolic group is called suitable if H is non-elementary
and KG(H) = {1}.

Lemma 8.7. [24] Let H be a subgroup of a hyperbolic group G. Then H is suitable if and only if
H contains independent loxodromic elements g and h such that E(g) = 〈g〉 and E(h) = 〈h〉.

Proposition 8.8. Let g and h be independent loxodromic elements of a hyperbolic group G = 〈S〉
such that E(g) = 〈g〉 and E(h) = 〈h〉. Let W be a geodesic word representing g and U a geodesic
word representing h. Then there exists λ and c such that for all ε, µ, ρ and all s ∈ S, there exists
N and m such that for all N < n1 < n2 < ... < nm, the symmetrized closure of

{s−1Wn1Un2 ...Wnm−1Unm}

satisfies C1(ε, µ, λ, c, ρ).

Theorem 8.9. Let G be a non-elementary hyperbolic group, and let H be a suitable subgroup.
Then for any finite set F ⊂ G, there exists a quotient f : G� G such that

1. G is non-elementary hyperbolic.

2. f |F is injective.

3. f |H is surjective.

4. Every element of G of finite order is the image of an element of G of finite order. In particular,
if G is torsion-free then so is G.

Proof. Let S be a finite generating set for G and let s ∈ S. By Lemma 8.7 and Proposition ??,
there exists λ and c such that for all ε, µ, and ρ there a word W representing an element of H
such that the symmetrized closure of {s−1Wn1Un2 ...Wnm−1Unm}, which we denote by R, satisfies
C1(ε, µ, λ, c, ρ). In particular after for sufficently small µ and sufficiently large ε and ρ we can
apply Proposition 8.4 to get that the quotient G1 = G/〈〈R〉〉 satisfes conditions (1), (2) and (4).
Furthermore, if f1 : G � G1 is the natural quotient map, then f1(s) ∈ f1(H). In addition, f1(H)
will again be suitable in G1, so we can inductively repeat the construction for all elements of S to
form a sequence

G� G1 � ...� G|S|.

Such that each Gi satisfies conditions (1), (2) and (4) and if f : G� G := G|S|, then f(s) ∈ f(H)

for all s ∈ S. This implies that f |H is surjective, thus all the conditions hold for f and G.

8.2 Exotic quotients and the von Neumann-Day problem

Theorem 8.10. [20] Every non-elementary hyperbolic group has an infinite torsion quotient.

Proof. Let G = {1 = g0, g1, ...}. We proceed by inductively constructing a sequence of quotients of
G. Suppose we have constructed a sequence

G� G1 � ...� Gn
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Such that each Gi is a non-elementary hyperbolic group and the image of gi has finite order
in Gi. Let αi : G � Gi denote the natural quotient map. If αn(gn+1) has finite order, we let
Gn+1 = Gn otherwise, by Lemma 8.5 and Proposition 8.4, there exists N ∈ N such that Gn+1 :=
Gn/〈〈αn(gn+1)N 〉〉 is a non-elementary hyperbolic group. Hence we can continue the sequence.

Now let Q be the direct limit of the sequence G� G1 � ... constructed above, that is

Q = G/ ∪∞i=1 ker(αi)

Let α : G → Q be the natural quotient map. Now for each g ∈ G, there exists i and N such that
gN ∈ ker(αi), so α(g) has finite order. Thus Q is a torsion group, it only remains to prove that Q
is infinite.

Suppose Q is finitely presented. Then there exists a finite set R ⊆ ker(α) such that 〈〈R〉〉 =
ker(α). Since R is finite, there exists some i such that R ⊆ ker(αi). But then ker(αi) ⊆ ker(α) =
〈〈R〉〉 ⊆ ker(αi), so Q = Gi. But Gi is non-elementary hyperbolic and hence cannot be a torsion
group, a contradiction. Therefore Q is not finitely presented, in particular Q must be infinite.

Theorem 8.11. Let G be a non-elementary torsion-free hyperbolic group. Then G has an infinite,
non-abelian quotient Q such that every proper subgroup of Q is infinite cyclic.

Proof. Enumerate G × G = {(g1, h1), ...}. Fix non-commuting elements a, b ∈ G and let F =
{1, a, b, [a, b]} Let G0 = G. If E(g1) = E(h1), then let G1 = G0. Otherwise, H = 〈g1, h1〉 is
non-elementary and hence suitable since G is torsion-free. So we can apply Theorem 8.9 and set
G1 = G0.

Continute this process inductively, we get a sequence

G = G0 � G1 � ...

such that each Gi is a non-elementary hyperbolic group, F maps injectively to Gi, and the image
of {gi, hi} in Gi either generates all of Gi or a cyclic subgroup of Gi.

Let Q be the direct limit of this sequence; that is if αi : G� Gi is the natrually induced map,
Q = G/ ∪ ker(αi). Now for any two elements g, h in Q, these elements have some preimages gi, hi
in G. Now consider the images of gi, hi in Gi. If E(gi) = E(hi) then 〈gi, hi〈 is cyclic, and hence
〈g, h〉 (which is a quotient of 〈gi, hi〈) is also cyclic.

Otherwise, 〈αi(gi), αi(hi)〉 = Gi, and hence g, h generate Q. Therefore every proper subgroup
of Q is infinite cyclic. Finally, since [a, b] /∈ ker(αi) for all i, the image of a and b do not commute
in Q, hence Q is non-abelian.

The groups constructed in Theorems 8.11 and 8.10 can be used to answer a famous question
from the 1950’s:

Question 8.12 (von Neumann-Day problem). Does every non-amenable group contain F2?

A negative answer to this question was given by Olshanskii in 1980 using complicated combi-
natorial small cancellation techniques. Gromov observed that the proof could be simplified using
Theorem 8.9 and the notiton of property (T).
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Let G be generated by a finite set S, let H be a Hilbert space, and let π : G→ U(H) a unitary
representation of G. π is said to have almost invariant vectors if for all ε > 0, there exists ξ ∈ H
with ‖ξ‖ = 1 and ‖π(s)ξ − ξ‖ ≤ ε for all s ∈ S.

Definition 8.13. G has property (T ) if every unitary representation ofG which has almost invariant
vectors has a non-zero invariant vector.

We will only need to following elementary facts about Property (T ):

1. If G has (T ), then every quotient of G has (T ).

2. If G is amenable and G has (T ), then G is finite.

3. There exist non-elementary hyperbolic groups with (T ).

Exercise 8.14. Let G be non-elementary hyperbolic, let Q = G/K(G). Prove that Q is non-
elementary hyperbolic and K(Q) = {1}.

Proposition 8.15. Let G and H be non-elementary hyperbolic groups. Then G and H have a
common quotient Q which is non-elementary hyperbolic.

Proof. By exercise 8.14, we can assume K(G) = K(H) = {1}. Then G and H are suitable
subgroups of G ∗H. Hence we can apply Theorem 8.9 twice

α1 : G ∗H � Q1, α2 : Q1 � Q2

such that α1|G is surjective and α2|H is surjective.

Corollary 8.16. Every non-elementary hyperbolic group has a non-elementary hyperbolic quotient
with Property (T ).

Proof. Let H be a non-elementary hyperbolic group with property (T ). Then for any non-
elementary hyperbolic group G, there is a non-elementary hyperbolic group Q which is a quotient
of both G and H. Since quotients of property (T ) groups have property (T ), we are done.

By first replacing G with a non-elementary hyperbolic quotient Q with property T and then
applying Theorem 8.10 or Theorem 8.11 to Q, we get:

Corollary 8.17. The groups constructed in Theorems 8.10 and 8.11 can be chosen to have Property
(T ) and hence be non-amenable. In particular, there exists a non-amenable group which does not
contain F2.

8.3 SQ-universality

The following is a classical theorem of Higman-Neumann-Neumann.

Theorem 8.18. Every countable group embeds into a 2-generator group.
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Definition 8.19. A group G is called SQ-universal if every countable group embeds into a quotient
of G.

Hence the theorem of Higman-Neumann-Neumann is equivalent to the statement that F2 is SQ-
universal. Olshanskii showed that this property holds for all non-elementary hyperbolic groups.

Theorem 8.20. [22] Every non-elementary hyperbolic group is SQ-universal.

sketch. We sketch here the proof from [1].

Let G be a non-elementary hyperbolic group. By exercise 8.14, it suffices to assume K(G) = {1}.
Since every countable group embeds into a finitely generated group, if we can show that every finitely
generated group embeds into a quotient of G then we are done.

Let A be a group generated by a finite set {t1, ..., tn}. Then G is suitable in G∗A, so we can add
relations t1 = W1, ..., tn = Wn, where each Wi ∈ G satisfes suitable small cancellation conditions.
Let Q be the resulting quotient. By construction, Q is a quotient of G; furthermore, and it can be
shown that A embeds in Q.

Formally, since G∗A is not hyperbolic for many groups A, this approach uses the corresponding
version of Theorem 8.9 for relatively hyperbolic groups, see [24]. Note that Olshanskii’s original
proof lives completely in the world of hyperbolic groups and uses a variation of the C(ε, µ, λ, c, ρ)-
condition.

Since there are uncountably many isomorphism types of finitely generated groups and every
countable group contains only countably many finitely generated subgroups, we get the following:

Corollary 8.21. Every non-elementary hyperbolic group has uncountably many normal subgroups.

9 Relatively hyperbolic groups

The goal of this section is to give a very brief introduction to relatively hyperbolic groups. The
general philosophy of relatively hyperbolic groups is that they behave like hyperbolic groups except
for inside (cosets of) certain specified subgroups, called peripheral subgroups. The canonical exam-
ples of relatively hyperbolic groups are the following: if G = A ∗ B, then G is hyperbolic relative
to {A,B}, and if G is the fundamental group of a complete, finite volume Riemannian manifold
with pinched negative sectional curvature, then G is hyperbolic relative to the collection of cusp
subgroups.

As with hyperbolic groups, there are several equivalent characterizations of relatively hyperbolic
groups. We will begin with a definition of Farb, which involves two parts. The first part is weak
relative hyperbolicity, and the second is bounded coset penetration.

Definition 9.1 (Farb). Let G be a group generated by a finite set S, and let P1, ..., Pn be subgroups
of G. Let P = tni=1(Pi \ {1}). G is weakly hyperbolic relative to {P1, ..., Pn}if Γ(G,S ∪ P) is a
hyperbolic metric space.
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Γ(G,S ∪ P) is called a relative Cayley graph of G.

Exercise 9.2. Prove that Z2 = 〈a, b〉 is weakly hyperbolic relative to 〈a〉.

It turns out that weak relative hyperbolicity is not strong enough to prove many natural ana-
logues of properties of hyperbolic groups, so Farb introduced a second property called bounded
coset penetration, often abbreviated as BCP.

Definition 9.3. The pair (G, {P1, ..., Pn}) satisfies bounded coset penetration if there exist a con-
stant C such that the following 2 conditions hold.

1. Suppose γ1 and γ2 are geodesics in Γ(G,S ∪ P) with the same endpoints. Suppose also that
e is an edge of γ1 with Lab(e) = h ∈ Pi for some 1 ≤ i ≤ n, and |h|S ≥ C. Then γ2 has an
edge f such that Lab(f) ∈ Pi and e±, f± all belong to the same left coset of Pi.

2. Suppose γ1 and γ2 are geodesics in Γ(G,S ∪ P) with the same endpoints, and e and f are
edges of γ1 and γ2 respectively such that e±, f± all belong to the same left coset of some Pi.
Then dS(e−, f−) ≤ C and dS(e+, f+) ≤ C.

Definition 9.4 (Farb). G is hyperbolic relative to {P1, ..., Pn}) if it is weakly hyperbolic relative
to {P1, ..., Pn} and the pair satisfies BCP.

We turn now to an isoperimetric characterization of relatively hyperbolic groups due to Osin.

If G is generated by a finite set S and P1, ..., Pn are subgroups of G, there is a natural surjective
homomorphism F = F (S) ∗ (∗ni=1Pi) � G. Suppose R ⊂ F (S) ∗ (∗ni=1Pi) such that the normal
closure of R is equal to the kernel of the this map. Then we call

〈S,P | R〉 (10)

a presentation of G relative to the subgroups {P1, ..., Pn}, or simply a relative presentation if the
subgroups are understood. If R (and S) are finite, then (10) is called a finite relative presentation.

Given a word W in S ∪P such that W =G 1, there exists some r1, ..., rk ∈ R and f1, ..., fk ∈ F
such that

W =F Πk
i=1f

−1
i rifi

We define Arearel(W ) to be the minimal k such that W can be written in the above form. Equiv-
alently, one if Oi is the set of words in Pi which represent the identity in Pi and O = ∪Oi, then G
has an ordinary (infinite) presentation 〈S ∪ P |;O ∪ R〉. Then for a van Kampen diagram ∆ over
this presentation, we define Arearel(∆) be the the number of 2-cells of ∆ whose lable belongs to R
(called R-cells). Then Arearel(W ) = min{Arearel(∆) | Lab(∂∆) ≡W}.

The relative Dehn function δrel(n) is defined as the maximal relative area of all words in S ∪P
of length at most n. As with the ordinary Dehn function, the relative Dehn function is independent
(up to a natural equivalence relation) of the choice of finite sets S and R.

Definition 9.5 (Osin). G is hyperbolic relative to {P1, ..., Pn} if G is finitely presented relative to
{P1, ..., Pn} and the corresponding relative Dehn function is linear.

Examples 9.6. 1. G is hyperbolic if and only if G is hyperbolic relative to {1}. More generally,
a hyperbolic group G is hyperbolic relative to a subgroup P if and only if P is quasi-convex
and malnormal, that is g−1Pg ∩ P − {1} for all g ∈ G \ P .
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2. If G = A ∗B, then G is hyperbolic relative to {A,B}.

3. If G splits over a finite group, then G is hyperbolic relative to the factor groups. By theorems
of Stallings and Dunwoody, it follows that every non-elementary finitely presented group is
hyperbolic relative to one-ended subgroups.

4. If G is the fundamental group of a complete, finite volume Riemannian manifold with pinched
negative sectional curvature, then G is hyperbolic relative to the collection of cusp subgroups.

5. If G is hyperbolic relative to P and P is hyperbolic, then G is hyperbolic.

We now survey a few results for relatively hyperbolic groups, which are natural extensions of
corresponding results for hyperbolic groups. We mention here only a few examples, for more see
[1, 3, 8, 9, 12, 14, 23, 24].

Let G be hyperbolic relative to {P1, ..., Pn}.

Theorem 9.7. [23] If each Pi is finitely presented then G is finitely presented.

Theorem 9.8. [9] If each Pi has solvable word problem, then G has solvable word problem.

Theorem 9.9. If each Pi has decidable conjugacy problem, then G has decidable conjugacy problem.

Proposition 9.10. g ∈ G acts elliptically on Γ(G,S ∪ P) if and only if g has finite order or g is
conjugate into one of the subgroups Pi. Otherwise, g acts loxodromically on Γ(G,S ∪ P) and g is
contained in a unique, maximal elementary subgroup E(g) = {x ∈ G | x−1gnx = g±n for some n =
n(x) ∈ Z}.

Theorem 9.11. [1] If each Pi is a proper subgroup of G, then G is SQ-universal.

10 Open questions

Finally, we finish by mentioning a few well-known open questions related to hyperbolic groups.
These problems and more can be found on Bestvina’s list [2]

The first two questions we have discussed previosly.

Question 10.1. Is every group of type F which contains no Baumslag-Solitar subgroups hyperbolic?

Conjecture 10.2 (Cannon Conjecture). Suppose G is a hyperbolic group and ∂G ∼= S2. Then G
acts properly and cocompactly on H3.

The next question was asked by Gromov, it is commonly refered as the surface subgroup question.
This question was motivated by the virtual Haken conjecture (now proved by Agol) which says that
every compact, irreducible 3-manifold M with infinite fundamental group has a finite cover which
contains a 2-sided imcompressible surface S. In particular, this implies that π1(M) contains a
surface subgroup, that is π1(S) ≤ π1(M).

Question 10.3. Does every one-ended hyperbolic group contain a surface subgroup?
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A group G is residually finite if for all g ∈ G, there exists a fintie group H and a homomorphism
f : G→ H such that f(g) 6= 1. Equivalently, G is residually finite if and only if⋂

H≤G,[G:H]<∞

H = {1}

Loosely speaking, residually finite groups can be approximated by fintie groups. These approx-
imations give can be used to deduce properties of the group, for example residually finite groups
always have solvable word problem.

It is a classical result that free group and surface groups are residually finite. Topologically, the
fact that surface groups are residually finite means that for every curve on a surface S, there is a
cover of S where the lift of this curve is not closed. In addition, all 3-manifold groups are residually
finite by work of Hempel and the geometrization theorem.

The following is probably the most famous open question in geometric group theory:

Question 10.4. Is every hyperbolic group residually finite?

Recall that a group is linear if it is isomorphic to a subgroup of Gl(n,K) for some field K
(usually K = C).

Exercise 10.5. Prove that Sl(n,Z) is residually finite.

It is a classical theorem of Mal’cev that all finitely generated linear groups are residually finite.
So one way to prove a group is residually finite is to show that it is linear. However, M. Kapovich
showed that there exist hyperbolic groups which are not linear, so this approach will not apply.

A group is Hopfian if every surjective homomorphism f : G → G is also injective, or in other
words G is not a proper quotient of itself. It is also a theorem of Mal’cev that residually finite
groups are always Hopfian. To show a group is not Hopfian one only has to find a single map
f : G → G violating the condition, so it is often easier to show a group is not Hopfian then not
residually fintie. For example a direct calculation can be used to show that BS(2, 3) is not Hopfian,
and hence not residually finite. However, again this approach will one be usefully if one wants to
find a hyperbolic group which is not residually finite. The following theorem is a deep result of
Sela, who stated the result only for torsion-free groups. It was extended to groups with torsion by
Reinfeldt-Weidmann.

Theorem 10.6. Every hyperbolic group is Hopfian.

Let M0 denote the standard Euclidian plane and M−1 denote the standard hyperbolic plane.
For κ < 0, let Mκ denote the space obtained from the hyperbolic plane by scaling the metric until
the sectional curvature is κ. Given a geodesic metric space X and three points x1, x2, x3 ∈ X
spanning a triangle T , a triangle T ′ in Mκ with vertices x′1, x

′
2, x
′
3 is called a comparison triangle

if dMκ(x′i, x
′
j) = dX(xi, xj) for all 1 ≤ i, j ≤ 3. Then for each point a on T , there is point a′ on T ′

which naturally corresponds to a. X is called a CAT (κ)-space if for all geodesic triangles T in X
and any two points a, b on distinct sides of T ,

dX(a, b) ≤ dMκ(a′, b′)

If κ < 0, then clearly every CAT (κ) space is hyperbolic. However, the converse is not true since
δ-hyperbolicity does not give any restrictions on triangles whose diameter is less then δ.
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Question 10.7. Does every hyperbolic group admit a proper, cocompact action on a CAT (κ) space
for some κ < 0?

Finally we close with the following which is currently one of the main themes of geometric group
theory.

Question 10.8 (meta-question). Which properties of hyperbolic groups extend to other classes of
groups which admit natural actions on negatively or non-positively curved metric spaces, specif-
ically relatively hyperbolic groups, CAT (0) groups, semi-hyperbolic groups, MCG(S), Out(Fn),
3-manifold groups, etc.

The remaining sections were contributed by students.

11 Dimension and Boundary by Daniel Ingebretson

In this section, we will give a short proof that the boundary of a δ hyperbolic group in the sense of
Gromov has finite Hausdorff dimension with respect to the visual metric.

11.1 Hausdorff dimension

Here we review some of the basics of Hausdorff dimension for a metric space (X, d).

Definition 11.1. Let s ≥ 0 and ε > 0 be real numbers. The s-dimensional Hausdorff measure of
X with respect to ε is denoted by Hs

ε (X), and is given by the following formula.

Hs
ε (X) = inf

{ ∞∑
i=0

diam(Ui)
s : {Ui} open cover of X with diam {Ui} < ε

}

Clearly Hs
ε decreases as ε decreases, so the following limits exists, although it may be (and often

is) 0 or ∞.
Hs(X) = lim

ε→0
Hs
ε (X)

This limit is called the s-dimensional Hausdorff measure of X and induces an outer measure on X.
If X = Rn, this measure generalizes the product Lebesgue measure on Rn. Specifically, for A ⊂ Rn,
Hn(A) is a constant multiple of the Lebesgue measure of A.

Fact 11.2. If s, t, u ∈ R+ such that s < t < u and 0 < Ht(X) < ∞, then Hu(X) = 0 and
Hs(X) =∞

This implies that there is a critical value of s at which Hs(X) jumps from ∞ to 0. At this
point, Hs(X) maybe 0,∞, or finite. This critical value is called the Hausdorff dimension dimH(X)
of X and is given by

dimH(X) = inf{s ≥ 0 : Hs(X) = 0} = sup{s ≥ 0 : Hs(X) =∞},

where we observe the convention that inf ∅ = 0.
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11.2 Boundary of hyperbolic space

Let (X, d) be a geodesic δ hyperbolic metric space. Let R(X) denote the set of all geodesic rays
in X. We say two rays γ and ξ are asymptotically equivalent (and write γ ∼ ξ) if the Hausdorff
distance between their images is finite. A better (and equivalent) way of saying this is that

sup
0≤t<∞

d(γ(t), ξ(t)) <∞.

The boundary ∂X is defined to be R(X)/ ∼.

It is also convenient to view the boundary as a limit of equivalence classes of sequences. Let
S(X) be the set of all sequences xn ∈ X that diverge to infinity, that is, satisfying the requirement

lim inf
m,n→∞

(xn|xm)x0 =∞.

for any x0 ∈ X. We say two such sequences xn, ym are asymptotically equivalent (and write xn ∼ ym
if they satisfy the following identity.

lim inf
m,n→∞

(xn|ym)x0 =∞

The set of all equivalence classes of sequences diverging to infinity is denoted by S(X)/ ∼. An easy
way to manufacture such sequences is to evaluate a unit-speed geodesic ray at integer points:

[γ] 7→ [{γ(n)}∞n=0]

Similarly, we may order a sequence of points diverging to infinity and connect them pairwise by
geodesics. This is asymptotic to a geodesic ray diverging to infinity. In this way, we establish
a bijective correspondence between R(X)/ ∼ and S(X)/ ∼. We will use these interchangeably
to describe the boundary ∂X. Particularly, the topology on ∂X is the topology of pointwise
convergence (to infinity) of equivalence classes of sequences in S(X)/ ∼.

11.3 Visual boundary

To compute the Hausdorff dimension of ∂X, it is necessary to define a metric on ∂X that is
compatible with the topology introduced above. First, let’s extend the notion of Gromov product
to the boundary ∂X. We will use the notation x∞ to refer to an element of ∂X, and interchangeably
describe x∞ as an equivalence class of the image of a geodesic ray, or of a sequence diverging to
infinity.

Definition 11.3. If x∞ and y∞ are elements of ∂X, we define their Gromov product with respect
to any basepoint x0 ∈ X to be

(x∞|y∞)x0 = sup
xn→x∞
ym→y∞

lim inf
m,n→∞

(xn|ym)x0 .

Since the previous definitions of the boundary were independent of basepoint, so is the above
Gromov product. For that reason we will hereafter suppress the basepoint x0 that appears in the
above definition.
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Now let ε > 0; we will refer to this as the visual parameter. We make the following definition.

ρε(x∞, y∞) = e−ε(x∞|y∞)

Note that ρε enjoys many properties of a metric- it is clearly symmetric with respect to x∞ and
y∞, and since x∞ = y∞ if and only if (x∞|y∞) = ∞ (by Definition 3.1 and the description of ∂X
via S(X) in the previous section), we have ρε(x∞, y∞) = 0 if and only if x∞ = y∞. However, ρε has
the defect of failing the triangle inequality. Note that the extension to ∂X of the Gromov product
inherits the usual identity

(x∞|y∞) ≥ min{(x∞|z∞), (z∞|y∞)} − δ,

which implies that ρε satisfies the following quasi-ultrametric property.

ρε(x∞, y∞) ≤ e−εδ max{ρε(x∞, z∞), ρε(z∞, y∞)}

To remedy this situation, we will define the visual metric dε as the infimum over all chains of
distances ρε joining two points on the boundary. In this way we trade simplicity for the necessary
triangle inequality. Let’s make this precise:

Definition 11.4. If x∞, y∞ ∈ ∂X, define the visual metric dε by the following formula.

dε(x∞, y∞) = inf

{
N−1∑
i=0

ρε(x
i
∞, x

i+1
∞ ) : xi∞ ∈ ∂X, x0

∞ = x∞ and xN∞ = y∞

}

It can be shown that for any ε > 0, dε induces the topology on ∂X by the following inequalities.

(3− 2e−ε)ρε(x∞, y∞) ≤ dε(x∞, y∞) ≤ ρε(x∞, y∞)

Furthermore, ∂X is compact in the metric dε.

11.4 Dimension of the boundary

The previous discussion applies to any δ hyperbolic geodesic metric space. Now we will apply these
results to a δ hyperbolic group G that is generated by a finite symmetric set Γ. Let S(n) be the
sphere of radius n in the Cayley graph of G.

S(n) = {g ∈ G : d(e, g) = n}

Notice that #S(n) ≤ (#Γ)n, with equality if and only if G is a free group. Cover S(n) by the
collection of open unit balls B(n) = {Bn

1 (z) : z ∈ Zn}, where z ∈ Zn ⊂ S(n), and this Zn is chosen
so that B(n) has minimal cardinality with respect to the covering property. Putting a unit ball
around each element of S(n) will certainly result in a cover of S(n), so because we are defining
B(n) to have minimal cardinality, we obtain #Zn ≤ (#Γ)n. We will define an open cover of the
boundary U(n) in terms of B(n) in the following way. For each n ∈ N and z ∈ Zn, define Unz ⊂ ∂X
as follows.

Unz = {x∞ ∈ ∂G : there exists γ representing x∞ such that im γ ∩Bn
1 (z) 6= ∅}

Then define U(n) = {Unz : z ∈ Zn}. Notice here we are using the description of ∂G as equivalence
classes of rays in R(G).

To bound the Hausdorff dimension of ∂G, we will need the following argument.
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Lemma 11.5. If x∞, y∞ ∈ Unz , then (x∞|y∞) ≥ n− 3.

Proof. Since x∞, y∞ ∈ Unz , then there exist rays γ and ξ representing x∞ and y∞, respectively, such
that im γ ∩Bn

1 (z) 6= ∅ and im ξ ∩Bn
1 (z) 6= ∅. Reparametrize these rays by arc length if necessary,

so that there exist s and t such that γ(s), ξ(t) ∈ Bn
1 (z). Furthermore, since the diameter of the

unit ball Bn
1 (z) is 2, we know that n− 2 ≤ s, t ≤ n+ 2.

d(γ(n+ i), ξ(n+ j)) ≤ d(γ(n+ i), γ(s)) + d(γ(s), ξ(t)) + d(ξ(t), ξ(n+ j))

≤ (i+ 2) + 2 + (j + 2)

= i+ j + 6

Then using the definition of the Gromov product with respect to some basepoint x0, we have

(γ(n+ i)|ξ(n+ j))x0 =
1

2
[d(γ(n+ i), x0) + d(ξ(n+ j), x0)− d(γ(n+ i), γ(n+ j))]

≥ 1

2
[(n+ i) + (n+ j)− (i+ j + 6)]

=
1

2
(2n− 6)

= n− 3.

Taking i, j →∞ we obtain the desired inequality.

Using the fact that dε(x∞, y∞) ≤ ρε(x∞, y∞), and the above computation, we know that if
x∞, y∞ ∈ Unz ,

dε(x∞, y∞) = e−ε(x∞|y∞) ≤ e−ε(n−3).

This demonstrates that the diameter of each Unz is less than eε(3−n) in the visual metric dε.

Proposition 11.6. Let G be a δ hyperbolic group generated by finite symmetric Γ. Suppose ε > 0
is a visual parameter for the metric inducing the topology of ∂G. Then the Hausdorff dimension of

∂G in this metric is bounded above by
log #Γ

ε
.

Proof. Using the cover U(n) = {U zn : z ∈ Zn} defined above, we have∑
z∈Zn

diam(Unz )s ≤ #Zne
ε(3−n)s

≤ (#Γ)neε(3−n)s

= e3sεe(log #Γ−sε)n.

Observe that this quantity goes to 0 as n→∞ if and only if s > log #Γ
ε . Since dimH(∂G) = inf{s ≥

0 : Hs(∂G) = 0}, we have dimH(∂G) ≤ log #Γ

ε
.

In the above argument, the only group structure that was used was the fact that the number
of unit balls needed to cover the sphere of radius n in the Cayley graph of G was exponential
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in n. The above arguments applies to more general δ hyperbolic metric spaces (that includes
such groups) that are said to grow at most exponentially. Specifically, for each fixed x0 ∈ X, let
S(r) = {x ∈ X : d(x0, x) = r}. If S(r) contains a finite set Zr such that {B1(z)}z∈Zr covers S(r)
and #Zr ∼ er, then mutatis mutandis, the above arguments show that the visual boundary of X
will have finite Hausdorff dimension. Examples of metric spaces that grow at most exponentially
include simply connected complete Riemannian manifolds of negative sectional curvature.
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