BASIC PROOF WRITING PROBLEMS MATH 320 8/25/14

- (1) Let A, B, C, be sets such that $A \subseteq B$, $B \subseteq C$, and $C \subseteq A$. Prove that A = B = C.
- (2) Let $f: A \to B$ and $g: B \to C$.
 - (a) Suppose f and g are both one-to-one. Prove $g \circ f$ is one-to-one.
 - (b) Suppose f and g are both onto. Prove $g \circ f$ is onto.
 - (c) Give an example where $g \circ f$ is one-to-one, but g is not one-to-one.
- (3) Let $f: A \to A$, and let f^n denote the composition of f with itself *n*-times. Suppose that for some n, f^n is the identity function on A, that is $f^n(a) = a$ for all $a \in A$. Prove that f is one-to-one and onto.
- (4) Use induction to prove that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- (5) Given a list of numbers, suppose you can perform moves where you swap the positions of any two consecutive numbers. For example, $(1, 2, 3, 4, 5) \rightarrow (1, 2, 4, 3, 5)$ would be a valid move. Prove that you can always perform a sequence of such moves to get from (1, 2, ..., n) to (n, n - 1, ..., 1).