
GENERIC DIFFERENTIAL EQUATIONS ARE STRONGLY MINIMAL

MATTHEW DEVILBISS AND JAMES FREITAG

ABSTRACT. In this manuscript we develop a new technique for showing that a nonlinear algebraic
differential equation is strongly minimal based on the recently developed notion of the degree of
nonminimality of Freitag and Moosa. Our techniques are sufficient to show that generic order h
differential equations with nonconstant coefficients are strongly minimal, answering a question of
Poizat (1980).

1. INTRODUCTION

Let f(x) = 0 be an algebraic differential equation of in a single indeterminant xwith coefficients
in a differential field (K, δ) of characteristic zero. In this manuscript, we are particularly interested
in the case that f(x) is nonlinear and of order ≥ 2. The central property we study is the strong
minimality of the solution set of f(x) = 0. The notion of strong minimality comes from model
theory; in general, a definable setX is strongly minimal if every definable subset is finite or cofinite,
uniformly in parameters. In our setting, we are interested in the situation X = {x ∈ U | f(x) = 0}
is the set of solutions to an algebraic differential equation where U is a differentially closed field.
Let h be the order of f – that is, the highest derivative of x appearing in f . The strong minimality
of X is equivalent to:

• f is irreducible as a (multivariate) polynomial overKalg and given any a ∈ U with f(a) =
0, and any differential field K1 ≤ U with K ≤ K1, the transcendence degree of K1〈a〉
over K1 is either 0 or h.

Strong minimality is an intensively studied property of definable sets, and has been at the center
of many important number theoretic applications of model theory and differential algebra [?, ?, ?,
?]. Despite this, there are relatively few (classes of) equations which have been shown to satisfy
the property - so few, that we are in fact able to give below what we believe to be a (at the moment)
comprehensive list of those equations which have been shown to be strongly minimal. Showing
the strong minimality of a given equation is itself sometimes a motivational goal, but often it is
an important piece of a more elaborate application, since it allows one to use powerful tools from
geometric stability theory. The existing strategies to prove strong minimality are widely disparate
but apply only to very special cases. In roughly chronological order:
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(1) Poizat established that the set of non-constant solutions of x · x′′ = x′ is strongly minimal
(see [?] for an explanation). Poizat’s arguments were generalized by Brestovski [?] to a
class of very specifically chosen order two differential equations with constant coefficients.

(2) Hrushovski’s work [?] around the Mordell-Lang conjecture proved the strong minimality of
Manin kernels of nonisotrivial simple abelian varieties. It uses specific properties of abelian
varieties as well as model-theoretic techniques around modularity of strongly minimal sets.

(3) Nagloo and Pillay [?] show that results of the Japanese school of differential algebra
[?, ?, ?, ?, ?, ?, ?, ?, ?] imply that Painlevé equations with generic coefficients are strongly
minimal. The techniques employed are differential algebraic and valuation theoretic, rely-
ing on very specific properties of the equations.

(4) Work of Freitag and Scanlon [?] for the differential equation satisfied by the j-function
ultimately relies on point-counting and o-minimality via the Pila-Wilkie theorem as applied
in [?, ?]; the argument there is very specific to the third order nonlinear differential equation
satisfied by the j-function. Later, Aslanyan [?] produced another proof, ultimately relying
on similar (stronger) inputs of [?].

(5) Casale, Freitag and Nagloo [?] show that equations satisfied by Γ-automorphic functions
on the upper half-plane for Γ a Fuchsian group of the first kind are strongly minimal. The
arguments use differential galois theory with some additional analytic geometry, and the
techniques again are very specific to the third order equations of this specific form.

(6) Jaoui shows that generic planar vector fields over the constants give rise to strongly minimal
order two differential varieties [?]. The techniques rely on various sophisticated techniques
including o-minimality and results from foliation theory, some of which are particular to
the specific class of equations considered.

(7) Blázquez-Sanz, Casale, Freitag, and Nagloo [?] prove the strong minimality of certain
general Schwarzian differential equations.

We should also mention that strong minimality in this context was perhaps first studied by
Painlevé using different language in [?]. Painlevé conjectured the strong minimality of various
classes of differential equations, where the notion is equivalent to Umemura’s Condition (J). See
[?] for a discussion of these connections. We believe that the above list, together with a specific
example of [?] constitutes the entire list of differential equations (of order at least two) which have
been proven to be strongly minimal. Most of the techniques in the above listed results apply only
to specific equations or narrow classes of equations and rely on specific properties of those classes
in proving strong minimality. Our goal in this article will be to develop a rather more general
approach which applies widely to equations with nonconstant coefficients.

1.1. Our approach and results. Let f ∈ k{x}. Generally speaking, when attempting to prove
strong minimality1 of some differential variety

V = Z(f) = {a ∈ U | f(a) = 0},

there are two phenomena which make the task difficult:

1Equivalently, there are no infinite differential subvarieties.
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(1) There is no a priori upper bound on the degree of the differential polynomials which define
a differential subvariety of V .

(2) The differential polynomials used to define a differential subvariety might (necessarily)
have coefficients from a differential field extension of the field of k.

There are structure theorems related to (1) but only in special cases. See for instance [?] when the
subvarieties are co-order one in V . Controlling the field extension in (2) is a key step in various
recent works [?, ?, ?]. This is most often accomplished by noting that stable embeddedness of
the generic type of V implies that the generators of the field of definition of a forking extension
can be assumed to themselves realize the generic type of V – see explanations in [?, ?]. In recent
work, Freitag and Moosa [?] introduce a new invariant of a type, which more closely controls the
structure over which the forking extension of a type is defined:

Definition 1.1. Suppose p ∈ S(A) is a stationary type of U -rank > 1. By the degree of non-
minimality of p, denoted by nmdeg(p), we mean the least positive integer k such that for some
sequence of realizations of p of length k, say (a1, . . . , ak), p has a nonalgebraic forking extension
over A, a1, . . . , ak. If U(p) ≤ 1 then we set nmdeg(p) = 0.

In the theory of differentially closed fields of characteristic zero, Freitag and Moosa [?] give an
upper bound for the degree of nonminimality in terms of Morley rank:

Theorem 1.2. Let p ∈ S(k) have finite rank. Then nmdeg(p) ≤ RU(p) + 1.

Let a |= p, we will call the transcendence degree of the differential field k〈a〉/k the order of p.
When p is the generic type of a differential variety V , we also call this the order of V . The order
of p is an upper bound for the Morley rank of p. The Morley rank of p is a bound for the Lascar
rank of p. For proofs of these facts, see [?]. It follows that if the type p of a generic solution of
an order n differential equation over k has a nonalgebraic forking extension over some differential
field extension, then already p has such a forking extension over k〈a1, . . . , an+1〉 where the ai are
from a Morley sequence in the type of p over k. This consequence of Theorem 1.2 will be essential
to our approach to handling issue (2) above.

Our approach to issue (1) follows a familiar general strategy of reducing certain problems for
nonlinear differential equations to related problems for associated linear differential equations. For
instance, [?] applies a strategy of this nature to establish results around the Zilber trichotomy, while
[?, ?] use this strategy to establish irreducibility of solutions to automorphic and Painlevé equations
using certain associated Riccati equations. Our technique fits into this general framework and relies
on Kolchin’s differential tangent space, which will provide the linear equations associated with the
original nonlinear differential variety V . Our approach to the associated linear equations has been
under development in the thesis of Wolf [?] and the forthcoming thesis of DeVilbiss which gives an
approach to calculating the Lascar rank of underdetermined systems of linear differential equations.

Our main theorem is:

Theorem 1.3. Let f(x) be a generic differential polynomial of order h > 1 and degree d. Let p be
the type of a generic solution to Z(f). If d ≥ 2 · (nmdeg(p) + 1), then Z(f) is strongly minimal.
In particular, if d ≥ 2 · (h+ 2), then Z(f) is strongly minimal.

This answers Question 7 of [?] for sufficiently large degree, any order, and nonconstant coeffi-
cients. As described above, Jaoui [?] has recently answered the order two case of Question 7 of [?]
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for constant coefficients. In this paper, our techniques are applied to equations with differentially
transcendental coefficients, but this is not an inherent restriction of the methods. For instance,
in forthcoming work using these techniques joint with Casale and Nagloo, we give a fundamen-
tally new proof of the main theorem of [?], proving that the equation satisfied by the j-function is
strongly minimal. There we also establish new results for several other equations of Schwarzian
type.

1.2. Organization. In section 2, we set up the notation and background results we require. Section
3 gives a new sufficient condition for the strong minimality of a differential variety. Section 4
applies this condition to show that generic differential equations are strongly minimal. Section 5
shows how one can establish a weaker condition than strong minimality in a more computationally
straightforward manner and gives some open problems.

2. NOTATION

Let U be a countably saturated differentially closed field of characteristic zero. All of the fields
we consider will be subfields of U . An affine differential variety is the zero set of a (finite) system
of differential polynomial equations over (a finitely generated subfield of) U . If X is a differential
variety, we denote the differential tangent space of X at point a ∈ X by T∆

a (X) as defined in [?,
pg 198].

Let ā ∈ U , and F a differential subfield of U . Then ω(ā/F ) denotes the Kolchin polynomial of
ā over F (see [?, Theorem 6, pg 115]). WhenX is a differential variety, that is, a closed irreducible
set in the Kolchin topology, ω(X/F ) := ω(ā/F ) where ā is a generic point on X over F .

Let (y1, . . . yn) be a finite set of differential indeterminants over U and let Θ denote the set of
derivative operators on U . Since we are interested in differential fields with a single derivation,
Θ = {δk : k ≥ 0}. A ranking on (y1, . . . yn) is a total ordering on the derivatives {θyj : θ ∈
Θ, 1 ≤ j ≤ n} such that for all such derivatives u, v, and all θ ∈ Θ, we have

u ≤ θu, u ≤ v ⇒ θu ≤ θv.

A ranking is orderly if whenever the order of θ1 is lower than the order of θ2, we have θ1yi < θ2yj
for any i, j. An elimination ranking is a ranking in which yi < yj implies θ1yi < θ2yj for any
θ1, θ2 ∈ Θ. For a δ-polynomial f(y1, . . . , yn), the highest ranking θyj appearing in f is the leader
of f , denoted uf . If uf has degree d in f , we can rewrite f as a polynomial in uf , f =

∑d
i=0 Iiu

i
f ,

where the initial of f , Id, is not zero. The separant of f is the formal derivative ∂f
∂uf

. A detailed
treatment of these definitions can be found in [?, pg 75].

3. A GENERAL SUFFICIENT CRITERION FOR STRONG MINIMALITY

Let f(x) be an order n ≥ 1 non-linear differential polynomial in one variable without a constant
term. Let ᾱ denote the coefficients of f and let α0 be differentially transcendental over ᾱ. Let V
be the differential variety corresponding to f(x) = α0. Our goal in this section is to find sufficient
conditions under which such a variety V is strongly minimal. The following lemma is a corollary
of [?, Theorem 1, pg 199].
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Lemma 3.1. Let F be a differential field, X a differential variety defined over F , and a a generic
point of X over F . Then ω (X/F ) = ω

(
T∆
a (X)/F 〈a〉

)
.

Our next proposition shows that when ᾱ, α0 are independent and differentially transcendental,
there are no proper subvarieties of V which are defined over the field Q〈ᾱ, α0〉. Though the ar-
gument is simple, an elaboration of the technique in the proof will be used in the more difficult
general case where one extends the field of coefficients.

Proposition 3.2. Let f and V be as above. Then V has no infinite subvarieties that are defined
over Q〈ᾱ, α0〉.

Proof. Suppose towards a contradiction that W is an infinite proper subvariety of V defined over
Q〈ᾱ, α0〉. ThenW is given by some positive order δ-polynomial g(x) ∈ Q〈ᾱ, α0〉{x}. By clearing
the denominators of α0, we can write g(x, α0) ∈ Q〈ᾱ〉{x, α0}. For ease of notation, let k = Q〈ᾱ〉.

Let Vy be the δ-variety given by f(x) = y and let Wy be given by g(x, y) = 0 so that each
instance of α0 is replaced with the variable y. These varieties are now defined by δ-polynomials in
two variables with coefficients in k and Wy ( Vy. Let a = (a1, a2) be a generic point of Wy over
k. Since α0 is differentially transcendental over ᾱ the locus of y over k is A1, so it follows that
Wy is an infinite rank (proper) subvariety of Vy. Consider the orderly ranking with x ranked higher
than y.

We claim that the generic point a of Wy lies outside the locus on Vy where the separant of
f(x) − y vanishes (we will call this the singular locus of Vy). This follows because the locus
of the separant of f inside of Vy is finite rank (to see this, note that the separant is a differential
polynomial in k{x} so its generic solution has x-coordinate differentially algebraic over k). From
the fact that a lies outside the singular locus of Vy and the singular locus of Wy (since a is generic
on Wy), it follows that the Kolchin polynomials of T∆

a (Wy) and T∆
a (Vy) are equal to Wy and Vy,

respectively, and so T∆
a (Wy) ( T∆

a (Vy).
For 0 ≤ i ≤ n, let

βi(x) =
∂f

∂x(i)
(x)

denote the formal derivative of f with respect to the ith derivative of x. Using this notation, the
differential tangent space T∆

a (Vy) is the set of (w, z) satisfying the linear differential equation

z =

n∑
i=0

βi(a1)w(i).

From this equation, we can see that z is determined by our choice ofw, butw may be chosen freely.
This gives a definable bijection between T∆

a (Vy) and A1. Further, it follows that T∆
a (Vy) has no

infinite rank subspaces over k〈a〉, since if it did, we could consider the image of this subvariety
under the definable bijection to A1. However, A1 has no infinite rank subsets, so the image must
have finite rank. Therefore, ω(T∆

a (Wy)/k〈a〉) is finite, a contradiction. �

Remark 3.3. The previous result shows that under very general circumstances, for instance when
any single coefficient is differentially transcendental over the others, the equation has no subvari-
eties over the coefficients of the equation itself. We state the following result, but omit its proof, as
it is analogous to the previous proof and will not be used later in this paper.
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Proposition 3.4. Let f be a differential polynomial in one variable and V the zero set of f . Let
ā denote the tuple of coefficients in f . If ā has some element a1 such that a1 is differentially
transcendental over Q〈ā−1〉,2 then V has no differential subvarieties over Q〈ā〉 except perhaps the
zero set given by the monomial of which a1 is a coefficient.

The previous proposition works in such generality, in part because we have restricted the co-
efficient field. In various situations, identifying differential subvarieties defined over the field of
definition of a variety V is a much easier problem than identifying differential subvarieties of V
defined over differential field extensions. For instance, in [?], Nishioka shows that the equations
corresponding to automorphic functions of dense subgroups of SL2 have to differential subvari-
eties over C. In the special case of genus zero Fuchsian functions, a much more difficult argument
was required to extend the result to differential subvarieties over differential field extensions [?],
answering a long-standing open problem of Painlevé.

There is one general purpose model theoretic tool which restricts the field extensions one needs
to consider. We will use a principle in stability theory, generally related to stable embeddedness
(see for instance see [?] where this general type of result is referred to as the Shelah reflection
principle). For the following result see Lemma 2.28 [?]:

Lemma 3.5. In a stable theory, let A ⊆ B and p ∈ S(B) which forks over A. Then there is an
indiscernible sequence (ai : i ∈ N) in p, such that there is a finite initial segment {a1, . . . , ad}
such that the canonical base of p is contained in the definable closure of A, a1, . . . , ad.

Let f and V be as before and let d ∈ N. Consider V d, the set of d-tuples so that each coordinate
xi satisfies f(xi) = α0. As before, we can replace each instance of α0 with a new variable y,
resulting in a differential variety (V d)y defined by the system of equations:

f(x1) = y
f(x2) = y

...
f(xd) = y

Proposition 3.6. Suppose that for all d ∈ N and indiscernible sequences ā in the generic type of
V , the differential tangent space T∆

ā

(
(V d)y

)
has no definable proper infinite rank subspaces over

Q〈ᾱ, ā〉. Then V is strongly minimal.

Proof. Suppose V is not strongly minimal and let p(x) ∈ S1 (Q〈ᾱ, α0〉) be the type of a generic
solution of V . By Proposition 3.2, V does not have any infinite subvarieties defined over Q〈ᾱ, α0〉,
so p has a forking extension q over a differential field extension K > Q〈ᾱ, α0〉. By Lemma
3.5, there is some finite d and a Morley sequence (a1, . . . , ad) for q such that (a1, . . . , ad) is
not Q〈ᾱ, α0〉-independent. Consider the minimal such d. Then tp (a1/Q〈ᾱ, α0, a2, a3, . . . , ad〉)
forks over Q〈ᾱ, α0〉. Since these are types over differential fields, this happens exactly when the
Kolchin polynomial of (a1/Q〈ᾱ, α0, a2, a3, . . . , ad〉) is strictly less than the Kolchin polynomial
of (a1/Q〈ᾱ, α0〉).

2By ā−1, we mean the tuple ā excluding a1.
6



Thus, there is a differential polynomial g(x) ∈ Q〈ᾱ, α0, a2, . . . , ad〉{x} so that g(a1) = 0 and g
has order strictly less than the order of f . By clearing denominators, we can write g(x1, . . . , xd) ∈
Q〈ᾱ, α0〉{x1, . . . , xd} such that g(a1, . . . , ad) = 0. LetU ⊂ V d be the vanishing set of g(x1, . . . , xd).
Just as with V , we can replace α0 with a new variable y after clearing denominators again,
giving a Q〈ᾱ〉-polynomial g(x1, . . . , xd, y) and the corresponding variety Uy ⊂ (V d)y. The
Kolchin polynomial ω (Uy/Q〈ᾱ〉) is nonconstant. Let ā = (a1, . . . , ad, α0) and notice that ā is
a generic point of Uy over Q〈α〉. By Lemma 3.1, the Kolchin polynomial of the differential tan-
gent space ω

(
T∆
ā (Uy)/Q〈ᾱ, ā〉

)
is also nonconstant, so T∆

ā ((V d)y) has an infinite rank subspace
over Q〈ᾱ,ā〉, a contradiction to our assumption. �

Remark 3.7. Using Lemma 3.5 together with Proposition 3.6 gives a strategy for establishing the
strong minimality of nonlinear differential equations with generic coefficients, but only if one can
verify the hypothesis of Proposition 3.6. A priori, this looks quite hard since it would require
the analysis of systems of linear differential equations in n variables for all n ∈ N. This may be
possible via a clever inductive argument for specially selected classes of equations, but Theorem
1.2 gives a bound for the number of variables we need to consider.

Theorem 3.8. Let p be the generic type of V . Suppose that for d ≤ nmdeg p+1 ≤ ord(V )+2 and
any indiscernible sequence ā = (a1, . . . , ad) in the generic type of V , the differential tangent space
T∆
ā

(
(V d)y

)
has no definable proper infinite rank subspaces over Q〈ᾱ, ā〉. Then V is strongly

minimal.

Proof. By Proposition 3.2, there are no subvarieties of V defined over the differential field gener-
ated by the coefficients of f . So, we need only consider forking extensions of the generic type of
V . By Theorem 1.2, if there is an infinite proper differential subvariety of V , then it is defined over
(the algebraic closure of) a Morley sequence of length at most nmdeg(p) which is at most h + 1.
Thus, there is a proper subvariety of W ⊂ V d which surjects onto the first d− 1 coordinates such
that the fiber over a generic point in the first d− 1 coordinates is a forking extension of the generic
type of V . But then by the argument of Proposition 3.6, there is a definable proper infinite rank
subspace of T∆

ā

(
(V d)y

)
over Q〈ᾱ, ā〉. �

4. STRONG MINIMALITY OF GENERIC EQUATIONS

4.1. A first example.
Theorem 4.1. Let X be the differential variety given by

(1) x′′ +
n∑
i=1

αix
i = α

for some n ≥ 8, where (α, α0, . . . , αn) is a tuple of independent differential transcendentals over
Q. Then X is strongly minimal.

Proof. To show that equation 1 is strongly minimal, by the explanation following Theorem 1.2, we
need only show that given any solutions a1, . . . , a4 to equation 1, we cannot have that the transcen-
dence degree of Q〈a1, α, α1, . . . , αn, a2, . . . , a4〉 over Q〈α, α1, . . . , αn, a2, . . . , a4〉 is one. With-
out loss of generality, assume that a1, . . . , a4 are algebraically independent over Q〈α, α1, . . . , αn〉
(that is, they satisfy no polynomial relation over Q〈α, α1, . . . , αn〉).
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Observe that the differential tangent space T∆
ā

(
(X4)y

)
after eliminating y is given by the sys-

tem: 
u′′0 +

(∑n
i=1 ia

i−1
1 αi

)
u0 = v′′0 +

(∑n
i=1 ia

i−1
2 αi

)
v0

u′′0 +
(∑n

i=1 ia
i−1
1 αi

)
u0 = w′′0 +

(∑n
i=1 ia

i−1
3 αi

)
w0

u′′0 +
(∑n

i=1 ia
i−1
1 αi

)
u0 = z′′0 +

(∑n
i=1 ia

i−1
4 αi

)
z0

For j = 1, . . . , 4, we let βj =
∑n

i=0 ia
i−1
j αi. We argue that β1, . . . , β4 are independent differential

transcendentals. Note that
nan−1

1 (n− 1)an−2
1 . . . 2a1 1

nan−1
2 (n− 1)an−2

2 . . . 2a2 1
nan−1

3 (n− 1)an−2
3 . . . 2a3 1

nan−1
4 (n− 1)an−2

4 . . . 2a4 1




αn
αn−1

...
α1

 =


β1

β2

β3

β4


We claim that any four columns of the matrix of ai’s are linearly independent. To see this,

note that if not then the vanishing of the corresponding determinant shows that there is a nontrivial
polynomial relation which holds of a1, . . . , a4.

This contradicts the fact that a1 satisfies an order one equation over a2, . . . , a4. By the inde-
pendence of α1, . . . , αn there are at least four of the αi which are independent differential tran-
scendentals over the other αi and a1, . . . , a4. Without loss of generality, assume α1, . . . , α4 are
independent differential transcendentals over Q〈α5, . . . , αn, a1, . . . , a4〉. Then since the last four
columns of the above matrix of ai are linearly independent, it follows that α1, . . . , α4 are interal-
gebraic with β1, . . . , β4 over Q〈a1, . . . , a4, α5, . . . , αn〉. It follows that β1, . . . , β4 are independent
differential transcendentals over Q〈a1, . . . , a4, α5, . . . , αn〉.

Lemma 4.2. A linear system of the form

(2)

 u′′0 + β1u0 = v′′0 + β2v0

u′′0 + β1u0 = w′′0 + β3w0

u′′0 + β1u0 = z′′0 + β4z0

with β1, . . . , β4 independent differential transcendentals has no infinite rank subvarieties.

Proof. We will prove that this system has no infinite rank subvarieties by proving that the solution
set is in definable bijection with A1. This is constructed by composing a series of linear substitu-
tions.

First, we substitute u1 for u0 where u0 = u1 + v0. This reduces the order of v0 in the top
equation, resulting in the system u′′1 + β1u1 = (β2 − β1)v0

u′′1 + β1u1 + v′′0 + β1v0 = w′′0 + β3w0

u′′1 + β1u1 + v′′0 + β1v0 = z′′0 + β4z0

To reduce the order v0 in the lower equations we substitute w1, z1 for w0, z0 where w0 = w1 +
v0, z0 = z1 + v0. Then we have u′′1 + β1u1 = (β2 − β1)v0

u′′1 + β1u1 + (β1 − β3)v0 = w′′1 + β3w1

u′′1 + β1u1 + (β1 − β4)v0 = z′′1 + β4z1
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Solving the top equation for v0 in terms of u1 and plugging this in for v0 allows us to eliminate v0

from lower equations, resulting in the system{
A2,0u

′′
1 +A0,0u1 = w′′1 + β3w1

C2,0u
′′
1 + C0,0u1 = z′′1 + β4z1

where (after some simplification)

A2,0 :=
β2 − β3

β2 − β1
, A0,0 := β1A2,0

C2,0 :=
β2 − β4

β2 − β1
, C0,0 := β1C2,0.

We again reduce the order of the variable in the top equation by substituting u2 for u1 defined by
u1 = u2 + 1

A2,0
w1 resulting in the system{
A2,0u

′′
2 +A0,0u2 = B1,1w

′
1 +B0,1w1

C2,0u
′′
2 + C0,0u2 +D2,1v

′′
1 +D1,1v

′
1 +D0,1v1 = z′′1 + β4z1

where

B1,1 := −2A2,0

(
1

A2,0

)′
, B0,1 := β3 −A2,0

(
1

A2,0

)′′
− A0,0

A2,0

D2,1 :=
C2,0

A2,0
, D1,1 := 2C2,0

(
1

A2,0

)′
, D0,1 := C2,0

(
1

A2,0

)′′
+

C0,0

A2,0
.

We next reduce the order of w1 in lower equations with the substitution z2 for z1 defined by z1 =
z2 +D2,1w1. Now we have the system{

A2,0u
′′
2 +A0,0u2 = B1,1w

′
1 +B0,1w1

C2,0u
′′
2 + C0,0u2 + E1,1w

′
1 + E0,1w1 = z′′2 + β4z2

where
E1,1 := D1,1 −D′2,1, E0,1 := D0,1 −D′′2,1 − β4D2,1.

Next we reduce the order of u2 in the top equation by substitutingw2 forw1 withw1 = w2+
A2,0

B1,1
u′2

resulting in the system{
A1,1u

′
2 +A0,1u2 = B1,1w

′
2 +B0,1w2

C2,1u
′′
2 + C1,1u

′
2 + C0,1u2 + E1,1w

′
2 + E0,1w2 = z′′2 + β4z2

where

A1,1 := −B1,1

(
A2,0

B1,1

)′
−B0,1

A2,0

B1,1
, A0,1 := A0,0

C2,1 := C2,0 + E1,1
A2,0

B1,1
, C1,1 := E1,1

(
A2,0

B1,1

)′
+ E0,1

A2,0

B1,1
, C0,1 := C0,0.

The reduction in order of the top equation continues with the replacement of u2 with u3 given by
u2 = u3 +

B1,1

A1,1
w2. This results in the system{

A1,1u
′
3 +A0,1u3 = B0,2w2

C2,1u
′′
3 + C1,1u

′
3 + C0,1u3 +D2,2w

′′
2 +D1,2w

′
2 +D0,2w2 = z′′2 + β4z2
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where

B0,2 := B0,1 −A1,1

(
B1,1

A1,1

)′
−A0,1

B1,1

A1,1

D2,2 := C2,1
B1,1

A1,1
, D1,2 := E1,1 + 2C2,1

(
B1,1

A1,1

)′
+ C1,1

B1,1

A1,1
,

D0,2 := E0,1 + C2,1

(
B1,1

A1,1

)′′
+ C1,1

(
B1,1

A1,1

)′
+ C0,1

B1,1

A1,1
.

Next we replace z2 with z3 given by z2 = z3 +D2,2w2 to arrive at{
A1,1u

′
3 +A0,1u3 = B0,2w2

C2,1u
′′
3 + C1,1u

′
3 + C0,1u3 + E1,2w

′
2 + E0,2w2 = z′′3 + β4z3

where
E1,2 := D1,2 −D′2,2, E0,2 := D0,2 −D′′2,2 − β4D2,2.

Now we can solve the top equation for w2 in terms of u3 and plug the resulting expression into the
lower equations:

C2,2u
′′
3 + C1,2u

′
3 + C0,2u3 = z′′3 + β4z3

where
C2,2 := C2,1 + E1,2

A1,1

B0,2
,

C1,2 := C1,1 + E1,2

(
A1,1

B0,2

)′
+ E0,2

A1,1

B0,2
+ E1,2

A0,2

B0,2
,

C0,2 := C0,1 + E1,2

(
A0,1

B0,2

)′
+ E0,2

A0,1

B0,2
.

Next we perform analagous substitutions to eliminate z3 from the top equation, beginning with
substituting u4 for u3 defined by u3 = u4 + 1

C2,2
z3, so we have{

C2,2u
′′
4 + C1,2u

′
4 + C0,2u4 = F1,1z

′
3 + F0,1z3

where

F1,1 := −2C2,2

(
1

C2,2

)′
− C1,2

C2,2
, F0,1 := β4 − C2,2

(
1

C2,2

)′′
− C1,2

(
1

C2,2

)′
− C0,2

C2,2
.

Next, substitute z4 for z3 where z3 = z4 +
C2,2

F1,1
u′4. This will result in the equation

C1,3u
′
4 + C0,3u4 = F1,1z

′
4 + F0,1z4

where

C1,3 := C1,2 − F1,1

(
C2,2

F1,1

)′
+ F0,1

C2,2

F1,1
, C0,3 := C0,2.

Replace u4 with u5 defined by u4 = u5 +
F1,1

C1,3
z4, giving us the equation

(3) C1,3u
′
5 + C0,3u5 = F0,2z4

where

F0,2 := F0,1 − C1,3

(
F1,1

C1,3

)′
+ F0,1

F1,1

C1,3
.
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Any solution to Equation 3 is determined by the value of u5, so the solution set is in definable
bijeciton with A1. Each of these linear substitutions gives rise to a definable bijection between
systems so long as the substitutions are well-defined, i.e., that the denominators of the coefficients
are all non-zero. For this procedure to give a definable bijection from the original system 2 to A1,
we must verify that the following expressions are not zero:

β2 − β1, A2,0, B1,1, A1,1, B0,2, C2,2, F1,1, C1,3, and F0,2.

The expression β2−β1 is non-zero because β1, β2, β3, β4 are all distinct. Each of these coefficients
can be considered as a differential rational function in terms of β1, β2, β3, β4, and so they can be
analyzed according to a ranking on β̄. We will show that these coefficients are nonzero by showing
that the initials of each are nonzero in some elimination ranking. It then follows that the coefficients
themselves are non-zero because β1, β2, β3, β4 are independent differential transcendentals.

Consider the terms of these expressions ordered by some elimination ranking on β̄ with β3

ranked highest. The leading term in this ranking of each expression can be calculated using the
definitions of previous coefficients. The following table shows that these leading terms are non-
zero:

A2,0
−1

β2−β1β3

B1,1
−2

β2−β3β
′
3

A1,1
−2

(β2−β1)B1,1
β′′3

B0,2
−2

(β2−β1)A1,1
β

(3)
3

We turn our attention to an elimination ranking with β4 ranked highest to prove that the remaining
coefficients are nonzero. The following table shows that the leading terms of these coefficients are
also non-zero:

C2,2
−3

(β2−β1)B0,2
β′′4

F1,1
−4

(β2−β1)B0,2C2,2
β

(3)
4

C1,3
−7

(β2−β1)B0,2F1,1
β

(4)
4

F0,2
−7

(β2−β1)B0,2C1,3
β

(5)
4

We have shown that each substitution is well-defined, and therefore we have constructed a de-
finable bijection between system 2 and A1. Since A1 has no infinite rank subspaces, neither does
our original system, completing the proof of the proposition. �

We now finish the proof of Theorem 4.1. Since the differential tangent space T∆
ā

(
(X4)y

)
satisfies the conditions of Lemma 4.2, it has no infinite rank subspaces over Q〈ᾱ, ā〉. Therefore, X
is strongly minimal by Theorem 3.8. �

4.2. Generic higher order equations. The technique used in the previous example can be applied
to more general classes of equations. In this section, we use analogous techniques to show that
generic equations with high enough degree have differential tangent spaces cut out by generic
linear equations and that the generic tangent spaces have no infinite rank subvariety.
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Let

f(x) = α+

d∑
i=1

α0,ix
i +

∑
j∈M1

α1,jmj

(
x, x′

)
+ · · ·+

∑
k∈Mh

αh,kmk

(
x, x′, . . . , x(h)

)
where Mn indexes the set of all order n monomials of degree at most d and the entire collection
of coefficients α, αi,j are independent differential transcendentals over Q. Let V be the zero set of
f(x) and let m be the degree of nonmininality of f . Following the notation of Section 3, we let
(V m)y be the following system of equations in x1, . . . , xm, y:

∑h
i=0

∑
j∈Mi

αi,jmj

(
x1, . . . , x

(i)
1

)
= y∑h

i=0

∑
j∈Mi

αi,jmj

(
x2, . . . , x

(i)
2

)
= y

...∑h
i=0

∑
j∈Mi

αi,jmj

(
xm, . . . , x

(i)
m

)
= y

Let ā = (a1, . . . , am) be an indiscernible sequence in V such that am forks over a1, . . . , am−1

and tp(am/Q〈α, αi,j , a1, . . . , am−1〉i=0,...,h,j∈Mi
has rank between 1 and h− 1. That is, am satis-

fies a differential equation of order at least 1 but no more than h−1 over Q〈α, αi,j , a1, . . . , am−1〉i=0,...,h,j∈Mi
.

Crucially for this proof, we note that a1, . . . , am are algebraically independent over Q〈α, αi,j〉.
Let T∆

(ā,α) ((V m)y) denote the differential tangent space of (V m)y over (ā, α). Then T∆
(ā,α) ((V m)y)

is given by 

∑h
i=0 βi,1z

(i)
1 = y∑h

i=0 βi,2z
(i)
2 = y

...∑h
i=0 βi,mz

(i)
m = y

where βi,j = ∂f
∂x(i)

(aj) as used in previous sections.

Lemma 4.3. If ā = (a1, . . . , am) is an indiscernible sequence such that am satisfies an order k
equation over a1, . . . , am and the coefficients of f with 1 < k < h, then the variety T∆

(ā,α) ((V m)y)

has coefficients which are independent differential transcendentals over Q whenever d ≥ 2m.

Proof. We proceed by induction on the order, beginning with β0,1, β0,2, . . . , β0,m. Since d ≥ 2m,
there are j1, . . . , jm such that α0,j1 , . . . , α0,jm are independent differential transcendentals over
Q 〈A0a1 · · · am〉 where A0 = {αi,j : 0 ≤ i ≤ h, j ∈Mi} \ {α0,j1 , . . . , α0,jm}. Note that

j1a
j1−1
1 j2a

j2−1
1 . . . jma

jm−1
1

j1a
j1−1
2 j2a

j2−1
2 . . . jma

jm−1
2

...
...

j1a
j1−1
m j2a

j2−1
m . . . jma

jm−1
m



α0,j1

α0,j2
...

α0,jm

 =


β0,1

β0,2
...

β0,m

+


l1
l2
...
lm

 ,

where li ∈ Q 〈A0a1 · · · am〉.
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The above matrix is invertible, as the vanishing of its determinant imposes a nontrivial algebraic
relation among a1, . . . , am, which are, by assumption, algebraically independent. It follows that
β0,1, . . . , β0,m are interdefinable with α0,j1 , . . . , α0,jm over Q 〈A0a1 · · · am〉 . Thus, β0,1, . . . , β0,m

are independent and differentially transcendental over Q 〈A0a1 · · · am〉 . Note that the coefficients
{βi,j : 1 ≤ i ≤ h, 1 ≤ j ≤ m} are contained in the field Q 〈A0a1 · · · am〉 , so we’ve shown that
β0,1, . . . , β0,m are independent differential transcendentals over Q〈βi,j : 1 ≤ i ≤ h, 1 ≤ j ≤ m〉.

Suppose we have already shown that βn,1, . . . , βn,m are independent differential transcendentals
over Q〈βi,j : n+ 1 ≤ i ≤ h, 1 ≤ j ≤ m〉 for some n < h. Let M∗n+1 index the collection of order
n + 1 monomials of order no more than d excluding the monomials of the form {x(n+1)xr : 0 ≤
r ≤ d− 1}. Assume the order n+ 1 terms in f(x) are ordered so that∑
k∈Mn+1

αn+1,kmk(x, x
′, . . . , x(n+1)) =

d−1∑
k=0

αn+1,kx
(n+1)xk+

∑
j∈M∗

n+1

αn+1,jmj

(
x, x′, . . . , x(n+1)

)
.

Since d ≥ 2m, there are k1, . . . , km < d such that αn+1,k1 , . . . , αn+1,km are independent and
differentially transcendental over Q〈An+1a1 · · · am〉 where An+1 = {αi,j : n + 1 ≤ i ≤ h, j ∈
Mi} \ {αn+1,k1 , . . . , αn+1,km}. Note that

ak11 ak21 . . . akm1

ak12 ak22 . . . akm2
...

...
ak1m ak2m . . . akmm



αn+1,k1

αn+1,k2
...

αn+1,km

 =


βn+1,1

βn+1,2
...

βn+1,m

+


r1

r2
...
rm

 ,

where ri ∈ Q〈An+1a1 · · · am〉. The above matrix is invertible, since we are assuming that a1, . . . , am
are algebraically independent. Thus, αn+1,k1 , . . . , αn+1,km are interdefinable with βn+1,1, . . . , βn+1,m

over Q〈An+1a1 · · · am〉. Since {βi,j : n + 1 < i ≤ h, 1 ≤ j ≤ m} are contained in the field
Q〈An+1a1 · · · am〉, it follows that βn+1,1, . . . , βn+1,m are independent and differentially transcen-
dental over {βi,j : n+ 1 < i ≤ h, 1 ≤ j ≤ m}.

Putting together the above analysis, we have proved that the collection of coefficients {βi,j :
0 ≤ i ≤ h, 1 ≤ j ≤ m} are independent and differentially transcendental over Q〈a1, . . . , am〉 and
thus over Q. �

Eliminating the variable y from T∆
(ā,α) ((V m)y) results in a system of m− 1 linear equations in

m variables with generic coefficients.

Theorem 4.4. The solution set of any system of m − 1 generic linear equations of order h in m
variables has no infinite rank subspaces for h > 1 and m > 1.

Using the notation from the previous proposition, this system of generic linear equations will be
written as follows:

(4)



∑h
i=0 βi,1z

(i)
1 =

∑h
i=0 βi,2z

(i)
2∑h

i=0 βi,1z
(i)
1 =

∑h
i=0 βi,3z

(i)
3

...∑h
i=0 βi,1z

(i)
1 =

∑h
i=0 βi,mz

(i)
m .
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As in Proposition 4.2, we show that such a system has no infinite rank subspaces by constructing a
definable bijection to A1. This is accomplished by applying the following lemma repeatedly:

Lemma 4.5. Let S be the solution set of a linear system of equations3

(5)



∑h
i=0Ai,0u

(i)
0 =

∑h
i=0Bi,0z

(i)
0∑h

i=0Ci,l,0u
(i)
0 =

∑h
i=0 βi,lv

(i)
l,0

...∑h
i=0Ci,m,0u

(i)
0 =

∑h
i=0 βi,mv

(i)
m,0

satisfying two properties:
• For each l ≤ j ≤ m, the h + 1-tuples (Ai,0 : 0 ≤ i ≤ h) and (Ci,j,0 : 0 ≤ i ≤ h) are

inter-differentially algebraic over Q〈B〉 where B = {Bi,0, βi,j : 0 ≤ i ≤ h, l ≤ j ≤ m},
and
• The coefficients {Ai,0 : 0 ≤ i ≤ h} ∪ B are independent differential transcendentals over
Q, and likewise for each l ≤ j ≤ m, {Ci,j,0 : 0 ≤ i ≤ h} ∪ B are independent differential
transendentals.

Then there is a definable bijection S → T where T is the solution set of a system of linear equations
with one fewer variable and one fewer equation satisfying the same two conditions.

Before proceeding, note that the original system 4 of Theorem 4.4 satisfies the two conditions
listed in Lemma 4.5. That means we can iterate the application of this lemma until all variables
have been solved in terms of only the u variable, thereby giving a definable bijection to A1.

Proof. The definable bijection to from S to T will be defined by a series of linear substitutions
which will eliminate one of the variables in the system. The proof will consist of three parts:
First, we will define the necessary substitutions to arrive at T . Second, we must verify that each
substitution is well-defined, and hence gives rise to a definable bijection. Third, we verify that the
two conditions hold for T .

The first substitution replaces the variable u0 with u1 where u0 = u1 +
(
Bh,0

Ah,0

)
z0 which reduces

the order of z0 in the top equation by one. This results in the new system:
∑h

i=0Ai,0u
(i)
0 =

∑h−1
i=0 Bi,1z

(i)
0

...∑h
i=0Ci,j,0u

(i)
1 +

∑h
i=0Di,j,1z

(i)
0 =

∑h
i=0 βi,jv

(i)
j,0

where

Dh−k,j,1 =

(
h

k

)
Ch,j,0

(
Bh,0
Ah,0

)(k)

+ · · ·+ Ch−k,j,0

(
Bh,0
Ah,0

)
3Here we use A and B to refer only to the coefficients in the top equation. The lower equations will be indexed by j

with the second equation having index l and the last equation index m. In the case of system 4, l = 2 and l will increase
as we eliminate variables from the system.

14



for 0 ≤ k ≤ h and

Bh−k,1 := Bh−k,0 −
(
h

k

)
Ah,0

(
Bh,0
Ah,0

)(k)

− · · · −Ah−k,0
(
Bh,0
Ah,0

)
for 1 ≤ k ≤ h.

To reduce the order of z0 in lower equations we replace vj,0 with vj,1 where vj,0 = vj,1 +(
Dh,j,1

βh,j

)
z0, resulting in the system

∑h
i=0Ai,0u

(i)
1 =

∑h−1
i=0 Bi,1z

(i)
0

...∑h
i=0Ci,j,0u

(i)
1 +

∑h−1
i=0 Ei,j,1z

(i)
0 =

∑h
i=0 βi,jv

(i)
j,1

where

Eh−k,j,1 := Dh−k,j,1 −
(
h

k

)
βh,j

(
Dh,j,1

βh,j

)(k)

− · · · − βh−k,j
(
Dh,j,1

βh,j

)
.

Next we substitute z1 for z0, defined by z0 = z1 +
(

Ah,0

Bh−1,1

)
u′1. This resulting in the system of

equations 
∑h−1

i=0 Ai,1u
(i)
1 =

∑h−1
i=0 Bi,1z

(i)
1

...∑h
i=0Ci,j,1u

(i)
1 +

∑h−1
i=0 Ei,j,1z

(i)
0 =

∑h
i=0 βi,jv

(i)
j,1

where

Ch−k,j,1 := Ch−k,j,0 +

(
h− 1

k

)
Eh−1,j,1

(
Ah,0
Bh−1,1

)(k)

+ · · ·+ Eh−k−1,j,1

(
Ah,0
Bh−1,1

)
C0,j,1 := C0,j,0

for 0 ≤ k ≤ h− 1 and

Ah−k,1 := Ah−k,0 −
(
h− 1

k

)
Bh−1,1

(
Ah,0
Bh−1,1

)(k)

− · · · −Bh−k−1,1

(
Ah,0
Bh−1,1

)
A0,1 := A0,0

for 1 ≤ k ≤ h− 1.
Now we have reduced the order of the the top equation by one without increasing the order of

the lower equations. In order to eliminate the z variable in the top equation, we apply a trio of
analogous substitutions recursively to lower the order in the top equation to zero. After this has
already been performed n times, the system of equations will be

∑h−n
i=0 Ai,nu

(i)
n =

∑h−n
i=0 Bi,nz

(i)
n

...∑h
i=0Ci,j,nu

(i)
n +

∑h−1
i=0 Ei,j,nz

(i)
n =

∑h
i=0 βi,jv

(i)
j,n
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First we replace the variable un with un+1 where un = un+1 +
(
Bh−n,n

Ah−n,n

)
zn, so we have


∑h−n

i=0 Ai,nu
(i)
n+1 =

∑h−n−1
i=0 Bi,n+1z

(i)
n

...∑h
i=0Ci,j,nu

(i)
n +

∑h
i=0Di,j,n+1z

(i)
n =

∑h
i=0 βi,jv

(i)
j,n

where

Dh,j,n+1 := Ch,j,n

(
Bh−n,n
Ah−n,n

)
,

Dh−k,j,n+1 := Eh−k,j,n +

(
h

k

)
Ch,j,n

(
Bh−n,n
Ah−n,n

)(k)

+ · · ·+ Ch−k,j,n

(
Bh−n,n
Ah−n,n

)
for 1 ≤ k ≤ h, and

Bh−k,n+1 := Bh−k,n −
(
h− n
k − n

)
Ah−n,n

(
Bh−n,n
Ah−n,n

)(k−n)

− · · · −Ah−k,n
(
Bh−n,n
Ah−n,n

)
for n+ 1 ≤ k ≤ h.

The next substitution replaces vj,n with vj,n+1, defined by vj,n = vj,n+1 +
(
Dh,j,n+1

βh,j

)
zn for all

lower equations j. This results in the system of equations
∑h−n

i=0 Ai,nu
(i)
n+1 =

∑h−n−1
i=0 Bi,n+1z

(i)
n

...∑h
i=0Ci,j,nu

(i)
n +

∑h−1
i=0 Ei,j,n+1z

(i)
n =

∑h
i=0 βi,jv

(i)
j,n+1

where

Eh−k,j,n+1 := Dh−k,j,n+1 −
(
h

k

)
βh,j

(
Dh,j,n+1

βh,j

)(k)

− · · · − βh−k,j
(
Dh,j,n+1

βh,j

)
.

for 1 ≤ k ≤ h.
To complete the trio, we substitute zn+1 for zn defined by zn = zn+1 +

(
Ah−n,n

Bh−n−1,n+1

)
u′n+1.

Now we have the system
∑h−n−1

i=0 Ai,n+1u
(i)
n+1 =

∑h−n−1
i=0 Bi,n+1z

(i)
n+1

...∑h
i=0Ci,j,n+1u

(i)
n+1 +

∑h−1
i=0 Ei,j,n+1z

(i)
n+1 =

∑h
i=0 βi,jv

(i)
j,n+1
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where

Ch−k,j,n+1 := Ch−k,j,n +

(
h− 1

k

)
Eh−1,j,n+1

(
Ah−n,n

Bh−n−1,n+1

)(k)

− · · ·

− Eh−k−1,j,n+1

(
Ah−n,n

Bh−n−1,n+1

)
C0,j,n+1 := C0,j,n

for 0 ≤ k < h and

Ah−k,n+1 := Ah−k,n −
(
h− n− 1

k − n

)
Bh−n−1,n+1

(
Ah−n,n

Bh−n−1,n+1

)(k−n)

− · · ·

−Bh−k−1,n+1

(
Ah−n,n

Bh−n−1,n+1

)
A0,n+1 := A0,n

for n+ 1 ≤ k ≤ h− 1.
Completing this procedure by performing this trio h times results in the system

A0,huh = B0,hzh
...∑h

i=0Ci,j,hu
(i)
h +

∑h−1
i=0 Ei,j,hz

(i)
h =

∑h
i=0 βi,jv

(i)
j,h

Now we can solve for zh in terms of uh, and plug the resulting expression in to the lower equations.
After eliminating the top equation and simplifying, we have

(6)


∑h

i=0Ci,j,h+1u
(i)
h =

∑h
i=0 βi,jv

(i)
j,h

...∑h
i=0Ci,m,h+1u

(i)
h =

∑h
i=0 βi,mv

(i)
m,h

where, for k > 0,

Ch,j,h+1 := Ch,j,h

Ch−k,j,h+1 := Ch−k,j,h +

(
h− 1

k

)
Eh−1,j,h

(
A0,h

B0,h

)(k)

+ · · ·+ Eh−k,j,h

(
A0,h

B0,h

)
.

Let T denote the solution set to system 6. The desired variable has been eliminated, so now
we must show that these substitutions are well-defined. It suffices to show that the coefficients
appearing in the denominator of each is non-zero.

First, βh,j 6= 0 for all j by assumption, so the substitutions which decrease the order in the lower
equations are all well-defined.

Claim 4.6. The tuple (Bh−n,n, Ah−n,n : 0 ≤ n ≤ h) is interdefinable with (Bi,0, Ai,0 : 0 ≤ i ≤
h).
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Proof. We prove that for each n < h, (Ah−i,i, Bh−i,i, Ah−k,n, Bh−k,n : i < n, k ≥ n) is inter-
definable (Ah−i,i, Bh−i,i, Ah−k,n+1, Bh−k,n+1 : i ≤ n, k > n), proving the claim by induction.
Fix n < h. It is clear from the definition of Bi,n+1 that (Bh−k,n : n + 1 ≤ k ≤ h) is inter-
definable with (Bh−k,n+1 : n + 1 ≤ k ≤ h) over Bh−n,n and {Ah−k,n : n ≤ k ≤ h}. By
adding the parameters themselves, we have (Bh−k,n, Ah−k,n : n ≤ k ≤ h) is interdefinable with
(Bh−n,n, Bh−k,n+1, Ah−i,n : n+ 1 ≤ k ≤ h). If n > 0, interdefinability is preserved after adding
{Bh−i,i, Ah−i,i : 0 ≤ i < n} to each tuple. It is also clear from the definition of Ai,n+1 that
(Ah−k,n : n + 1 ≤ k ≤ h) is interdefinable with (Ah−k,n+1 : n + 1 ≤ k ≤ h) over Ah−n,n and
{Bh−k,n+1 : n+ 1 ≤ k ≤ h}. Combining these two facts, we conclude that the desired tuples are
interdefinable. �

It follows from this claim that the coefficients {Ah−n,n, Bh−n,n : 0 ≤ n ≤ h} are indepen-
dent differential transcendentals over Q〈B∗〉 where B∗ = B \ {Bi,0 : 0 ≤ i ≤ h}. Hence, all
substitutions used to eliminate the variable in the top equation are well-defined.

Finally, we prove the two conditions that hold for S also hold for T . In fact, inter-differential
algebricity preserves differential transendence degree, so proving the first condition implies the
second. Therefore, it suffices to show inductively that, for each n and j, (Ci,j,n+1 : 0 ≤ i ≤ h)
is inter-differentially algebraic with (Ci,j,n : 0 ≤ i ≤ h) over Q〈B〉. Assume, (Ai,0 : i ≤ h) is
inter-differentially algebraic with (Ci,j,n : 0 ≤ i ≤ h) over Q〈B〉. By Claim 4.6, this is equivalent
to showing that these tuples of C’s are inter-differentially algebraic over {Ah−i,i, Bh−i,i : 0 ≤ i ≤
h} ∪ B∗.

We begin by proving this for n = 0. It is clear from the definitions that (Ci,j,1 : 0 ≤ i ≤ h) is
differentially algebraic over (Ci,j,0 : 0 ≤ i ≤ h). To prove the other direction, observe that in the
definitions of Ci,j,1 for any i > 0, Ch,j,0 appears with order at least one, but any other Ck,j,0 must
be linear and order zero (over {Ah,0, Bh,0, Ah−1,1, Bh−1,1}). We can represent this situation with
the following matrix equation:



M1 M0 0 · · · 0 0 0 0
M2 M1 M0 · · · 0 0 0 0
M3 M2 M1 · · · 0 0 0 0

...
...

...
. . .

...
...

...
...

Mh−3 Mh−4 Mh−5 · · · M1 M0 0 0
Mh−2 Mh−3 Mh−4 · · · M2 M1 M0 0
Mh−1 Mh−2 Mh−3 · · · M3 M2 M1 M0

0 0 0 · · · 0 0 0 1





Ch−1,j,0

Ch−2,j,0

Ch−3,j,0
...

C3,j,0

C2,j,0

C1,j,0

C0,j,0


=



Ch−1,j,1

Ch−2,j,1

Ch−3,j,1
...

C3,j,1

C2,j,1

C1,j,1

C0,j,1


−



Lh−1

Lh−2

Lh−3
...
L3

L2

L1

0
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where Li ∈ Q 〈Ch,0, Ah,0, Bh,0, Ah−1,1, Bh−1,1,B∗〉 and the matrix entries can be computed as
follows:

M0 =
Bh,0
Bh−1,1

M1 = h

(
Bh,0
Ah,0

)′( Ah,0
Bh−1,1

)
+ (h− 1)

(
Bh,0
Ah,0

)(
Ah,0
Bh−1,1

)′
Mi =

(
h− 1

0

)(
h

i

)(
Bh,0
Ah,0

)(i)( Ah,0
Bh−1,1

)
+

(
h− 1

1

)(
h− 1

i− 1

)(
Bh,0
Ah,0

)(i−1)( Ah,0
Bh−1,1

)′
+ · · ·

+

(
h− 1

i

)(
h− i
i− i

)(
Bh,0
Ah,0

)(
Ah,0
Bh−1,1

)(i)

.

Using Gaussian elimination, we can make this matrix lower triangular:

M∗ =



M1,h−1 0 0 · · · 0 0 0 0
M2,h−2 M1,h−2 0 · · · 0 0 0 0
M3,h−3 M2,h−3 M1,h−3 · · · 0 0 0 0

...
...

...
. . .

...
...

...
...

Mh−3,3 Mh−4,3 Mh−5,3 · · · M1,3 0 0 0
Mh−2,2 Mh−3,2 Mh−4,2 · · · M2,2 M1,2 0 0
Mh−1,1 Mh−2,1 Mh−3,1 · · · M3,1 M2,1 M1,1 0

0 0 0 · · · 0 0 0 1


where the new matrix entries are defined recursively for 2 ≤ j ≤ h− 1 and 1 ≤ i ≤ h− j

Mi,1 := Mi, Mi,j := Mi −
(

M0

M1,j−1

)
Mi+1,j−1.

Claim 4.7. For all 1 ≤ j ≤ h− 1 and 1 ≤ i ≤ h− j, Mi,j 6= 0, and therefore, the determinant of
M∗ is non-zero.

Proof. We prove this by showing thatMi,j is order i+j−1 inAh,0 using induction on j. It follows
from the independence of the A’s and B’s that Mi,1 is order i in Ah,0 for each i. Now suppose the

claim holds for j. Since Mi,j+1 = Mi −
(
M0
M1,j

)
Mi+1,j , we can see that Mi,j+1 is order i + j

since Mi+1,j is order i+ j by assumption, and all other terms in the definition have strictly smaller
order. Thus the determinant is non-zero. �

As a consequence of the claim, we see that (Ci,j,0 : 0 ≤ i ≤ h− 1) and (Ci,j,1 : 0 ≤ i ≤ h− 1)
are interdefinable over {Ch,j,0, Ah,0, Bh,0, Ah−1,1, Bh−1,1} ∪ B∗. Now we can solve the equation
resulting from the top row of M∗ for Ch−1,j,0 in terms of (Ci,j,1 : 0 ≤ i ≤ h− 1) and Ch,j,0. We
can plug the resulting expression in for Ch−1,j,0 in the following definition of Ch,j,1, resulting in a
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differential relation between Ch,0 and (Ci,j,1 : 0 ≤ i ≤ h):

Ch,j,1 =

(
Bh,0
Bh−1,1

)
Ch−1,j,0 −

(
hBh,0
Bh−1,1

)
C ′h,j,0

+

[
1 +

hBh,0
Bh−1,1

(
Bh,0
Ah,0

)′
−

B′h,0
Bh−1,1

+
hBh,0(Ah0βh,j)

′

Bh−1,1Ah,0βh,j
−
βh−1,jBh,0
βh,jBh−1,1

]
Ch,j,0.

Thus, Ch,j,0 is differentially algebraic over (Ci,j,1 : 0 ≤ i ≤ h). It follows that (Ci,j,0 : 0 ≤ i ≤
h− 1) is differentially algebraic over {Ah,0, Bh,0, Ah−1,1, Bh−1,1} ∪ B∗, and (Ci,j,1 : 0 ≤ i ≤ h).
Hence, (Ci,j,0 : 0 ≤ i ≤ h) and (Ci,j,1 : 0 ≤ i ≤ h) are inter-differentially algebraic over B,
proving the desired result for n = 0.

Proving that (Ci,j,n+1 : 0 ≤ i ≤ h) is inter-differentially algebraic with (Ci,j,n : 0 ≤ i ≤ h)
over {Ah−i,i, Bh−i,i : 0 ≤ i ≤ h} ∪ B∗ for positive n is similar to the case where n = 0. As
before, one direction is clear from the definitions. The only difference with the previous case is the
inclusion of the Eh−k,j,n term in the definition of Dh−k,j,n+1 for k ≥ 1.

Claim 4.8. For each n, (Ei,j,n : 0 ≤ i ≤ h − 1) is differentially algebraic over (Ci,j,n−1 : 0 ≤
i ≤ h) and {Ah−i,i, Bh−i,i : 0 ≤ i ≤ h} ∪ B∗.

Proof. The claim holds for n = 1 by examination of the definitions. Now suppose the claim holds
for n. Ei,j,n+1 is defined by (Ci,j,n : 0 ≤ i ≤ h), (Ei,j,n : 0 ≤ i ≤ h − 1), and {Ah−i,i, Bh−i,i :
0 ≤ i ≤ h} ∪ B∗. It follows from the inductive hypothesis that (Ei,j,n : 0 ≤ i ≤ h − 1) is
differentially algebraic over (Ci,j,n−1 : 0 ≤ i ≤ h), (Ci,j,n : 0 ≤ i ≤ h), and {Ah−i,i, Bh−i,i : 0 ≤
i ≤ h}∪B∗. By assumption, (Ci,j,n−1 : 0 ≤ i ≤ h) and (Ci,j,n : 0 ≤ i ≤ h) are inter-differentially
algebraic, so (Ei,j,n : 0 ≤ i ≤ h − 1) is differentially algebraic over (Ci,j,n : 0 ≤ i ≤ h), and
{Ah−i,i, Bh−i,i : 0 ≤ i ≤ h} ∪ B∗. �

By this claim, it suffices to show that (Ci,j,n+1 : 0 ≤ i ≤ h) is inter-differentially algebraic with
(Ci,j,n : 0 ≤ i ≤ h) over {Ah−i,i, Bh−i,i : 0 ≤ i ≤ h}∪B∗∪{Ei,j,n+1 : 0 ≤ i ≤ h−1}. This can
be shown using the argument from the n = 0 case, although we will not present the details here.

It follows from the definition that (Ci,j,h : 0 ≤ i ≤ h) is interdefinable with (Ci,j,h+1 : 0 ≤ i ≤
h) over {Ah−i,i, Bh−i,i : 0 ≤ i ≤ h, } ∪ B∗ ∪ {Ei,j,h : 0 ≤ i ≤ h− 1}. By Claim 4.8, the desired
differential algebricity follows.

We have shown that for all j, (Ci,j,h+1 : 0 ≤ i ≤ h) is inter-differentially algebraic with
(Ci,j,0 : 0 ≤ i ≤ h) over B∗ and thus with (Ai,0 : 0 ≤ i ≤ h). It follows that for distinct j0 and j1,
both (Ci,j0,h+1 : 0 ≤ i ≤ h) and (Ci,j1,h+1 : 0 ≤ i ≤ h) are inter-differentially algebraic over B∗.
Finally, since each (Ci,j,0 : 0 ≤ i ≤ h) is independent over B∗, it follows from inter-differential
algebricity that {Ci,j,h+1 : 0 ≤ i ≤ h} ∪ B∗ is differentially independent. �

Combining the results of Lemma 4.3, Theorem 4.4, and Theorem 3.8 results in a proof of the
main result, Theorem 1.3.
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5. ORTHOGONALITY TO THE CONSTANTS

We’ve seen that bounds of [?] on the degree of nonminimality can be used in conjunction with
linearization techniques to establish the strong minimality of general classes of differential equa-
tions. There are two main obstacles to the wide application of these techniques for establishing
strong minimality of many classical nonlinear equations.

(1) The methods developed in the previous subsection seems to require at least one coefficient
of the equation in question to be differentially transcendental.

(2) For a given equation, even of small order, the computations required to verify strong mini-
mality are quite involved.

In this section, we will show how the computational demands can be significantly reduced if a
weaker condition than strong minimality is the goal. Consider the following (weaker) condition:
that V is either strongly minimal or almost internal to the constants. In [?], it is shown that if
nmdeg(p) > 1, then p is an isolated type which is almost internal to a non-locally modular type.
In differentially closed fields, this means that p is almost internal to the constant field whenever
nmdeg(p) > 1. Thus, the computations required to show our weaker condition will be much
simpler, for instance, involving only two variables.

Example 5.1. We will show the equation

x′′ + x2 − α = 0,

where α is a differential transcendental, is either strongly minimal or internal to the constants. If
the equation is not internal to the constants and not strongly minimal, then by the results of [?]
there is an indiscernible sequence of length two (x1, x2), which would satisfy the system{

x′′1 + x2
1 = α

x′′2 + x2
2 = α

such that x2 satisfies an order one equation over x1. Using the same strategy as in the previous
sections, we replace αwith a variable y in both equations, and then compute the differential tangent
space: {

u′′ + 2x1u = y
v′′ + 2x2v = y.

Eliminating y, we are left with the single equation

u′′ + 2x1u = v′′ + 2x2v.

Consider the definable bijection given by the substitution (u, v) 7→ (w, v) where u = w + v. This
transforms the above equation into

w′′ + 2x1w = 2(x2 − x1)v

which can be solved for v since x1 6= x2. Therefore the differential tangent space has no infinite
rank subvarieties, a contradiction, so x′′+x2−α = 0 is either strongly minimal or almost internal
to the constants.
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5.1. Questions and conjectures.

Question 5.2. Varieties which are internal to the constants have certain stronger properties that
may, in general, allow one show via some additional argument the strong minimality of specific
equations. For instance, by [?], if X is nonorthogonal to the constants, then there are infinitely
many co-order one subvarieties of X . Thus, in this setting, showing strong minimality (after an
argument like that of the example above) is equivalent to ruling out co-order one subvarieties. Are
there interesting classes of equations in which one can successfully employ this strategy?

Question 5.3. Can the techniques of this paper be adapted to situations with non-generic coeffi-
cients?

Conjecture 5.4. Generic differential equations of fixed order and degree greater than one are
strongly minimal.

Conjecture 5.5. Any two solutions of a generic differential equation of fixed order and degree
greater than one are (differentially) algebraically independent.

After the completion of this work, the authors, together with Guy Casale and Joel Nagloo, were
able to give affirmative answers to questions above, which we describe next. We have left the
questions as stated above, since we feel pursuing these directions for other classes of equations is
an important direction for future research. In the forthcoming work, joint with Casale and Nagloo,
the techniques of this paper are part of a new proof of the main theorem of [?]: the differential
equation satisfied by the j-function,(

y′′

y′

)′
− 1

2

(
y′′

y′

)2

+ (y′)2 · y
2 − 1968y + 2654208

y2(y − 1728)2
= 0

is strongly minimal. We also employ the strategy to establish the strong minimality of several new
equations.
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V third Painlevé equations of special type PIII (D7) and PIII (D8). J. Math. Sci. Univ. Tokyo, 13(2):145–204,
2006.
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