1. Language of operads

Let $S = (S, \otimes, I)$ be a (closed) symmetric monoidal category.

Definition 1.1.

An operad O in S is a collection of objects $\{O(j)\}_{j \geq 0}$ in S endowed with:

- a right-action of the symmetric group Σ_j on $O(j)$ for each j, such that $O(0) = I$;
- a unit map $I \rightarrow O(1)$ in S;
- composition operations that are morphisms in S:
 \[\gamma : O(k) \otimes O(j_1) \otimes \cdots \otimes O(j_k) \rightarrow O(j_1 + \cdots + j_k), \]
 defined for each $k \geq 0, j_1, \ldots, j_k \geq 0$, satisfying natural equivariance, unit and associativity relations.

A morphism of operads $\psi : O \rightarrow O'$ is a sequence $\psi_j : O(j) \rightarrow O'(j)$ of Σ_j-equivariant morphisms in S compatible with the unit map and γ.

Example 1.2.

Let X be an object in S. The endomorphism operad End_X is defined to be $\text{End}_X(j) = \text{Hom}_S(X^{\otimes j}, X)$, with unit id_X, and the Σ_j-right action is induced by permuting on $X^{\otimes j}$.

Example 1.3.

Define $\text{Assoc}(j) = \coprod_{\sigma \in \Sigma_j} I$, the associative operad, where the maps γ are defined by equivariance. Let $\text{Com}(j) = I$, the commutative operad, where γ are the canonical isomorphisms.

Definition 1.4.

Let O be an operad in S. An O-algebra (X, θ) in S is an object X together with a morphism of operads $\theta : O \rightarrow \text{End}_X$. Using adjoints, this is equivalent to a sequence of maps $\theta_j : O(j) \otimes X^{\otimes j} \rightarrow X$ such that they are associative, unital and equivariant. A morphism of O-algebras $f : (X, \theta) \rightarrow (X', \theta')$ is a morphism $f : X \rightarrow X'$ in S such that the induced morphism on the endomorphism operad is compatible with θ and θ'.

Example 1.5.

An Assoc-algebra is a monoid in S. A Com-algebra is a commutative monoid in S.

2. Operads as monads

Definition 2.1.

A monad (M, μ, η) in S is a monoid in $(\text{Fun}(S, S), \circ, \text{id}_S)$: a functor $M : S \rightarrow S$ together with natural transformations $\mu : M \circ M \Rightarrow M$ and $\eta : \text{id}_S \Rightarrow M$ respecting associativity and unital properties. A morphism of monads $(M, \mu, \eta) \rightarrow (M', \mu', \eta')$ is a morphism of monoids in $\text{Fun}(S, S)$.

Definition 2.2.

An algebra (X, ξ) over a monad (M, μ, η) is an object X in S together with a map $\xi : M(X) \rightarrow X$ such that
the following diagrams commute:

\[
\begin{array}{cc}
X & M(X) \\
\downarrow \xi & \downarrow \xi \\
X & M(X)
\end{array}
\quad \quad
\begin{array}{cc}
M(M(X)) & M(X) \\
\downarrow M(\xi) & \downarrow \xi \\
M(X) & X
\end{array}
\]

A morphism of M-algebras $(X, \xi) \to (X', \xi')$ is a morphism $f : X \to X'$ in S such that the following diagram commutes:

\[
\begin{array}{cc}
M(X) & X \\
\downarrow M(f) & \downarrow f \\
M(X') & X'
\end{array}
\]

Given an operad \mathcal{O} in S we define a monad (\mathcal{O}, μ, η) in the category \mathcal{S}_1 of objects in S under I (objects X in S with a unit morphism $\varepsilon : I \to X$). Subsequently in next section, we will focus when $S = \text{Top}$ with the cartesian product and so objects over the unit is just a choice of a point $* \to X$. For X in \mathcal{S}_1, define $O(X)$ to be the coequalizer of:

\[
\bigsqcup_{j \geq 0} \mathcal{O}(j) \otimes X^{\otimes j - 1} \cong \bigsqcup_{j \geq 0} \mathcal{O}(j) \otimes [\Sigma_j] X^{\otimes j},
\]

where s_i is the map $\text{id}^{\otimes i - 1} \otimes \varepsilon \otimes \text{id}^{\otimes j-i} : X^{\otimes j - i} \to X^{\otimes j}$ and $\sigma_i : \mathcal{O}(j) \to \mathcal{O}(j - 1)$ is induced by:

\[
\gamma : \mathcal{O}(j) \otimes (\mathcal{O}(1) \otimes \cdots \otimes \mathcal{O}(1)) \to \mathcal{O}(j - 1),
\]

for $0 \leq i \leq j$, for each $j \geq 0$. Given a morphism $f : X \to X'$ in \mathcal{S}_1, we get a map $O(X) \to O(X')$ induced by the map $f^{\otimes j} : X^{\otimes j} \to X'^{\otimes j}$, such that $O : \mathcal{S}_2 \to \mathcal{S}_1$ is a functor. The composition:

\[
X \cong I \otimes X \longrightarrow \mathcal{O}(1) \otimes X \longrightarrow O(X)
\]

defines the natural transformation $\eta : \text{id}_{\mathcal{S}_1} \Rightarrow O$. The natural map $\mu : O(O(X)) \to O(X)$ is defined via γ:

\[
\mathcal{O}(k) \otimes \mathcal{O}(j_1) \otimes X^{\otimes j_1 + \cdots + j_k} \cong \text{shuffle} \left(\mathcal{O}(k) \otimes \mathcal{O}(j_1) \otimes \cdots \mathcal{O}(j_k) \right) \otimes X^{\otimes j_1 + \cdots + j_k} \to \mathcal{O}(j) \otimes X^{\otimes j},
\]

where $j = j_1 + \cdots + j_k$.

Proposition 2.3.
Given an operad \mathcal{O} in S, an \mathcal{O}-algebra (X, θ) satisfying $\varepsilon = \theta_0$ determines and is determined by an \mathcal{O}-algebra (X, ξ) in \mathcal{S}_1.

Proof: Use adjointness to show that a morphism $\mathcal{O}(j) \otimes X^{\otimes j} \to X$ with the desired properties induces and is induced by a morphism $\xi : O(X) \to X$ with the desired properties. \qed

The object $O(X)$ can be regarded as the free \mathcal{O}-algebra generated by the object X. Indeed, if we denote by $O[S]$ the category of \mathcal{O}-algebras in S, we get the bijection:

\[
\text{Hom}_S(X, Y) \longrightarrow \text{Hom}_O[S]((O(X), \mu), (Y, \xi))
\]

for any object X and \mathcal{O}-algebra (Y, ξ), i.e., we get the following pair of functors are adjoint:

\[
\begin{array}{ccc}
S & \longrightarrow & O[S] \\
X & \longmapsto & (O(X), \mu) \\
Y & \longmapsto & (Y, \xi).
\end{array}
\]
3. Little cube operads

We define now an operad on the symmetric monoidal cateogry \((\text{Top}, \times, \ast)\), where by spaces we mean topological weak Hausdorff \(k\)-spaces.

Definition 3.1.
Let \(J^n\) be the interior of the \(n\)-dimensional unit cube \([0, 1]^n\). A little \(n\)-cube is a rectilinear map \(c : J^n \to J^n\). Algebraically, this means the map is of the form :
\[
(t_1, \ldots, t_n) \mapsto (a_1 + (b_1 - a_1)t_1, \ldots, a_n + (b_n - a_n)t_n),
\]
with \((a_1, \ldots, a_n), (b_1, \ldots, b_n) \in [0, 1]^n\) such that \(0 \leq a_i \leq b_i \leq 1\), for all \(1 \leq i \leq n\). The image of \(c\) defines a \(n\)-dimensional cube in \([0, 1]^n\) with a non-empty interior and faces parallel to the faces of the ambient unit cube.

Definition 3.2.
The little \(n\)-cube operad \(\mathcal{C}_n\) is defined as follows :
\[
\mathcal{C}_n(j) = \{(c_1, \ldots, c_j) \mid c_i \text{ are little } n\text{-cubes with disjoint interior} \} \subseteq \text{Map}\left(\prod_{i=1}^j J^n, J^n\right).
\]
The identity is defined by the element \(\text{id}_{J^n} \in \mathcal{C}_n(1)\). The symmetric group \(\Sigma_j\) acts (freely) by permutation on the indices of the tuple \((c_1, \ldots, c_j)\). If we write \(\zeta = (c_1, \ldots, c_j)\), we define the composition operation \(\gamma\) as follows :
\[
\gamma : \mathcal{C}_n(k) \times \mathcal{C}_n(j_1) \times \cdots \times \mathcal{C}_n(j_k) \to \mathcal{C}_n(j_1 + \cdots + j_k)
\]
\[
(c_1, d_1, \ldots, d_k) \mapsto \zeta \circ (d_1 + \cdots + d_k).
\]

Notice that there are natural inclusions :
\[
\mathcal{C}_n(j) \hookrightarrow \mathcal{C}_{n+1}(j)
\]
and allowing to define \(\mathcal{C}_\infty(j) = \text{colim}_n \mathcal{C}_n(j)\) for each \(j \geq 0\). The composition \(\gamma\) extends naturally so that \(\mathcal{C}_\infty\) is an operad.

We can reinterpret the spaces \(\mathcal{C}_n(j)\) in terms of configuration space. Let \(M\) be a \(n\)-manifold, the \(j\)-th configuration space of \(M\) is :
\[
F(M; j) = \{(x_1, \ldots, x_j) \in M^\times j \mid x_r \neq x_s \text{ if } r \neq s\} \subseteq M^\times j.
\]
It is a \(nj\)-manifold with \(\Sigma_j\) free-action on coordinates. For \(1 \leq n \leq \infty\), the spaces \(\mathcal{C}_n(j)\) are \(\Sigma_j\)-equivariantly homotopic to \(F(\mathbb{R}^n; j)\) via the map :
\[
\mathcal{C}_n(j) \to F(J^n; j)
\]
\[
(c_1, \ldots, c_j) \mapsto (c_1(p), \ldots, c_j(p)),
\]
where \(p = (\frac{1}{j}, \ldots, \frac{1}{j})\) in \(J^n\). This makes \(\mathcal{C}_1\) an \(A_\infty\)-operad, \(\mathcal{C}_\infty\) a \(\mathcal{E}_\infty\)-operad, \(\mathcal{C}_n\) a locally \((n-2)\)-connected \(\Sigma\)-free operad.

4. Approximation and recognition theorems

Proposition 4.1.

Given a pointed space \(X\), its \(n\)-th iterated loop space \(\Omega^n X\) has a natural \(\mathcal{C}_n\)-algebra structure in \(\mathcal{I}\).

Proof: Regard \(\Omega^n X\) as the space \(\text{Map}\left(\left(\prod_{j \in [0,1]^n}, \ast\right), (X, \ast)\right)\). Define the action :
\[
\theta : \mathcal{C}_n(j) \times (\Omega^n X)^j \to \Omega^n X,
\]
We construct the following commutative diagram:

Proof: for \(1 \leq \infty\) define \(\tilde{\text{c}}_n(y)\) as:

\[
\begin{align*}
[0, 1]^n & \to X \\
\frac{\partial[0, 1]^n}{\partial[0, 1]^n} & \to \frac{\partial[0, 1]^n}{\partial[0, 1]^n}
\end{align*}
\]

\[
t \mapsto \begin{cases}
y_r \circ c_r^{-1}(t), & \text{if } t \in \text{im}(c_r) \\
* & \text{if } t \notin \text{im}(c_r) \text{ for any } 1 \leq r \leq j
\end{cases}
\]

One can check that all the desired diagrams commute.

Recall that given a pointed space \(X\), the associated monad of \(\mathbb{C}_n\) is defined as:

\[
\mathbb{C}_n(X) = \left(\bigcup_{j \geq 0} \mathbb{C}_n(j) \times_{\mathcal{S}_j} X^j \right) / \sim.
\]

The above result implies that \(\Omega^n X\) is also a \(\mathbb{C}_n\)-algebra, hence there is a map \(\mathbb{C}_n(\Omega^n X) \to \Omega^n X\), for any pointed space \(X\). There is a natural map:

\[
\alpha_n : \mathbb{C}_n(X) \to \Omega^n \Sigma^n X,
\]

defined as follows. The identity map on \(\Sigma^n X\) has an adjoint \(X \to \Omega^n \Sigma^n X\). Applying the functor \(\mathbb{C}_n\) we get the left map in the composite:

\[
\mathbb{C}_n(X) \to \mathbb{C}_n(\Omega^n \Sigma^n X) \to \Omega^n \Sigma^n X,
\]

and the right map is defined by the \(\mathbb{C}_n\)-algebra structure on \(\Omega^n \Sigma^n X\). The above composite defines the map \(\alpha_n\). It is a morphism of monads, where the monad structure on the functor \(\Omega^n \Sigma^n : \text{Top}_* \to \text{Top}_*\) is defined for any pointed space \(Y\):

\[
\Omega^n \Sigma^n \Omega^n \Sigma^n Y \to \Omega^n \Sigma^n Y,
\]

by a map \(\Sigma^n \Omega^n \Sigma^n Y \to \Sigma^n Y\) which is the adjoint of the identity map \(\Omega^n \Sigma^n Y \to \Omega^n \Sigma^n Y\). More concretely, the map \(\alpha_n : \mathbb{C}_n(X) \to \Omega^n \Sigma^n X\) can be regarded as follows:

\[
\begin{align*}
\mathbb{C}_n(X) & \to \Omega^n \Sigma^n X = \text{Map}\left(\left(\frac{[0, 1]^n}{\partial[0, 1]^n}, *, (\Sigma^n X, *)\right) \to \Sigma^n X, \begin{cases} t \in \frac{[0, 1]^n}{\partial[0, 1]^n} = S^n = \Sigma^n \{*, x_i\}, & \text{if } t \in \text{im}(c_i) \subseteq J^n \\
* & \text{if } t \notin \text{im}(c_i) \text{ for any } 1 \leq i \leq j \end{cases}\right)
\end{align*}
\]

Theorem 4.2 (Approximation).

*For any based space \(X\), there is a natural map of \(\mathbb{C}_n\)-algebras:

\[
\alpha_n : \mathbb{C}_n(X) \to \Omega^n \Sigma^n X,
\]

for \(1 \leq n \leq \infty\), and \(\alpha_n\) is a weak homotopy equivalence if \(X\) is connected.*

Proof: We construct the following commutative diagram:

\[
\begin{array}{ccc}
\mathbb{C}_n(X) & \xrightarrow{\tilde{\text{X}}_n} & \mathbb{C}_{n-1}(\Sigma X) \\
\mathbb{C}_n(X) & \xrightarrow{\tilde{\text{p}}_n} & \mathbb{C}_{n-1}(\Sigma X) \\
\Omega^n \Sigma^n X & \xrightarrow{\text{p}} & \Omega^{n-1} \Sigma^n X,
\end{array}
\]

where \(p\) is the usual path fibration to a space with fiber its loop space. The space \(\tilde{\text{X}}_n\) is constructed such that it is contractible and \(\tilde{p}_n\) is a quasifibration if \(X\) is connected.

Theorem 4.3 (Recognition).

If \(X\) is a connected \(\mathbb{C}_n\)-algebra, there exists a based space \(Y\) and a weak equivalence of \(\mathbb{C}_n\)-algebras between \(\Omega^n Y\) and \(X\).
In order to construct this delooping of X, we use the two-sided bar construction in Top_\ast. Given a monad (M, μ, η) in \mathcal{S} and a category \mathcal{C}, a M-functor in \mathcal{C} is a functor $F : \mathcal{S} \to \mathcal{C}$ with a natural transformation $\lambda : FM \Rightarrow F$ such that the following diagram commutes:

$$
\begin{array}{ccc}
F(M(M(X))) & \xrightarrow{F(\mu_X)} & FM(X) \\
\downarrow{\lambda_{M(X)}} & & \downarrow{\lambda_X} \\
FM(X) & \xrightarrow{\lambda_X} & F(X),
\end{array}
$$

For instance, (M, μ) is itself a M-functor in \mathcal{S}.

Definition 4.4.

Given a monad (M, μ, η) in \mathcal{S}, a M-functor (F, λ) in \mathcal{C}, and a M-algebra (X, ξ) in \mathcal{S}, define the two-sided bar construction of (F, M, X) by:

$$B_q(F, M, X) = F(M(M(X))).$$

The object is simplicial in \mathcal{C}:

$$F(X) \xleftarrow{} F(M(X)) \xleftarrow{} F(M(M(X))) \xleftarrow{} F(M(M(M(X)))) \cdots$$

where the blue arrows are induced by $\xi : M(X) \to X$, the red arrows by $\lambda : F(M(X)) \to F(X)$, the green arrows by $\mu : M(M(X)) \to M(X)$, and the black arrows by $\eta : X \to M(X)$. We denote its geometric realization by $B(F, M, X) = |B_q(F, M, X)|$.

Proof: The operad \mathcal{C}_n is replaced by a "nicer" equivalent operad \mathcal{D} so that $B_*(F, D, X)$ is a strictly proper simplicial space. We construct a zig-zag of maps:

$$X \xleftarrow{} B(D, D, X) \xrightarrow{} B(\Omega^n \Sigma^n, D, X) \xrightarrow{} \Omega B(\Sigma^n, D, X).$$

The map $B(D, D, X) \to X$ is induced by $D(X) \to X$ as X is a D-algebra and $B(D, D, X)$ should be regarded as the usual simplicial resolution of X. The map $B(D, D, X) \to B(\Omega^n \Sigma^n, D, X)$ is induced by $\alpha_n : D \to \Omega^n \Sigma^n$ (and should now be regarded as a morphism of D-functors). It is a weak equivalence when X is connected (not obvious on the simplicial resolution). The last map $B(\Omega^n \Sigma^n, D, X) \to \Omega^n B(\Sigma^n, D, X)$ should be regarded as the non-trivial weak equivalence $|\Omega^a X_\ast| \to |\Omega| |X_\ast|$, true only when X is connected.

Thus let Y be $B(\Sigma^n, D, X)$.

References