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Introduction

In 1954, in his revolutional paper, "Quelques Propriétés Globales des Variétés Di�érentiables",
René Thom introduced new objects, that he simply called complexes, that play a unifying role in
Algebraic Topology as they display the interconnections between Geometric Topology and Ho-
motopy Theory. These objects are now called Thom spaces. The groundbreaking ideas earned
René Thom the 1958 Fields Medal at Edinburgh. Thom was able to answer geometric problems
such as when is a closed manifold a boundary of a compact manifold with boundary, or when
can a homology class in a space be realized by a map of a closed manifold. Subsequently, the
study of stable phenomena in Algebraic Topology, i.e., which occur in any su�ciently large di-
mension, led to a replacement of topological spaces by spectra which form an entire new category
called the stable homotopy category S . The behavior of this new category allows many nice
properties not found in the (unstable) homotopy category of spaces, such as the invertibility of
the suspension.

In [Mitchell and Priddy, 1983], the authors studied the stable splitting of the classifying
spaces of the groups (Z/p)n and introduced spectra M(n) and L(n). They proved that B(Z/p)n

contains (stably) p(n
2) summands, each equivalent to M(n). They proved also the decomposition

M(n) ƒ L(n) ‚ L(n ≠ 1). The spectra M(n) and L(n) play also an important role in the proof
of the mod p Whitehead conjecture which states that :

ker
1
fiú(SPpnS) æ fiú(SPpn+1S)

2
= ker

1
fiú(SPpnS) æ fiú(SPS)

2
.

In [Kuhn and Priddy, 1986], it was proved that the above equality is equivalent to the exact-
ness of the homotopy groups localized at p :

· · · æ fiú(L(2)) æ fiú(L(1)) æ fiú(L(0)) æ fiú(HZ(p)).

In [Takayasu, 1999], the author focused on the case p = 2 and constructed spectra L(n, k),
for k œ Z which generalize the previous spectra as L(n, 0) = M(n) and L(n, 1) = L(n). They are
defined as the stable summands of Thom spectra over B(Z/2)n. The spectra L(n, k) appeared,
for k Ø 0, in the description of layers of the Goodwillie tower of the identity functor evaluated
at spheres in [Arone and Mahowald, 1999]. This Master Project aims to follow the proof of
Takayasu of the existence of a cofibre sequence :

�kL(n ≠ 1, 2k + 1) æ L(n, k) æ L(n, k + 1),

which generalizes the stable splitting M(n) ƒ L(n) ‚ L(n ≠ 1). We give a more contextual ap-
proach and use a di�erent construction of Thom spectrum associated to a virtual vector bundle.
Some other arguments will be improved using the category theory with the Grothendieck con-
struction. Let us also notice that this cofiber sequence was also proved more recently by combi-
ning Goodwillie calculus with the James fibration, as described in Chapter 2 of [Behrens, 2010].
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In Chapter 1, we aim to define the spectrum L(n, k) which we call the generalized Mitchell-
Priddy spectrum, for all n œ N and for k œ Z. We recall briefly the Thom space construction
and the Thom isomorphism and see how representation of groups induces real vector bundles.
We define precisely a model of Thom spectra for virtual vector bundles. Chapter 2 aims to
prove the cofibre sequence of Takayasu. It is built from two other cofiber sequences, using
spectral sequences of homotopy colimits and the Steenrod algebra module structure of the mod
2 cohomology of L(n, k). In Appendix A, we present in details the Grothendieck construction
and give key results needed for the construction of L(n, k) but also for the proofs of Chapter 2.
Appendix B is devoted to present a summary of results of the 2-completion of spectra.

We assume that the reader has a prior knowledge on the stable homotopy category S . We
refer the reader to [Adams, 1974] for the model used in this paper. A modern reference is given
in chapter II of [Rudyak, 1998]. For an axiomatic approach, see [Margolis, 1983]. We make
use of homotopy (co)limits in this paper and our reference is [Bousfield and Kan, 1972]. We
refer the reader to [James and Liebeck, 2001] for a treatment of the theory of representation of
finite groups. Basic properties of (real) vector bundles, principal bundles and classifying spaces
will be used throughout this paper, we refer to [Husemoller, 1993]. For a treatment of the
mod 2-Steenrod algebra A , we refer to [Mosher and Tangora, 1968] or [Hatcher, 2002].
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Notations

Throughout this paper, we will use the following notations and conventions.

• Z/p = Fp denotes the cyclic group of order p, where p is a prime number.

• „Zp denotes the p-adic numbers.

• A space is a topological space. A map is a continuous map.

• Homeomorphism and isomorphism are denoted by the symbol ≥=.

• S denotes the stable homotopy category as described in [Adams, 1974]. All spectra
are considered in this category, and a map of spectra is a morphism in this category.
Equivalences in this category will be called homotopy equivalences and are denoted ƒ.

• All our diagrams will be strictly commutative. We will specify when a diagram is com-
mutative up to homotopy.

• A denotes the mod 2 Steenrod algebra.

• S denotes the sphere spectrum.

• HG denotes the Eilenberg-Maclane spectrum of the group G.

• The (n + 1)-disk will be denoted Dn+1 and its boundary, the n-sphere, is denoted Sn.

• We denote Hú(X) the mod-2 cohomology, meaning that if X is a space, then we denote
Hú(X) := Hú(X;Z/2) and if X is a spectrum, then Hú(X) := (HZ/2)ú(X). As usual,ÂHú(X) denotes the reduced cohomology of a space X.

• We denote �Œ : Topú ≠æ S the suspension functor (see exemple 2.3 in [Adams, 1974]).

• We denote (≠)+ : Top ≠æ Topú the functor :

(≠)+ : Top ≠æ Topú

X ‘≠æ X+ = X Û {ú}3
X

fæ Y
4

‘≠æ (f+ : X+ æ Y+) .

v





CHAPTER 1

Preliminaries

This chapter is devoted to define the generalized Mitchell-Priddy spectrum L(n, k), for all n œ N
and k œ Z. In [Takayasu, 1999], the author has chosen the model :

B(Z/2)n = E(GLn(F2) n (Z/2)n)
O

(Z/2)n .

The reason was to give a GLn(F2)-action for the ad hoc construction of [Carlsson, 1984] of
Thom spectra of virtual representation of (Z/2)n. But we shall not make use of this construction
and our action of GLn(F2) will be more standard.

1.1. Thom Spectra over B(Z/2)n

We present the definiton of a Thom spectrum associated to a vector bundle and we wish to
consider all the bundles over (Z/2)n which originate from the representations of the group
(Z/2)n.

1.1.1 Thom Spaces

Let us start with some motivation. In (co)homology, the suspension induces an isomorphismÂHm(X) ≥= ÂHm+r(�rX), for any well-pointed space X. The Thom isomorphism theorem gene-
ralizes this for twisted suspensions, in a sense to be defined. Let us first notice that :

�rX+ = X ◊ Dr

X ◊ Sr≠1 ,

for r Ø 1. The Thom space is a generalization of this quotient. Let Rr Òæ E
pæ B be a real

r-dimensional vector bundle. Suppose it is endowed with a metric (e.g. B is paracompact, see
Theorem 9.5 in Chapter 3 of [Husemoller, 1993]). We define the unit sphere bundle :

S(E) = {v œ E | ÎvÎ = 1},

and the unit disk bundle :
D(E) = {v œ E | ÎvÎ Æ 1},

so that we obtain the subbundles S(E) ™ D(E) ™ E. We obtain the relative bundle :

(Dr, Sr≠1) Òæ (D(E), S(E)) p≠æ B.
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Definition 1.1.1 (Thom Space).
The Thom space of the vector bundle p endowed with a metric is the space Th(p) := D(E)/S(E).

If p is the projection bundle : E = B ◊ Rr, then :

Th(p) = B ◊ Dr

B ◊ Sr≠1 = �rB+.

Therefore, for a general p, its Thom space Th(p) can indeed be regarded as a twisted suspension.

Remark 1.1.2 (Functoriality of Th).
For motivational matters, we presented the definition of Thom spaces for vector bundles with
metrics. More generally, for any r-dimensional vector bundle p : E æ B, we may as well
obtain Th(p) by applying fiberwise one-point compactification on E, and identifying all the
added points to a single basepoint. Clearly these two definitions are homeomorphic. This
construction has the advantage to be obviously functorial :

Th : VectR ≠æ Topú,

where VectR is the category of real vector bundles and Topú is the category of pointed spaces.
Since in this paper all the base spaces of vector bundles will be paracompact, we will allow
ourself to switch between the two constructions.

The following theorem is the desired generalization of the isomorphism ÂHm(X) ≥= ÂHm+r(�rX),
for any based space X.

Theorem 1.1.3 (Thom Isomorphism Theorem).
Let r Ø 1. Given a r-dimensional vector bundle p : E æ B, with B connected and paracom-
pact, there exists a unique non-zero element up œ Hr(D(E), S(E)) ≥= ÂHr(Th(p)), so that each
inclusion (Dr, Sr≠1) Òæ (D(E), S(E)) induces a homomorphism :

Hr(D(E), S(E)) ≠æ Hr(Dr, Sr≠1) ≥= Z/2,

that maps up to the unique non-zero element. Moreover this class up defines an isomorphism :

Hm(B)
≥=≠æ Hm+r(D(E), S(E)) ≥= ÂHm+r(Th(p))

x ‘≠æ Hm(p)(x) ˙ up,

for all m Ø 0.

Sketch of the Proof : Let us first notice that :

Hm(Dr, Sr≠1) =
I

Z/2, if r = m,
0, otherwise.

Consider the fibration (Dr, Sr≠1) Òæ (D(E), S(E)) pæ B and apply its relative Serre spectral
sequence (see Theorem 9.34 in [Davis and Kirk, 2001]). We obtain for the 2-page :

Es,t
2 = Hs(B; Ht(Dr, Sr≠1))

≥= Hs(B) ¢ Ht(Dr, Sr≠1)

≥=
I

Hs(B), if t = r,
0, if t ”= r,

2



using the universal coe�cient Theorem. The isomorphism Hs(B) æ Es,r
2 is given by “ ‘æ “ ¢· ,

where 0 ”= · œ Hr(Dr, Sr≠1). A simple investigation on the spectral sequence implies directly
that :

Es,t
2 = Es,t

Œ =
I

Hs+r(D(E), S(E)), if t = r,
0, otherwise.

So we have obtained the existence of the Thom isomorphism. It remains to prove the formula.
If we set s = 0, we get in particular Hr(D(E), S(E)) ≥= H0(B) ≥= Z/2. Let us define up as the
unique non-zero element in Hr(D(E), S(E)). Then the multiplicativity of the spectral sequence
implies the formula.

Definition 1.1.4 (Thom Class up).
Let p : E æ B be as previous theorem. The previous isomorphism is called the Thom isomor-
phism, and up is called the Thom class of p.

We finish our discussion about Thom spaces by showing how a Thom space can be naturally
considered in the stable category.

Proposition 1.1.5.
Let V

pæ X and W
qæ Y be two real vector bundles. Then there is an homeomorphism :

Th(p ◊ q) ≥= Th(p) · Th(q).

Proof : We have the relative homemorphism :

(D(p ◊ q), S(p ◊ q)) ≠æ
1
D(p) ◊ D(q), S(p) ◊ D(q) fi D(p) ◊ S(q)

2
(v, w) ‘≠æ 1

max(ÎvÎ, ÎwÎ)
Ò

ÎvÎ2 + ÎwÎ2
(v, w),

which induces the desired homeomorphism on the quotient spaces.

Corollary 1.1.6.
If p : E æ B is a real vector bundle and Ár is the trivial real r-dimensional vector bundle over
B, then there is an isomorphism Th(p ü Ár) ≥= �rTh(p).

Proof : Apply previous proposition where X = Y = B, and notice that the Whitney sum
p ü Ár is isomorphic to the bundle p ◊ Rr where Rr is the r-dimensional trivial bundle over a
point. As Dr/Sr≠1 ≥= Sr, we get :

Th(p ü Ár) ≥= Th(p ◊ Rr) ≥= Th(p) · Sr = �rTh(p).

This finishes the proof.

Definition 1.1.7 (Thom Spectrum).
The Thom spectrum of a vector bundle p is given by �ŒTh(p).

Since in the stable homotopy category S there is a desuspension, it is natural to ask if there
is also twisted negative suspensions in the sense of bundles. This is actually true, and we will
show that subsequently when we will describe virtual vector bundles.

3



1.1.2 The Thom Spectrum of a Representation

Let us begin by recalling this general fact.

Theorem 1.1.8.
Given a topological group G, there exists a principal G-bundle G Òæ EG æ BG, where EG
is a contractible space. The construction is functorial so that any continuous homomorphism
– : G æ H induces a bundle map

EG EH

BG BH,

E–

B–

compatible with the actions, i.e., for all x œ EG and g œ G :

E–(gx) = –(g)Ef(x).

For any paracompact space B, the function defined by pulling back :

� : Map(B, BG) ≠æ {Principal G-bundles over B}
f ‘≠æ fú(EG),

induces a bijection from the homotopy set [B, BG] to the set of isomorphism classes of principal
G-bundles over B.

Proof : All the statements can be found in [Husemoller, 1993].

Definition 1.1.9.
The space BG is called the classifying space of G and G Òæ EG æ BG is called the universal
principal G-bundle.

Let G be a finite topological group. Consider the universal principal G-bundle G Òæ EG æ BG.
Let us denote RGMod the category of finite dimensional left RG-modules. Recall that its
objects are finite dimensional real vector spaces endowed with a linear G-action and are uniquely
determined by real representations of G. The Borel construction (see [Davis and Kirk, 2001]
Definition 4.6) gives an additive functor :

RGMod ≠æ VectR(BG)

V ‘≠æ

Qca EG ◊G V
¿

BG

Rdb ,

where VectR(BG) denotes the category of real vector bundles over BG. Subsequently, we will
fudge the distinction between real representations and their image under the above functor.

Definition 1.1.10 (Associated Thom Spectrum of V ).
The Thom spectrum associated to a real representation V of G is :

(BG)V := �ŒTh(V ) = �Œ(EG+ ·G SV ),

where SV is the one-point compactification of the real vector space V , which is homeomorphic to
the sphere SdimR(V ), and EG+ ·G SV is the orbit space of the diagonal action of G in EG+ ·SV .
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The Regular Representation Let G be a finite group. The group algebra RG is itself
a left RG-module by left multiplication of G, and defines the real regular representation of G.
Notice that we have the following elementary result.

Lemma 1.1.11.
The real regular representation RG of a finite group G can be regarded as a group embedding
fl : G Òæ O(|G|).

Proof : Recall that as RG is a finite |G|-dimensional real vector space, the identification
RG ≥= R|G| provides a scalar product on RG. Now, since RG is a left RG-module, it defines a
group homomorphism fl : G æ GL|G|(R). Now it corestricts to the orthogonal group, as for any
elements g, gÕ, h in G, we have :

Èfl(h)(g), fl(h)(gÕ)Í = Èhg, hgÕÍ = 1 = Èg, gÕÍ,

i.e., fl(h) œ O(|G|). As the left action of G on itself is faithful, the regular representation is
faithful, i.e., fl is an embedding.

Recall that the direct sum decomposition of RG contains a representative of each isomorphism
class of the irreducible real representations of G. If we apply the Definition 1.1.10 on RG, then
(BG)RG is the Thom spectrum of the sum of all the real bundles over BG. The action of G
on RG fixes the sum of all the basis elements in RG. Thus the vector space RG splits into
the one-dimensional trivial representation of G and a (|G| ≠ 1)-dimensional real representation
called the reduced (real) regular representation of G. In particular, it defines an embedding
fl : G Òæ O(|G| ≠ 1) where the following diagram commutes :

G

O(|G| ≠ 1) O(|G|).

fl fl

We are interested into the following special case.

Notation 1.1.12 (Vn, fln, kfln).
Let n œ N be an integer. We denote by Vn the n-dimensional F2-vector space (Z/2)n. We
denote by fln the real reduced regular representation of Vn. For k œ N, let kfln be the direct
sum of k copies of fln. For n = 0, the notation V0 refers to the trivial group. For k = 0, the
notation 0 · fln denotes the trivial RVn-module. The inclusion Vn Òæ Vn+1 will always refer to
the inclusion onto the first n-th components of Vn+1.

In this paper, we study the Thom spectra BV
kfln

n . Let us give an interpretation for the trivial
cases. First if k = 0, then we get S0·fln ≥= S0 for any n, so that BV

0·fln
n = �ŒBVn+. Now, if

n = 0, then for any k, we get BV
kfl0

0 = S, the sphere spectrum.

For a global interpretation, let us first remark that we are considering the real numbers instead
of the complex numbers because of the following fact.

Proposition 1.1.13.
For G a finite abelian group, the number of real irreducible characters of G is equal to the
number of elements g in G for which g2 = 1G.

Proof : See exercise 23.2 in [James and Liebeck, 2001].

5



Since every element of Vn satisfies the above property, it su�ces to consider the representations
over the real numbers. Of course, we could have also used the fact that the irregular repre-
sentations of a cyclic group of order m are determined by the m-th root of unity, and since
the second roots of unity are simply ±1, all the representations are real. Now recall that each
irreducible representation over C of a finite abelian group is of dimension 1. Therefore, the
reduced regular representation fln is the sum of all the non-trivial irreducible representations
of Vn and we proved that they are all of dimension 1 over R. Thus we interpret BV

kfln
n as the

Thom spectrum associated to k times the sum of all the non-trivial line bundles over BVn.

1.1.3 A Model for B(Z/2)n

Let us choose a model for B(Z/2)n. In order to give a GLn(F2)-action, we use the one involv-
ing the Stiefel manifold. We postpone the description of this action onto the end of this chapter.

Let r Ø 0 be a fixed integer and let m Ø 0 be another integer. The Stiefel manifold Vr(Rr+m)
is the space of orthonormal r-frames in Rr+m :

Vr(Rr+m) =
Ó

v : Rr Òæ Rr+m | v orthogonal linear inclusion
Ô

,

=
Ó

A œ Matr◊(r+m)(R) | tAA = Ir+m

Ô
,

endowed with the subspace topology of Matr◊(r+m)(R) ≥= Rr(r+m). Define Rr+m Òæ Rr+m+1 as
a subvector space by adding zero in the (r + m + 1)-coordinate. We obtain :

· · · Òæ Vr(Rr+m) Òæ Vr(Rr+m+1) Òæ · · · ,

so that we define Vr(RŒ) = colimmØ0Vr(Rr+m). The Grassmann manifold Gr(Rr+m) is the set
of r-dimensional subspaces of Rr+m endowed with the quotient topology given by the map :

p : Vr(Rr+m) ≠æ Gr(Rr+m)
v ‘≠æ Im(v).

Similarly, we define Gr(RŒ) = colimmØ0Gr(Rr+m). Recall there is a natural continuous right
action of O(r) on Vr(Rr+m) given by :

Vr(Rr+m) ◊ O(r) ≠æ Vr(Rr+m)
(v, A) ‘≠æ (v ¶ A).

The action is free, and as Im(v¶A) = Im(v) for any v and A as above, the orbits of this action are
precisely the orthonormal r-frames spanning a given r-dimensional subspace. In other words :
Vr(Rr+m)/O(r) = Gr(Rr+m) and we obtain the following result.

Theorem 1.1.14 (The Universal Principal O(r)-Bundle).
The map p : Vr(Rr+m) ≠æ Gr(Rr+m) is a principal O(r)-bundle, which is universal in dimen-
sions less or equal to (m + 1) ≠ 2. The induced bundle on colimits p : Vr(RŒ) ≠æ Gr(RŒ) is a
model of the universal principal O(r)-bundle.

Proof : Theorem 6.1 in Chapter 8 of [Husemoller, 1993].

The inclusion Rr Òæ Rr+1 induces an inclusion O(r) Òæ O(r + 1), so that we can define the
infinite orthogonal group O := colimrØ0O(r). Then BO = colimrØ0BO(r) = colimrØ0Gr(RŒ).

If G Æ O(r) is a closed subgroup, then G acts also on Vr(Rr+m) for all m Ø 0 and the previous
bundle induces a principal G-bundle.
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Theorem 1.1.15.
For any closed subgroup G Æ O(r), the classifying space BG is given by :

BG = colimmØ0(Vr(Rr+m)/G),

and G Òæ EG = Vr(RŒ) æ BG is a universal principal G-bundle.

Proof : Theorem 6.16 in Chapter 2 of [Mimura and Toda, 1991].

The above construction of BG does not depend of the inclusion of G in O(r). Now for the
case G = Vn, as the group is finite and endowed with the discrete topology, the reduced regular
representation gives then a closed embedding fln : Vn Òæ O(2n ≠1). This gives a model for BVn,
which will be convenient as we will see subsequently for defining a GLn(F2)-action.

Let us describe precisely what happens in the case n = 1 in the next part.

1.1.4 Stunted Projective Spaces

Let n = 1, so that V1 = Z/2 = O(1). The universal principal Z/2-bundle is given as follows.
For m Ø 1, we have the usual principal Z/2-bundle :

Z/2 ≠æ Sm≠1 ≠æ RP m≠1,

obtained by identifying antipodal points on Sm≠1 (see [Husemoller, 1993], Example 2.5 Chap-
ter 4). The standard action of Z/2 = O(1) on R gives the reduced regular representation fl1.
Then the Borel construction :

R ≠æ Sm≠1 ◊Z/2 fl1
⁄m≠æ RP m≠1,

recovers the tautological line bundle ⁄m. We will describe in more details the term tautological
subsequently.

Lemma 1.1.16.
For any k Ø 1, there is an homeomorphism : Th(k⁄m) ≥= RP m+k≠1/RP k≠1.

Proof : The unit disk bundle is given by :

D(k⁄m) = Sm≠1 ◊ Dk

(x, y) ≥ (≠x, ≠y) .

If we denote by [x, y] the class of (x, y) in D(k⁄m), we obtain :

S(k⁄m) = {[x, y] œ D(k⁄m) | ÎyÎ = 1}.

Now we define a relative map :

f :
1
Sm≠1 ◊ Dk, Sm≠1 ◊ Sk≠1

2
≠æ

1
Sm+k≠1, Sk≠1

2
(x, y) ‘≠æ

1
y, (1 ≠ ÎyÎ2)x

2
.

Since f sends (≠x, ≠y) to ≠f(x, y), the universal property of the quotient gives the relative
map : ‚f :

1
D(k⁄m), S(k⁄m)

2
≠æ

1
RP m+k≠1,RP k≠1

2
.

7



Notice that when f is restricted, it induces an homeomorphism :

Sm≠1 ◊ (Dk ≠ Sk≠1) ≥= Sm+k≠1 ≠ Sk≠1.

Thus g induces an homeomorphism D(k⁄m) ≠ S(k⁄m) ≥= RP m+k≠1 ≠ RP k≠1. Therefore, we
obtain the desired homemorphism : Th(k⁄m) ≥= RP m+k≠1/RP k≠1.

Definition 1.1.17 (Stunted Projective Space).
The spaces RP m+k≠1/RP k≠1 =: RP m+k≠1

k are called the stunted projective spaces. The inclu-
sions RP m≠1 Òæ RP m induce maps RP m+k≠1

k æ RP m+k
k , which allow to take the colimit and

define the infinite stunted projective spaces : RP Œ
k := colimmRP m+k≠1

k .

The previous computation extends in the colimits when considering the universal principal
Z/2-bundle :

Z/2 ≠æ SŒ ≠æ RP Œ = B(Z/2),
together with the Borel construction with fl1, so that we obtain :

R æ SŒ ◊Z/2 fl1
⁄≠æ RP Œ.

Proposition 1.1.18.
The Thom spectrum BV

kfl1
1 is given by : (B(Z/2))k⁄ = �ŒRP Œ

k .

1.2. The Thom Spectrum of a Virtual Vector Bundle

By virtual representation of a group, we mean a formal di�erence with respect to direct sum of
two ordinary representations. In this section, the goal is to define BV

kfln
n for negative values of

k. We carry on our description in a greater generality. This part di�ers greatly from the paper
[Takayasu, 1999].

1.2.1 The Tautological Bundle

Let us denote the space : Er(Rr+m) = {(W, x) œ Gr(Rr+m) ◊ Rr+m | x œ W}. This defines the
r-dimensional tautological bundle “m

r :

Rr Er(Rr+m) Gr(Rr+m)

(W, x) W.

“m
r

Endow Rr with its usual O(r)-action. The Borel construction :

Vr(Rr+m) ◊O(r) Rr ≠æ Gr(Rr+m),

yields an r-dimensional vector bundle isomorphic to the tautological bundle, via the map :

Vr(Rr+m) ◊O(r) Rr ≠æ Er(Rr+m)
(v, x) ‘≠æ (Im(v), v(x)) .

The construction of “m
r can be carried on the colimits over m, so that we obtain the universal

tautoligical bundle : Rr Òæ Er(RŒ) “ræ Gr(RŒ). When r = 1, we recover the canonical line
bundle used to introduce the stunted projective spaces (in page 7).

The tautological bundle “r can be considered as the universal r-dimensional vector bundle, as
we have the following result (see the analogy with Theorem 1.1.8).
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Theorem 1.2.1.
For any paracompact space B, the function defined by pulling back :

� : Map(B, BO(r)) ≠æ {real vector bundles over B of dimension r}
f ‘≠æ fú(EO(r)),

induces a bijection from the homotopy set [B, BO(r)] to the set of isomorphism classes of real
vector bundles of dimension r.

Proof : See Theorem 7.2 in Chapter 8 of [Husemoller, 1993].

Definition 1.2.2 (Classifying Map of Vector Bundles).
If p : E æ B is a real vector bundle of dimension r, then we call the classifying map of p the
unique corresponding map up to homotopy f : B æ BO(r) such that fú(“r) = p.

One other useful property of the tautological bundle is the existence of an orthogonal comple-
ment. In general, a metric determines a direct sum decomposition between a subbundle and its
orthogonal complement. Consider the vector bundle ‹“m

r :

Rm Òæ {(W, x) œ Gr(Rr+m) ◊ Rr+m | x ‹ W}
‹“m

r≠æ Gr(Rr+m)
(W, x) ‘≠æ W.

Proposition 1.2.3.
Let ◊r+m be the trivial (r + m)-dimensional vector bundle over Gr(Rr+m). Then we have the
following isomorphisms of vector bundles :

(i)

‹“m
r

≥= “r
m ;

(ii) “m
r ü ‹“m

r
≥= ◊r+m.

Proof : The first isomorphism follows from the map :

Gr(Rr+m) ≠æ Gm(Rr+m)
W ‘≠æ W ‹.

The second isomorphism is defined by the map :

“m
r ü ‹“m

r ≠æ ◊r+m1
(W, x), (W, xÕ)

2
‘≠æ (W, x + xÕ),

using the fact that any vector y œ Rr+m can be written as x+xÕ where x œ W and xÕ œ W ‹.

Definition 1.2.4 (Involution on BO).
Define an involution ÿ : BO æ BO as the unique map induced by the composite :

Gr(Rr+m) Gm(Rr+m) Gm(RŒ) BO,

where the left map is as the one in the previous proof, i.e., it is the mapping W ‘æ W ‹.

Be careful that the construction of ‹“m
r cannot be carried on the colimits over m, which means

that the universal tautological bundle “r does not have a complementary bundle anymore.
However, the best thing we have is the above involution.
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1.2.2 Virtual Vector Bundles

In the following argument, let B always be a paracompact space. We are ready to define Thom
spectrum for virtual vector bundle. Intuitively, we want to define a twisted negative suspension
for spectra, such that a Thom isomorphism is valid. So if we have a vector bundle p : E æ B of
dimension r, we would like to consider a corresponding «vector bundle» ≠p of dimension ≠r.
For that, we should be interested on what a «vector space» of dimension ≠r is. Let us begin
with the following observation. A vector space of dimension r can actually be regarded as an
element in BO(r) = colimmØ0(Gr(Rr+m)). So, one could consider a virtual vector space as an
element in BO. Now, as we saw in Theorem 1.2.1, a vector bundle p : E æ B, can be regarded
as its classifying map f : B æ BO(r). So a virtual vector bundle should be a map B æ BO.

Definition 1.2.5 (Virtual Vector Bundle).
A virtual vector bundle over a space B is a map f : B æ Z ◊ BO with constant value on the Z
component. The value of this constant is called the rank of f .

For each virtual vector bundle f over B with rank r, there is a convergent filtration :

B≠r ™ B≠r+1 ™ . . . ™ B = colimiØ≠r(Bi),

where Bi = f≠1({r} ◊ BO(r + i)), for r + i Ø 0. Then define Ei as the total space of the
pullback ›i(f) = fú(“r+i) :

Ei Er+i(RŒ)

Bi BO(r + i).

›i(f) “r+i

f

Now notice that the bundle ›i+1(f) pullbacks to ›i(f) ü Á1 along the inclusion Bi Òæ Bi+1,
where Á1 is the trivial one-dimensional bundle over Bi. Using the functoriality of Thom spaces,
we get a map :

�Th(›i(f)) ≠æ Th(›i+1(f)).

By formally (de)suspending (i + 1)-times both sides after applying the suspension functor �Œ

leads to the following definition.

Definition 1.2.6 (Thom Spectrum (Virtual Case)).
For any virtual vector bundle f : B æ Z ◊ BO of rank r, its Thom spectrum Bf is defined as :

Bf = colimr+iØ0
1
�≠i�ŒTh(›i(f)) ≠æ �≠(i+1)�ŒTh(›i+1(f))

2
.

Remark 1.2.7.
Notice that if f is homotopic with a map g of same rank, then Bg ƒ Bf . This follows directly
from Theorem 1.2.1. So we are actually considering elements in [B,Z ◊ BO] so that we are in
the context of real K-theory, even though we should not make any use of this theory here.

Now, by Theorem 1.2.1, if we consider an actual real vector bundle p : E æ B, of dimension
r Ø 0, then p is obtained as a pullback :

E Er(RŒ)

B BO(r),

p “r

f

10



where f : B æ BO(r) is a classifying map of p. Then we get B0 = B1 = · · · = B and thus :

Bf = �ŒTh(p),

i.e., we recover our previous definition of a Thom spectrum of p. This construction will also
remain functorial in the following sense.

Proposition 1.2.8.
Let f : B æ Z ◊ BO be a virtual vector bundle of rank r over B. For any map g : A æ B,
there is a map :

gú : Af¶g ≠æ Bf ,

such that (idB)ú = idXf and if h : AÕ æ A then (g ¶ h)ú = gú ¶ hú.

Proof : Let Bi = f≠1({r} ◊ BO(r + i)) and :

Ai = (f ¶ g)≠1({r} ◊ BO(r + i)) = g≠1(f≠1({r} ◊ BO(r + i))),

for any i Ø ≠r. We get an obvious map g : Ai æ Bi. Notice that under this map, the bundle
›i(f) pullbacks to ›i(f ¶ g), using the interchange property of limits. Therefore, using Thom’s
functoriality, we get a map Th(›i(f ¶ g)) æ Th(›i(f)), for each i, and we get the following
commutative diagram :

�Th(›i(f ¶ g)) Th(›i+1(f ¶ g))

�Th(›i(f)) Th(›i+1(f)).

This defines the map of spectra gú desired. It is straightfoward to see (idB)ú = idXf , and the
equality (g ¶ h)ú = gú ¶ hú follows from the commutativity of :

AÕ
i Ai

Bi,

h

g¶h g

where AÕ
i = (f ¶ g ¶ h)≠1(BO(r + i)), for each i such that r + i Ø 0.

The Thom spectrum also verifies, as desired, a Thom isomorphism theorem.

Theorem 1.2.9 (Thom Isomorphism (Virtual Case)).
Let f : B ≠æ Z◊ BO be a virtual vector bundle over B of rank r. Then, for each m Ø 0, there
is an isomorphism :

Hm(B)
≥=≠æ Hm+r(Bf ),

uniquely defined by a Thom class uf œ Hr(Bf ).

Sketch of the Proof : Each vector bundle ›i(f) over Bi, for r + i Ø 0, is a (r + i)-
dimensional vector bundle. In particular, we can apply the usual Thom isomorphism theorem
(Theorem 1.1.3), so that Hm(B) ≥= ÂHm+r+i(Th(›i(f)). The isomorphism fits in the commuta-
tive diagram : ÂHm+r+i+1(�Th(›i(f))) ÂHm+r+i+1(Th(›i+1(f)))

Hm(Bi) Hm(Bi+1).
Thom ≥= ≥= Thom

11



Now, as all the telescope diagrams considered respect the Mittag-Le�er conditions (see pages
148-149 in [May, 1999]), the cohomology of their colimit is isomorphic to the induced limit on
cohomology. Therefore, we obtain an isomorphism :

Hm(B) ≥= Hm(colimiØ≠r(Bi))
≥= limiØ≠r

1
Hm(Bi) Ω Hm(Bi+1)

2
≥= limiØ≠r

1
Hm+r(�≠i�ŒTh(›i(f))) Ω Hm+r(�≠(i+1)�ŒTh(›i+1(f)))

2
≥= Hm+r

1
colimiØ≠r

1
�≠i�ŒTh(›i(f))) æ �≠(i+1)�ŒTh(›i+1(f)))

2 2
≥= Hm+r(Bf ).

This defines the Thom Isomorphism, and is determined by the cup product of a Thom class uf

under the image of H0(B).

Notation 1.2.10.
Let f, f Õ : B æ Z◊BO be two virtual vector bundles over B of rank r and s respectively. Then
we denote f ü f Õ the virtual vector bundle of rank r + s over B defined as the composite :

B
1
{r} ◊ BO

2
◊

1
{s} ◊ BO

2
{r + s} ◊ BO Z ◊ BO.

(f,f Õ) µ

The associative map µ : BO ◊ BO ≠æ BO follows from the structure of BO as a H-group. It
is given by :

BO(n) ◊ BO(m) ≠æ BO(n + m),

which is defined by the direct sum (see page 294 in [Aguilar et al., 2002] for more details).

Proposition 1.2.11.
Let f : B ≠æ Z ◊ BO be a virtual vector bundle of rank r, and let f Õ : B ≠æ BO(s) be the
classifying map of real vector bundle p : E æ B of dimension s Ø 0. Then there is a map :

Bf ≠æ B(füf Õ),

which is natural in the sense that, for any map g : A æ B, the following diagram commutes :

Af¶g A((füf Õ)¶g)

Bf B(füf Õ).

gú gú

Proof : Let Bi = f≠1({r}◊BO(r+i)) for r+i Ø 0 and BÕ
j = (f ü f Õ)≠1({r+s}◊BO(r+s+j)),

for r + s + j Ø 0. Now the inclusion Bi Òæ Bi+s defines a map Bi æ BÕ
i, for any r + i Ø 0, and

this fit into the commutative diagram :

Ei Ei ü E EÕ
i Er+s+i(RŒ)

Bi Bi BÕ
i BO(r + s + i).

›i(f) ›i(f)üp ›i(füf Õ) “r+s+i

füf Õ
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This gives a map Th(›i(f)) æ Th(›i(f ü f Õ) which fits into the commutative diagram :

�Th(›i(f)) Th(›i+1(f))

�Th(›i(f ü f Õ)) Th(›i+1(f ü f Õ)).

Now, given a map g : A æ B, the naturality follows from the commutativity of the diagram :

Ai AÕ
i

Bi BÕ
i,

g g

where Ai = (f ¶g)≠1({r}◊BO(r+i)) and AÕ
i = ((f ¶g)ü(f Õ ¶g))≠1({r+s}◊BO(r+s+i)).

Let us now define precisely what we tried to call ≠p for a vector bundle p.

Definition 1.2.12 (Associated Virtual Vector Bundle).
Let p : E æ B be a r-dimensional vector bundle, where r Ø 0, and f : B æ BO(r) a classifying
map. Compose f with the inclusion BO(r) Òæ BO and the involution ÿ : BO æ BO, to get a
map1 :

B {≠r} ◊ BO Z ◊ BO

called the associated virtual vector bundle of rank ≠r, denoted ≠f .

Definition 1.2.13 (Virtual Representation ≠V ).
Let G be a finite topological group. Let V be a real representation of G. The virtual represen-
tation ≠V of V is the map obtained as above, when V is considered as a vector bundle over
BG, via the Borel construction.

The above notation gives a virtual Thom spectrum BG≠V . Notice that if 0 denotes the trivial
RG-module, then BG≠0 = BG0. Moreover, if Ák is the trivial representation of G of dimension
k Ø 0, we can extend the notation for k < 0, i.e., if k < 0 then Ák = ≠Á≠k. Notice that
we get : BGÁküV = �kBGV for any k œ Z and any representation (virtual or not) V . The
previous Proposition 1.2.8 proves the following result. If H Æ G is a subgroup, we denote V H

the induced RH-module.

Proposition 1.2.14.
Let V be a real representation of the group G. Suppose two subgroups H1 Æ H2 Æ G are
given. Then there exists a map of spectra BH

≠(V H1)
1 æ BH

≠(V H2)
2 induced by the inclusion

H1 Òæ H2. Moreover, if H1 Æ H2 Æ H3 Æ G, then the following diagram commutes :

BH
≠V H1
1 BH

≠V H2
2

BH
≠V H3
3 .

1We are secretly using the inverse map in real K-theory which comes from the H-group structure of BO with
the involution ÿ.
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Proof : Suppose V is of dimension r Ø 0. The inclusion H1 Òæ H2 gives a map BH1 æ BH2
by the functoriality of the classifying space. Notice then we get the commutative diagram :

BH1 BH2 BG BO(r),

V H1

V H2

V

where, by abuse of notation, we denoted by V the classifying map of the vector bundle V over
BG.

1.3. Steinberg Idempotent in F2 [GLn(F2)]

This section is purely algebraic and is devoted to find relevant properties of the Steinberg
idempotent.

Notation 1.3.1.
For an integer n Ø 1, we denote by Sn the symmetric group (permutations matrices), Bn the
upper triangular subgroup of GLn(F2) and Tn the cyclic subgroup of Sn generated by (1, . . . , n).
If H Æ GLn(F2), we denote by H =

q
hœH h œ F2[GLn(F2)].

Definition 1.3.2 (Steinberg Idempotent).
For n Ø 1, the Steinberg idempotent is the element en = BnSn, in F2[GLn(F2)]. For n = 0, let
e0 be the trivial element. The element en is indeed an idempotent, see [Steinberg, 1956].

Consider 1 Æ ¸ Æ n. Let PrF2(V¸, Vn) be the set of all F2-linear surjections Vn æ V¸, which
can be regarded as a subset of the matrices Mat¸◊n(F2). Then the set F2[PrF2(V¸, Vn)] is a left
GL¸(F2)-module and right GLn(F2)-module.

Lemma 1.3.3.
Let H Æ GLn(F2) be a subgroup and x an element of F2[PrF2(V¸, Vn)]. If the order of the
stabilizer StabH(x) := {h œ H | xh = 0} is even, then xH = 0.

Proof : Let H be a set of representatives in H of the elements of the set
1
StabH(x)

2
\H of

right cosets. We have :

xH =
ÿ
hœH

xh

= |StabH(x)|
ÿ

hœH

xh

= 0,

as |StabH(x)| is even.

Lemma 1.3.4.
Let n Ø ¸ Ø 2. Let A = (AÕ, v) œ PrF2(V¸, Vn), where AÕ œ Mat¸◊(n≠1)(F2) and v œ V¸. If
rank(AÕ) Æ n ≠ 2, then Aen = 0.
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Proof : Write A = (v1, . . . , vn) where vi œ V¸ for 1 Æ i Æ n, such that AÕ = (v1, . . . , vn≠1)
and vn = v. Since rank(AÕ) Æ n ≠ 2, the Gauss elimination implies that there exists s Æ n ≠ 1
and ai œ F2 for all 1 Æ i Æ s, such that as = 1 and :

sÿ
i=1

aivi = 0.

Define the triangular matrix :

B =

Qccccccca

1 a1
. . . ... 0

as

0 . . .
1

Rdddddddb
œ Bn Æ GLn(F2).

We get a matrix C := AB = (v1, . . . , vs≠1, 0, vs+1, . . . vn) œ PrF2(V¸, Vn). We see that StabBn(C)
contains a subgroup : Y_______]_______[

Qccccccca

1 0
. . .

1 c1 · · · cn≠s

0 . . .
1

Rdddddddb
| ci œ F2

Z_______̂
_______\

,

of order 2n≠s. Therefore, by Lemma 1.3.3, we get ABn = ABBn = CBn = 0. Thus we obtain :
Aen = ABnSn = 0.

Notation 1.3.5.
Let M be a right F2[GLn(F2)]-module and e be an idempotent in F2[GLn(F2)]. We denote M ·e
the sub F2-module of M which consists of e-invariant elements.

Proposition 1.3.6.
Suppose ¸ Æ n ≠ 2. For any right F2[GL¸(F2)]-module M , we have :1

M ¢F2[GL¸(F2)] F2[PrF2(V¸, Vn)]
2

· en = 0.

Proof : Immediate from Lemma 1.3.4.

Lemma 1.3.7.
Let In≠1,n = (In≠1, 0) œ Pr(Vn≠1, Vn) where In≠1 œ Matn≠1◊n≠1 is the unit matrix. Then in
F2[Pr(Vn≠1, Vn)], the following equality holds :

(In≠1,nT n)en = In≠1,nen = en≠1(In≠1,nT n).

Proof : Omitted. See [Nishida, 1986], Lemma 1.1.

Proposition 1.3.8.
For any right F2[GLn≠1(F2)]-module M , we have an isomorphism :

M · en≠1 ≥= M ¢F2[GLn≠1(F2)] F2[PrF2(Vn≠1, Vn)] · en.
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Proof : Consider the case M = F2[GLn≠1(F2)]. The general case will follow by the fact that
for any module M : M ¢F2[GLn≠1(F2)] F2[GLn≠1(F2)] ≥= M . Define a homomorphism :

f : F2[GLn≠1(F2)] · en≠1 ≠æ F2[Pr(Vn≠1, Vn)] · en

A ‘≠æ AIn≠1,nT n.

From Lemma 1.3.7, we see that f is a monomorphism. To show that f is an epimorphism,
consider any element A = (AÕ, v) in GLn≠1(F2). If rank(AÕ) Æ n ≠ 2, then Lemma 1.3.4 implies
that Aen = 0. If rank(AÕ) = n ≠ 1, then by Gauss elimination, there exists C œ GLn≠1(F2) and
B œ Bn such that CAB = In≠1,n. Then :

Aen = C≠1In≠1,nB≠1en

= C≠1In≠1,nen, as B≠1 œ Bn,

= C≠1en≠1In≠1,nT n, by Lemma 1.3.7,

= f(C≠1).
Therefore f is an isomorphism of F2-vector spaces.

1.4. The Generalized Mitchell-Priddy Spectrum L(n, k)

In order to define the spectrum L(n, k) we need to give a GL2(F2)-action on BV
kfln

n . We shall
introduce this action in a greater generality. We define intermediate spectra L((n, ¸), k) that
will be useful subsequently, as they will allow us to relate the spectra L(n, k) and form cofibre
sequences.

We now consider all our spectra after 2-completion and work with the category S2. We refer
the reader to Appendix B. We shall omit the functor L2 from the notation, i.e., all spectra are
implicitly completed at the prime two. Notice that the Thom isomorphism proves that all our
spectra are connective and locally of finite type.

1.4.1 The Functor Xk
n,¸

Notation 1.4.1.
Let C(n, ¸) denote the poset of F2-subspaces W of Vn such that dimF2(W ) Æ ¸, ordered by
inclusion. We denote C(n) := C(n, n).

For any element W in C(n, ¸), one can construct the Thom spectrum BW kfln W for any k œ Z.
Notice we write unambiguously kfln W as : (kfln) W

≥= k(fln) W by the interchange property of
the limits. For W1 Æ W2 Æ Vn, we define maps :

iW2,W1 : BW
kfln W1
1 ≠æ BW

kfln W2
2 ,

as follows. We seperate the cases k Ø 0 and k < 0 this time only to be explicit, but the
virtual case cover both cases, so that we do not have to consider that. For the positive case
k Ø 0, the inclusion W1 Òæ W2 defines a map BW1 æ BW2 and a map EW1 æ EW2 using the
functoriality of the classifying space. Since we also obtain a vector bundle map :

EW1 ◊W1 kfln W1 EW1 ◊W2 kfln W2

BW1 BW2,
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via the natural inclusion kfln|W1
Òæ kfln|W2

, the functoriality of Thom spaces gives the map
of spectra iW2,W1 . For the case k < 0, Proposition 1.2.14 defines iW2,W1 . It is elementary to
see that for W1 Æ W2 Æ W3 Æ Vn, we get iW3,W2 ¶ iW2,W1 = iW3,W1 (see Proposition 1.2.14).
Therefore we obtain a functor :

Xk
n,¸ : C(n, ¸) ≠æ S2

W ‘≠æ BW kfln|W1
W1 Òæ W2

2
‘≠æ

3
iW2,W1 : BW

kfln|W1
1 ≠æ BW

kfln|W2
2

4
.

The GLn(F2)-Action We present in a very explicit way the left action of GLn(F2) on the
spectra BV

kfln
n , for k œ Z. We carry on our description of maps BV

kfln
n æ BV

kfln
n for each

A œ GLn(F2), in a greater generality by defining maps :

BW kfln W ≠æ B(A(W ))kfln A(W ) ,

for any W Æ Vn. The functoriality of the classifying space provides a map BW æ B(A(W ))
which can be described explicitly as follow. For clarity, let us denote RVn the reduced regular
representation as a real vector space. If we write r := 2n ≠ 1, then we have the embedding
fln : Vn Òæ O(r) and the identification Rr ≥= RVn. Then one can write formally, for any
w œ W Æ Vn :

fln(w) : RVn ≠æ RVn

x ‘≠æ x + w.

Moreover, each element A œ GLn(F2), as an automorphism of Vn, can be regarded as an
orthogonal matrix in O(r) via the identification :

A : RVn ≠æ RVn

x ‘≠æ Ax.

Then, for any w œ W Æ Vn, the following diagram commutes by linearity of A :

RVn RVn

RVn RVn.

A

fln(A≠1(w)) fln(w)

A

(ù)

The map BW æ B(A(W )) is defined from :

Vr(RŒ)/W ≠æ Vr(RŒ)/(A(W ))
[v] ‘≠æ

Ë
v ¶ A≠1

È
.

It is well-defined as [v ¶ fln(w) ¶ A≠1] = [v ¶ A≠1 ¶ fln(A(w))] by the commutativity of (ù). Using
the naturality of Thom spectrum (Proposition 1.2.8) together with the commutativity of the
diagram :

BW B(A(W )) BO(r)

|k|fln W

|k|fln A(W )
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gives the desired map. Actually, Proposition 1.2.8 defines a natural transformation :

Aú : Xk
n,¸ =∆ Xk

n,¸ ¶ A,

where each element A œ GLn(F2) defines a functor :

A : C(n, ¸) ≠æ C(n, ¸)
W ‘≠æ A(W ).

Using again Proposition 1.2.8, we get that (In)ú is the identity transformation idXk
n,¸

, and that,
for all A, C in GLn(F2), the equality (AC)ú = (Aú)C ¶Cú holds. Using Proposition A.9 expresses
the following result.

Proposition 1.4.2.
For all k œ Z, the spectrum BV

kfln
n is endowed with a left GLn(F2)-action. More generally,

the functor Xk
n,¸ : C(n, ¸) æ S2 is a GLn(F2)-diagram, in the sense of Definition A.8, for all

0 Æ ¸ Æ n and k œ Z.

1.4.2 Stable Splittings

Recall that in the stable homotopy category S , the set of all maps between spectra X and Y
up to homotopy, denoted [X, Y ], is an abelian group, and [X, X] is a ring.

Notation 1.4.3 (e · X).
Let f : R æ [X, X] be a ring homomorphism. Let e be an idempotent of R. We denote by e · X
the mapping telescope :

hocolim
3

X
f(e)≠æ X

f(e)≠æ X
f(e)≠æ · · ·

4
.

There are natural maps e · X æ X and X æ e · X.

Lemma 1.4.4.
Let X and e be as above. Then for any spectrum E, the isomorphism : Eú(e · X) ≥= Eú(X) · e
holds.

Proof : Since e2 = e, the Mittag-Le�er conditions provide the isomorphism.

The maps X æ e · X and e · X æ X provides a splitting of X :

X ƒ
1
e · X

2
‚

1
(1 ≠ e) · X

2
.

For any 2-completed spectrum X with a G-action, there exists a ring homomorphism (by Propo-
sition B.9) : „Z2[G] ≠æ [X, X].
By the Hensel’s Lemma, any idempotent in F2[G] can be lifted to an idempotent in „Z2[G] via
the epimorphism „Z2 æ Z/2. Therefore, if we take G = GLn(F2), one can consider the Steinberg
idempotent en (Definition 1.3.2) in „Z2[GLn(F2)].

Definition 1.4.5 (Generalized Mitchell-Priddy Spectrum L(n, k)).
For k œ Z, and n Ø 0, the generalized Mitchell-Priddy spectrum, denoted2 L(n, k), is defined
as :

L(n, k) = en · BV kfln
n .

2In [Takayasu, 1999], it is denoted M(n)k.
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Using Proposition A.12 with Proposition 1.4.2 allows to consider intermediate spectra :

L((n, ¸), k) = en · hocolim Xk
n,¸.

The intermediate spectra L((n, ¸), k) are not complicated once ¸ Æ n ≠ 2. Indeed, as we will see
in Corollary 2.1.5, the spectrum L((n, ¸), k) is contractible for ¸ Æ n ≠ 2. For the case ¸ = n,
we recover the generalized Mitchell-Priddy spectrum L(n, k), as we see in the following lemma.

Lemma 1.4.6.
For any GLn(F2)-diagram F : C(n) æ S2, we have the equivalence : en ·hocolim F ƒ en ·F (Vn).
In particular, we have : L((n, n), k) ƒ L(n, k).

Proof : Notice that C(n) has terminal object Vn = (Z/2)n. Therefore the natural map
F (Vn) ≠æ hocolim F is a weak equivalence (see [Bousfield and Kan, 1972] Chapter XII, 3.1).
Thus we have the homotopy equivalence F (Vn) ƒ hocolim F . It is GLn(F2)-equivariant.

The case ¸ = n≠1 is the only non-trivial case and will be the object of study of the next chapter.
We answer on how does the spectrum L((n, n ≠ 1), k) relates to the generalized Mitchell-Priddy
spectrum. We first define maps that connects the spectra if we change the indices n or k.

1.4.3 The Map jn,k

For all k œ Z, the inclusion kfln Òæ (k+1)fln defines a map of spectra jn,k : BV
kfln

n æ BV
(k+1)fln

n ,
and more generally a natural transformation :

jn,k : Xk
n,¸ =∆ Xk+1

n,¸ .

The explicit definitions goes as follows. Proposition 1.2.11 provides a map :

BW kfln W ≠æ BW kfln W üfln W = BW (k+1)fln W ,

for any k œ Z and W œ C(n, ¸), such that the following diagram commutes :

BW kfln W BW (k+1)fln W

(BA(W ))kfln A(W ) (BA(W ))(k+1)fln A(W ) ,

jn,k

Aú Aú

jn,k

for any A in GLn(F2). Therefore Proposition A.9 gives the following result.

Proposition 1.4.7.
For all k œ Z, the natural transformation jn,k : Xk

n,¸ =∆ Xk+1
n,¸ is a GLn(F2)-map, in the sense

of Definition A.11.

The previous proposition induces the maps :

jn,k : L(n, k) ≠æ L(n, k + 1),

and more generally the maps :

jn,k : L((n, ¸), k) ≠æ L((n, ¸), k + 1).
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1.4.4 The Map in,k

In the following argument, let n Ø 1. Denote the inclusion ÿ : Vn≠1 Òæ Vn of the first (n ≠ 1)-
terms. It defines a functor for any 0 Æ ¸ Æ n ≠ 1 :

ÿ : C(n ≠ 1, ¸) ≠æ C(n, ¸)
W ‘≠æ ÿ(W ).

Therefore we obtain a functor :

ÿú : S
C(n,¸)
2 ≠æ S

C(n≠1,¸)
2

X ‘≠æ X ¶ ÿ.

By the functoriality of homotopy colimits, we get a natural map :

hocolim ÿú : hocolim(ÿú(X)) ≠æ hocolim(X).

The inclusion ÿ : Vn≠1 Òæ Vn induces an inclusion Aut(Vn≠1) Òæ Aut(Vn), explicitly :

GLn≠1(F2) Òæ GLn(F2)

A ‘≠æ
A

A 0
0 1

B
.

Then if X is a GLn(F2)-diagram, it is also a GLn≠1(F2)-diagram. Proposition A.12 endows
hocolim X and hocolim ÿú(X) with a GLn≠1(F2) action, such that the natural map (hocolim ÿú)
is GLn≠1(F2)-equivariant.

Notation 1.4.8.
For any functor X : C(n, ¸) æ S , let us denote (X)

C(n≠1,¸) := ÿú(X).

Lemma 1.4.9.
For n Ø 1, we have the isomorphism of RVn≠1-modules : (fln) Vn≠1

≥= 2fln≠1 üÁ, where Á denotes
the one-dimensional trivial representation of Vn≠1.

Proof : In general, for groups H Æ G, recall that G =
‡

gœH\G Hg. Then a simple investiga-
tion of the action of H gives the isomorphism :

(RG)|H
≥=

n
H\G

RH.

Since Vn/Vn≠1 ≥= F2 as vector spaces, we obtain : (fln)|Vn≠1
≥= fln≠1 ü fln≠1 = 2fln≠1. Since the

trivial representation of Vn clearly restricts to the trivial reprensentation of Vn≠1, the result
follows.

Theorem 1.4.10.
For n Ø 1 and ¸ Æ n ≠ 1, the functors �kX2k

n≠1,¸ and (Xk
n,¸)

C(n≠1,¸) are naturally isomorphic
via a GLn≠1(F2)-map, in the sense of Definition A.11.

Proof : The previous lemma generalizes directly to :

k(fln) W
≥= 2k(fln≠1) W ü Ák,
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for k Ø 0 and W œ C(n ≠ 1, ¸). Then Proposition 1.2.8 provides that the induced maps :

BW kfln W ≠æ BW 2kfln≠1 W
üÁk = �kBW 2kfln≠1 W

are homotopy equivalences and define a natural transformation which is a GLn≠1(F2)-map.

We now define the map in,k. First define :

in,k : �kL((n ≠ 1, ¸), 2k) ≠æ L((n, ¸), k),

as the composite of :

en≠1 · �khocolim
1
X2k

n≠1,¸

2
en≠1 · hocolim

1
(Xk

n,¸)
C(n≠1)

2
en · hocolim(Xk

n,¸)
ƒ

where the right map is induced by hocolim(ÿú). We also denote in,k the map :

in,k : �kL(n ≠ 1, 2k) ≠æ L(n, k),

which is defined using the previous case with the composite :

�kL((n ≠ 1, n ≠ 1), 2k) L((n, n ≠ 1), k) L((n, n), k) ƒ L(n, k)
in,k

where the right map is induced by the inclusion C(n, n ≠ 1) Òæ C(n, n) = C(n). When k = 0,
it is the map induced by the GLn≠1(F2)-equivariant map :

Bÿ : �ŒBVn≠1+ ≠æ �ŒBVn+.
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CHAPTER 2

The Cofibre Sequence

This chapter is devoted to present the cofiber sequence of Takayasu (Theorem 2.3.3) :

L(n ≠ 1, 2k + 1) ≠æ L(n, k) jn,k≠æ L(n, k + 1).

For this matter, we shall make use of two cofiber sequences which involves the intermediate
spectra L((n, ¸), k). The first one (Corollary 2.1.8) :

�kL((n ≠ 1, n ≠ 2), 2k) ≠æ �kL(n ≠ 1, 2k) in,k≠æ L((n, n ≠ 1), k)

uses one of the maps in,k, and the second uses the map jn,k (Proposition 2.3.2) :

L((n, n ≠ 1), k) ≠æ L(n, k) jn,k≠æ L(n, k + 1)

2.1. A First Cofibre Sequence

The proof of the first cofibre sequence uses the spectral sequences of homotopy colimits.

Theorem 2.1.1 (Cohomology Spectral Sequence for Homotopy Colimits).
For any poset C and functor X : C æ S , there is a cohomological spectral sequence :

Ep,q
r (X) ∆ Hp+q(hocolim X),

where the first page is given by : Ep,q
1 (X) =

n
(W0(W1(···(Wp)œC

Hq(X(W0)), and the di�erentials

dp,q
1 : Ep,q

1 æ Ep+1,q
1 are given by the alterning sum

qp
i=0 (≠1)iˆi, where the di�erentials ˆi :

ˆi :
n

(W0(W1(···(Wp)œC

Hq(X(W0)) ≠æ
n

(W0(W1(···(Wp+1)œC

Hq(X(W0))

are described as follows. Notice that any sequence (W0 ( . . . ( Wp+1) give a new sequence
(W0,( . . . ( Wp) by omitting one term. If i > 0, then the terms W0 are the same and ˆi is
induced by the identity id : Hq(X(W0)) æ Hq(X(W0)). If i = 0, then the inclusion W0 Òæ W1
provides a morphism Hq(X(W1)) æ Hq(X(W0)) which induces ˆ0.

Proof : See [Bousfield and Kan, 1972] Chapter XII, 5.8.
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Let G be a group. Let C be a poset together with a G-action Let X : C æ S2 be a G-diagram in
S2, in the sense of Definition A.8. From Proposition A.12, the spectrum hocolim X is endowed
with a (left) G-action. If e œ „Z2[G] is an idempotent, then the spectral sequence of Theorem
2.1.1 defines the spectral sequence :

E
p,q
r := Ep,q

r (X) · e ∆ Hp+q(e · hocolim X),

since the following functor is exact :

ModF2[G] ≠æ F2Mod

M ‘≠æ M · e.

Definition 2.1.2 (The Cochain Complex Kq
•(Z)).

Let n Ø 1. Let Z : C æ S be a GLn(F2)-diagram in the sense of Definition A.8, such that
C(n) Æ C is a full subcategory and the action of GLn(F2) on C agrees with its standard action
on C(n). For any q œ Z, denote the cochain complex Kq

•(Z) :

Kq
•(Z) : 0 Hq

1
en · Z(Vn)

2
Hq

1
en≠1 · Z(Vn≠1)

2
. . . .

ÿú
n

ÿú
n≠1

where ÿj+1 : ej · Z(Vj) æ ej+1 · Z(Vj+1) is the composite of the maps :

ej · Z(Vj) ≠æ Z(Vj) ≠æ Z(Vj+1) ≠æ ej+1 · Z(Vj+1).

The middle arrow is induced by the inclusion of ÿj+1 : Vj Òæ Vj+1 by adding a zero on the
(j + 1)-term, for all j Ø 0. Let us denote the cochain complex Kq

•(Z)[≠1] given by :

Kq
•(Z)[≠1] : 0 Hq

1
en≠1 · Z(Vn≠1)

2
Hq

1
en≠2 · Z(Vn≠2)

2
. . . ,

ÿú
n≠1 ÿú

n≠2

We simply shifted the previous cochain complex. We will see subsequently that Kq
•(Z) is indeed

a chain complex.

Notation 2.1.3.
For any functor Xn : C(n) ≠æ S , denote by Xn,¸ : C(n, ¸) æ S , for 0 Æ ¸ Æ n, the composite :

C(n, ¸) C(n, n) = C(n) S .
Xn

Lemma 2.1.4.
For any GLn(F2)-diagram Xn,¸ : C(n, ¸) æ S , we have :

(i) E
p,q
1 = Ep,q

1 (Xn,¸) · en = 0, if ¸ Æ n ≠ 2;

(ii) E
p,q
2 = Ep,q

2 (Xn,n≠1) · en
≥= Hp(Kq

•(Xn,n≠1)[≠1]), the p-th cohomology of the cochain
complex.

Proof : The E1 of the spectral sequence is given by :

Ep,q
1 (Xn,¸) ≥=

n
(W0(W1(···(Wp)œC(n,¸)

Hq(Xn,¸(W0))

which is isomorphic to :n
a0<···<apÆ¸

Hq(Xn,¸(Va0)) ¢F2[GLa0 ] F2[Pr(Va0 , Va1)] ¢F2[GLa1 ] · · · ¢F2[GLap ] F2[Pr(Vap , Vn)].

24



Now according to Proposition 1.3.6, we see directly that for ¸ Æ n ≠ 2, the above direct sum is
trivial once we applied en on the right. This shows (i). For ¸ = n ≠ 1, we apply Proposition
1.3.8. For instance, for p = 0, we have :

E
0,q
1

≥=
n

a0Æn≠1
Hq(Xn,n≠1(Va0)) ¢F2[GLa0 ] F2[Pr(Va0 , Vn≠1)] · en,

which is trivial for all the terms a0 Æ n≠2 by Proposition 1.3.6, and for the remaining a0 = n≠1,
it is by Proposition 1.3.8 :

E
0,q
1

≥= Hq(Xn,n≠1(Vn≠1)) · en≠1 ≥= Hq(en≠1 · Xn,n≠1(Vn≠1)).

For p = 1, we get that the summand :

E
1,q
1

≥=
n

a0<a1Æn≠1
Hq(Xn,n≠1(Va0)) ¢F2[GLa0 ] F2[Pr(Va0 , Va1)] ¢F2[GLa1 ] F2[Pr(Va1 , Vn≠1)] · en,

is trivial for the terms a1 Æ n ≠ 2 by Proposition 1.3.6, and so we get by Proposition 1.3.8 :

E
1,q
1

≥=
n

a0<n≠1
Hq(Xn,n≠1(Va0)) ¢F2[GLa0 ] F2[Pr(Va0 , Vn≠1)] · en≠1.

The above direct sum is always trivial except for a0 = n ≠ 2, and so :

E
1,q
1

≥= Hq(en≠2 · Xn,n≠1(Vn≠2)).

The computations carries on for p Ø 2. To finish the proof, notice that we get the commutative
diagram :Qa n

(W0(···(Wp)
Hq(Xn,n≠1(W0))

Rb · en

Qa n
(W0(···(Wp+1)

Hq(Xn,n≠1(W0))

Rb · en

Hq(Xn,n≠1(Vn≠p≠1)) · en≠p≠1 Hq(Xn,n≠1(Vn≠p≠2)) · en≠p≠2

Hq(en≠p≠1 · Xn,n≠1(Vn≠p≠1)) Hq(en≠p≠2 · Xn,n≠1(Vn≠p≠2)).

dp,q
1

≥= ≥=

≥= ≥=
ÿú
n≠p≠1

Therefore by definition of the E2-page, we obtain the result (ii).

As promised, the following corollary shows that L((n, ¸), k) is contractible whenever ¸ Æ n ≠ 2,
for all k œ Z.

Corollary 2.1.5 (The Case ¸ Æ 2).
Let Xn,¸ : C(n, ¸) æ S2 be any GLn(F2)-diagram. For ¸ Æ n ≠ 2, there is an homotopy
equivalence en · hocolim Xn,¸ ƒ ú.

Proof : Use previous lemma and Corollary B.8.

Now recall the Notation A.14. The Grothendieck construction Cone(C(n, n ≠ 1), C(n)) can be
regarded as a poset with a GLn(F2)-action which agrees with the standard action of GLn(F2)
on its full subcategory C(n).
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Lemma 2.1.6.
For any GLn(F2)-diagram Y : Cone(C(n, n ≠ 1), C(n)) ≠æ S , its E2-page is given by :

E
p,q
2 = Ep,q

2 (Y ) · en
≥= Hp(Kq

•(Y )).

Proof : Let us first compute the E1-page :

Ep,q
1 (Y ) =

n
(W0(...(Wp)œCone(C(n,n≠1),C(n))

Hq(Y (W0)).

Recalling the definition of the Grothendieck construction of Cone(C(n, n ≠ 1), C(n)), we can
separate the direct sums as follows :

Ep,q
1 (Y ) =

Qa n
(W0(...(Wp)œC(n)

Hq(Y (W0))

Rb ü

Qccccca
n

(W0(...(Wp≠1¸ ˚˙ ˝
œC(n,n≠1)

(ú)
Hq(Y (W0))

Rdddddb .

Now as Lemma 2.1.4, once we apply en on the right, the left direct sum becomes for all p Ø 0 :

Hq(en≠p · Y (Vn≠p≠1)) ü Hq(en≠p≠1 · Y (Vn≠p≠1)),

and the right direct sum becomes :

Hq(en≠p · Y (Vn≠p)),

for p Ø 1, and is trivial for p = 0. Investigating on the di�erential d1, we obtain a cochain
complex E

•,q
1 = (E•,q

1 , d•,q
1 ) depicted as follows :

E
0,q
1 E

1,q
1 E

2,q
1 · · ·

Hq(en · Y (Vn)) Hq(en≠1 · Y (Vn≠1)) Hq(en≠2 · Y (Vn≠2)) · · ·

Hq(en≠1 · Y (Vn≠1)) Hq(en≠2 · Y (Vn≠2)) Hq(en≠3 · Y (Vn≠3)) · · ·

Hq(en≠1 · Y (Vn≠1)) Hq(en≠2 · Y (Vn≠2)) · · · .

d0,q
1 d1,q

1 d2,q
1

ü

ÿú
n

ü

ÿú
n≠1

ü

ÿú
n≠2

≠ÿú
n≠1

ü

≠ÿú
n≠2

ü

≠ÿú
n≠3

ÿú
n≠1 ÿú

n≠2

We see that the middle and bottom row form the cochain complex cone(idKq
•(Y )[≠1]) which is

the mapping cone (see definition on page 650 of [Rotman, 2009]) of the identity cochain map
idKq

•(Y )[≠1] : Kq
•(Y )[≠1] æ Kq

•(Y )[≠1]. The top row is the cochain complex Kq
•(Y ). So the

cochain complex E
•,q
1 splits as Kq

•(Y ) ü cone(idKq
•(Y )[≠1]) and we therefore obtain the short

exact sequence of cochain complexes :

0 Kq
•(Y ) E

•,t
1 cone(idKq

•(Y )[≠1]) 0.

As idKq
•(Y )[≠1] is a quasi-isomorphism, its mapping cone cone(idKq

•(Y )[≠1]) is an acyclic cochain
complex (see Corollary 10.41 in [Rotman, 2009]). Therefore the cohomology of the cochain
complexes E

•,q
1 and Kq

•(Y ) are isomorphic. Thus E
p,q
2 = Hp(E•,q

1 ) ≥= Hp(Kq
•(Y )).
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Theorem 2.1.7 (The Case ¸ = n ≠ 1).
Let Xn,¸ : C(n, ¸) æ S2 be any GLn(F2)-diagram. When ¸ = n ≠ 1, there exists a cofibre
sequence :

en≠1 ·hocolim
1
(Xn,n≠2)

C(n≠1,n≠2)

2
æ en≠1 ·hocolim

1
(Xn,n≠1)

C(n≠1)

2
æ en ·hocolim Xn,n≠1.

Proof : The inclusion C(n ≠ 1, n ≠ 2) Òæ C(n ≠ 1, n ≠ 1) = C(n ≠ 1), induces a map :

en≠1 · hocolim
1
(Xn,n≠2)

C(n≠1,n≠2)

2
æ en≠1 · hocolim

1
(Xn,n≠1)

C(n≠1)

2
.

Now Theorem A.17 applied to the mapping cone diagram M
1
(Xn,n≠1)

C(n≠1)

2
of shape C(n≠ 1)

over C(n ≠ 1, n ≠ 2) implies that en≠1 · hocolim
1
M

1
(Xn,n≠1)

C(n≠1)

22
is the mapping cone of

the above map. Let us show that there exists a commutative diagram :

en≠1 · hocolim
1
(Xn,n≠1)

C(n≠1)

2
en · hocolim Xn,n≠1

en≠1 · hocolim
1
M

1
(Xn,n≠1)

C(n≠1)

22
.

ƒ“

The diagonal map is induced by the inclusion C(n≠1) Òæ Cone(C(n≠1, n≠2), C(n≠1)). The
horizontal map is induced by the inclusion C(n ≠ 1) Òæ C(n, n ≠ 1). For the vertical homotopy
equivalence, let us first consider the functor :

F : C(n, n ≠ 1) ≠æ Cone(C(n ≠ 1, n ≠ 2), C(n ≠ 1))

W ‘≠æ
I

W, if W ™ Vn≠1
ú, otherwise.

Notice it preserves the order structure. We define a natural transformation :

“ : Xn,n≠1 =∆ M
1
(Xn,n≠1)

C(n≠1)

2
¶ F,

as follows : if W ™ Vn≠1, then “W : Xn,n≠1(W ) æ Xn,n≠1(W ) is the identity map, if W * Vn≠1,
then “W : Xn,n≠1(W ) æ ú is the unique trivial map. This defines a natural map which we will
denote again “ :

“ : hocolim Xn,n≠1 ≠æ hocolim
1
M

1
(Xn,n≠1)

C(n≠1)

22
.

The vertical map is then the composite of : (en · hocolim Xn,n≠1 æ hocolim Xn,n≠1), “ and the
map

hocolim
1
M

1
(Xn,n≠1)

C(n≠1)

22
≠æ en≠1 · hocolim

1
M

1
(Xn,n≠1)

C(n≠1)

22
.

We will denote it again “ subsequently. We may apply Lemma 2.1.6 to the GLn≠1(F2)-diagram
M

1
(Xn,n≠1)

C(n≠1)

2
(by Proposition A.16). Notice that in particular, we have the identities

of cochain complexes by definition :

Kq
•

1
M

1
(Xn,n≠1)

C(n≠1)

22
= Kq

•

1
(Xn,n≠1)

C(n≠1)

2
.

The natural transformation “ is a GLn≠1(F2)-map, in the sense of Definition A.11, and it induces
a map of cochain complexes :

Kq
•

1
(Xn,n≠1)

C(n≠1)

2
≠æ Kq

•(Xn,n≠1)[≠1],
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depicted as follow :

0 Hq(en≠1 · Xn,n≠1(Vn≠1)) Hq(en≠2 · Xn,n≠1(Vn≠2)) · · ·

0 Hq(en≠1 · Xn,n≠1(Vn≠1)) Hq(en≠2 · Xn,n≠1(Vn≠2)) · · · .

“Vn≠1 “Vn≠2

It is simply the identity, and from the convergence of the spectral sequences E, we obtain an
isomorphism :

“ú : Hú (en≠1 · hocolim Xn,n≠1) ≠æ Hú
1
en · hocolim

1
M

1
(Xn,n≠1)

C(n≠1)

222
.

Thus we obtained the desired homotopy equivalence “, which clearly commutes in the diagram
by construction.

Corollary 2.1.8 (The First Cofibre Sequence).
There is a cofibre sequence :

�kL((n ≠ 1, n ≠ 2), 2k) �kL(n ≠ 1, 2k) L((n, n ≠ 1), k).
in,k

Proof : Applying previous Theorem 2.1.7 together with Theorem 1.4.10, we obtain the
commutative diagram :

en≠1 · hocolim
1
(Xk

n,n≠2)
C(n≠1,n≠2)

2
en≠1 · hocolim

1
(Xk

n,n≠1)
C(n≠1)

2
en · hocolim Xk

n,n≠1

en≠1 · hocolim
1
�kX2k

n≠1,n≠2
2

en≠1 · hocolim
1
�kX2k

n≠1
2

en · hocolim Xk
n,n≠1.

ƒ ƒ

in,k

Using the interchange property of colimits on �k and en gives the desired cofibre sequence.

2.2. A Long Exact Sequence in Cohomology

2.2.1 The Euler Class

Recall our discussion (see Theorem 1.1.3) about the Thom isomorphism Theorem and the Thom
classes. Let p : E æ B be an r-dimensional vector bundle. Then the projection p : D(E) æ B
is a homotopy equivalence, with inverse the zero-section B æ D(E).

Definition 2.2.1 (Euler Class).
The Euler class Êp of a real r-dimensional vector bundle p : E æ B is the image in Hr(B) of
the Thom class up œ ÂHr(Th(p)) under the homomorphism ÂHr(Th(p)) æ Hr(B) induced by the
composite map :

(B, ÿ) (D(E), ÿ) (D(E), S(E)) D(E)/S(E) = Th(p).ƒ

We therefore obtain the commutativity of the diagram :

ÂHú+r(Th(p)) Hú+r(B)

Hú(B).
Thom ≥= ˙Êp

(2.1)
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Proposition 2.2.2 (Whitney Sum Formula).
Let p and q be two real vector bundles, of dimension r and s respectively, over a space B. Then
we get : Êpüq = Êp ˙ Êq.

Proof : Since püq is the pullback of p◊q along the diagonal map � : B æ B◊B, Proposition
1.1.5 gives the followings commutative diagram :

ÂHr+s
1
Th(p ü q)

2 ÂHr+s
1
Th(p ◊ q)

2 ÂHr(Th(p)) ¢ ÂHs(Th(q))

Hr+s(B) Hr+s(B ◊ B) Hr(B) ¢ Hs(B).

≥=
Künneth

�ú Künneth

cup product

An inspection on the commutativity gives the desired result.

Notice that, in general, it makes no sense to define an Euler class in Hú(BG) for the virtual
case (BG≠V ), as the cohomology is trivial in negative dimensions.

2.2.2 A -Module Structure of L(n, k)

For 1 Æ i Æ n, let us denote xi œ H1(BVn) the element which corresponds to the unique
non-zero element in H1(BV1) via the natural inclusion onto the i-th component :

Z/2 = H1(BV1) Òæ
nŸ

j=1
H1(BV1) ≥= H1(BVn) = (Z/2)n.

Then there is an isomorphism of graded rings (see Theorem 3.19 in [Hatcher, 2002]) :

Hú(BVn) ≥= F2[x1, . . . , xn].

This isomorphism is GLn(F2)-equivariant, where the right action of F2[x1, . . . , xn] is given by :

F2[x1, . . . , xn] ◊ GLn(F2) ≠æ F2[x1, . . . , xn]
(f(x1, . . . , xn), “) ‘≠æ f(“≠1(x1), . . . , “≠1(xn)).

Let us denote Ên = Êfln
œ H2n≠1(BVn) the Euler class of fln. As two non-isomorphic line bundles

over the same space give di�erent Euler classes, and since the reduced regular representation
fln is the sum of all non-trivial line bundles over BVn, we get from the Whitney sum formula :

Ên =
Ÿ

(a1,...,an)œVn≠0

1
a1x1 + · · · + anxn

2
.

Then Ên is clearly GLn(F2)-invariant. Let us denote by Ê≠1
n Hú(BVn) the localization of the

ring Hú(BVn) away from Ên. As Ên is a non-zero divisor, the natural ring homomorphism :

Hú(BVn) Òæ Ê≠1
n Hú(BVn)

1 ‘≠æ 1

is a monomorphism. A theorem of Wilkerson (see Theorem 2.1 in [Wilkerson, 1977]) ex-
tends the A -module structure of Hú(BVn) into its localization Ê≠1

n Hú(BVn), i.e., the above
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map can be considered as a A -module monomorphism. Explicitly, if we denote Sq the total
Steenrod square, as it is a ring homomorphism, the A -structure is determined uniquely by the
equality Sq(Ê≠1

n ) = (Sq(Ên))≠1. The Thom isomorphism provides an A -module structure for
Hú(BV

kfln
n ) as a Hú(BVn)-submodule of Ê≠1

n Hú(BVn), via the multiplication with Êk
n :

Hú+k(2n≠1)(BV
kfln

n ) Hú(BVn) Ê≠1
n Hú(BVn)

ukfln
1 Êk

n.

≥=
Thom

Notice the similarity with the diagram (2.1) in the definition of the Euler class. In other words,
Êk

n is the "Euler class" of kfln in the localization Ê≠1
n Hú(BVn), even for k < 0. Denoting

Ê≠1
n Hú(BVn) ≥= F2[x1, . . . , xn][Ê≠1

n ], we get :

Hú(BV kfln
n ) ≥= F2[x1, . . . , xn] · {Êk

n}.

And as Ên is GLn(F2)-invariant, we obtain as A -modules :

Hú(L(n, k)) ≥=
1
F2[x1, . . . , xn] · {Êk

n}
2

· en.

Notice that the map jn,k : BV
kfln

n æ BV
(k+1)fln

n induces the commutativity of the diagram :

Hú+k(2n≠1)(BV
kfln

n ) Hú+(k+1)(2n≠1)(BV
(k+1)fln

n )

Hú(BVn) Hú(BVn)

F2[x1, . . . , xn] · {Êk
n} F2[x1, . . . , xn] · {Êk+1

n }.

jú
n,k

Thom ≥=

·Êk
n

≥= Thom

·Êk+1
n

From this observation, we deduce that the map jú
n,k : Hú(L(n, k + 1)) ≠æ Hú(L(n, k)) is a

monomorphism of A -modules.

2.2.3 Basis of Hú(L(n, k)) as an A -Module

We want to understand the A -module structure of Hú(L(n, k)). We already have a result for
k = 0.

Theorem 2.2.3 (Mitchell-Priddy Theorem).
A basis as an A -module of Hú(L(n, 0)) is given by :Ó

SqI
1
x≠1

1 · · · x≠1
n

2
| I = (i1, . . . , in) : admissible and in Ø 1

Ô
.

Proof : See [Mitchell and Priddy, 1983]. Let J = (j1, . . . , jn) be a n-tuple in Z. As

usual, we say that J is admissible if ji Ø 2ji+1 for 1 Æ i Æ n. We say that J is positive if ji > 0
for 1 Æ i Æ n.

Notation 2.2.4.
Let n Ø 2. For an admissible n-tuple J = (j1, . . . , jn) in Z, we denote an (n ≠ 1)-tupleÂJ = (Âj1, . . . , Âjn≠1) by : Âji = ji ≠ 2n≠i(jn ≠ 1),
for 1 Æ i Æ n ≠ 1. Notice that ÂJ is admissible and positive.
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Definition 2.2.5.
For an admissible n-tuple J in Z, define the element ◊J in F2[x1, . . . , xn][Ê≠1

n ] inductively as
follows.

• For a 1-tuple (j) :
◊(j) = Êj≠1

1 = xj≠1
1 œ F2[x1][Ê≠1

1 ].

• For a n-tuple J = (j1, . . . , jn), with n Ø 2 :

◊J = Êjn≠1
n (◊ÂJIn≠1,nT n) œ F2[x1, . . . , xn][Ê≠1

n ].

We first prove that the elements ◊J are in Hú(L(n, jn ≠ 1)). Let us start by showing that ◊J

are in F2[x1, . . . , xn] · {Êjn≠1
n }.

Lemma 2.2.6.
For an admissible n-tuple J in Z, the element ◊J is a homogeneous element in the graded module
F2[x1, . . . , xn][Ê≠1

n ], and the degree of ◊J is given by :

|◊J | =
nÿ

i=1
(ji ≠ 1).

Proof : Let us prove by induction. For n = 1, let J = (j). Then ◊(j) = xj≠1
1 . Therefore ◊(j)

is homogeneous and |◊(j)| = j ≠ 1. Suppose the lemma holds for any admissible (n ≠ 1)-tuple J
where n Ø 2. Then for any admissible n-tuple J , we get that ◊ÂJ is homogeneous with :

|◊ÂJ | =
n≠1ÿ
i=1

(ji ≠ 2n≠i(jn ≠ 1) ≠ 1) =
A

n≠1ÿ
i=1

ji ≠ 1
B

≠ (2n ≠ 2)(jn ≠ 1).

Since Ên is an homogeneous element of degree 2n ≠ 1, we get that ◊J = Êjn≠1
n (◊ÂJIn≠1,nT n) is

homogeneous and :

|◊J | = |Êjn≠1
n | + |◊ÂJ |

= (2n ≠ 1)(jn ≠ 1) +
A

n≠1ÿ
i=1

(ji ≠ 1)
B

≠ (2n ≠ 2)(jn ≠ 1)

= (jn ≠ 1) +
A

n≠1ÿ
i=1

(ji ≠ 1)
B

=
nÿ

i=1
(ji ≠ 1).

This proves the induction.

Notice now that if J is positive, then ◊J is a polynomial, as ji ≠ 1 Ø 0. For n Ø 2, for any
admissible J , as ÂJ is positive, then ◊ÂJ is a polynomial in F2[x1, . . . , xn≠1] and so ◊J is an element
in F2[x1, . . . , xn] · {Êjn≠1

n }.

Lemma 2.2.7.
For any admissible n-tuple J in Z, the equality ◊Jen = ◊J holds. In particular, ◊J is an element
in F2[x1, . . . , xn] · {Êjn≠1

n } ≥= Hú(L(n, jn ≠ 1)).
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Proof : Let us prove by induction. The case n = 1 is vacuous. Suppose the lemma holds for
any (n ≠ 1)-tuple where n Ø 2. Let J be a n-tuple, then :

◊Jen =
1
Êjn≠1

n (◊ÂJIn≠1,nT n)
2
en

= Êjn≠1
n (◊ÂJIn≠1,nT nen), as Ên is GLn(F2)-invariant,

= Êjn≠1
n (◊ÂJen≠1In≠1,nT n), by Lemma 1.3.7,

= Êjn≠1
n (◊ÂJIn≠1,nT n), by induction hypothesis,

= ◊J .

This proves the induction.

Lemma 2.2.8.
For any n-tuple J = (j1, . . . , jn) in Z, and k œ Z, we have :

Êk
n◊J = ◊(j1+2n≠1k,j2+2n≠2k,...,jn+k).

Proof : Denote J Õ = (j1 + 2n≠1k, j2 + 2n≠2k, . . . , jn + k). Notice that ÂJ = ÂJ Õ, and so we get :

◊J Õ = Êjn≠1+k
n (◊ÂJ ÕIn≠1,nT n) = Êk

nÊjn≠1
n (◊ÂJIn≠1,nT n) = Êk

n◊J .

This finishes the proof.

Proposition 2.2.9.
The set of element {◊J | J admissible and jn Ø k + 1} is a basis of Hú(L(n, k)).

Proof : As Hú(L(n, k)) can be regarded as a fractional ideal of H(BVn) we get an isomor-
phism :

Hú(L(n, 0)) ≠æ Hú(L(n, k))
a ‘≠æ Êk

na,

which sends ◊J to Êk
n◊J . The previous lemma shows that it is enough to prove the case k = 0.

Notice now that if J is positive, then |◊J | = |SqJ((x1 · · · xn)≠1)|, by Lemma 2.2.6. Thus Theorem
2.2.3 implies it is enough to show that the elements ◊J for positive admissible n-tuples J
are linearly independant. For this matter, it will be enough to show that for J positive and
admissible, we have :

◊J = xj1≠1
1 xj2≠1

2 · · · xjn≠1
n + lower order terms.

Let us prove this above equality by induction on n. As usual, the case n = 1 is vacuous. Now
suppose that it is true for (n ≠ 1)-tuple, where n Ø 2. Notice first that in general :

Ên = x2n≠1
1 x2n≠2

2 · · · xn + lower order terms.

So we obtain by induction hypothesis :

◊J = Êjn≠1
n (◊ÂJIn≠1,nT n) =

1
x2n≠1(jn≠1)

1 x2n≠2(jn≠1)
2 · · · xjn≠1

n

21
x
Âj1≠1
1 · · · x

Âjn≠1≠1
n≠1

2
+ lower terms.

This finishes the proof.

Remark 2.2.10.
For J positive and admissible, one can prove that ◊J = SqJ((x1 · · · xn)≠1), thus the basis {◊J}
generalizes the basis of Mitchell and Priddy.
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2.2.4 The Long Exact Sequence

In the following argument, let n Ø 1. For k œ Z, let us denote ‡k the generator of Hk(Sk),
where Sk is the sphere spectrum of dimension k. For simplicity, we denote M ¢a for M ¢F2{a},
where F2{a} is the free F2-module generated by a. We are interested in the homomorphism :

iú
n,k : Hú(L(n, k)) ≠æ Hú(�kL(n ≠ 1, 2k)) ≥= Hú(L(n ≠ 1, 2k))¢F2‡k.

Notation 2.2.11.
For an admissible n-tuple J = (j1, . . . , jn), we denote J the (n ≠ 1)-tuple obtained by :

J = (j1, . . . , jn≠1).

As J is admissible, if jn Ø k + 1, then jn≠1 Ø 2k + 2. Thus if ◊J is in Hú(L(n, k)), then ◊J is

in Hú(L(n ≠ 1, 2k + 1))
jú

n≠1,2k
Òæ Hú(L(n ≠ 1, 2k)).

Proposition 2.2.12.
Let J = (j1, . . . , jn) be an admissible n-tuple in Z such that jn Ø k + 1. Then :

iú
n,k(◊J) =

I
0, if jn Ø k + 2,
◊J ¢ ‡k, if jn = k + 1.

Proof : Let us first do the case k = 0 and then the Thom isomorphism will allow us to
generalize it.

Case k = 0. Recall that in that case the map in,0 : L(n ≠ 1, 0) æ L(n, 0) corresponds to
Bÿ : BVn≠1 æ BVn where ÿ : Vn≠1 Òæ Vn is the first (n ≠ 1)-terms inclusion. Thus, for
f(x1, . . . , xn) œ Hú(L(n, 0)), we have :

iú
n,0(f) = f(x1, . . . , xn≠1, 0) · en œ Hú(L(n ≠ 1, 0)).

For an admissible J , the element ◊J is divisible by xn if jn > 1 because it is of the form
Êjn≠1

n times a polynomial. Thus iú
n≠1,0(◊J) = 0. If jn = 1, then we get J = ÂJ . So

◊J = ◊JIn≠1,nT n, by definition of ◊J . Now from the definition of the operation In≠1,n,
we get iú

n,0(◊JIn≠1,n) = ◊J . Let t œ Tn be an element which is not the unit, since ◊J is
divisible by x1 · · · xn≠1, then we get iú

n,0(◊JIn≠1,nt) = 0. Thus iú
n,0(◊J) = ◊J when jn = 1.

General Case k œ Z. From the embedding Hú(BV
kfln

n ) Òæ Hú(BVn), the Thom isomor-
phism :

Hú(BVn)
≥=≠æ Hú+k(2n≠1)(BV kfln

n ),
sends ◊J to Êk

n◊J = ◊(j1+2n≠1k,j2+2n≠2k,...,jn+k). Now we have the commutative diagram :

Hú+k(2n≠1)(BV
kfln

n ) Hú(BVn) Hú(BV
0·fln

n )

Hú+k(2n≠1)+k
1
�kBV

2kfln≠1
n≠1

2
Hú+k(�kBVn≠1) Hú+k(�kBV

0·fln
n≠1 )

Hú+k(2n≠1)
1
BV

2kfln≠1
n≠1

2
¢ ‡k Hú(BVn≠1) ¢ ‡k Hú(BV

0·fln
n≠1 ) ¢ ‡k,

iú
n,k

Thom
≥=

(Bÿ)ú˙‡k

≥=
Thom

iú
n,0˙u

Ák

≥=

Thom
≥= ≥=

Thom

≥= ≥=

Thom
≥= ≥=

Thom

which implies directly the desired result.
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Therefore we have finish the proof.

Theorem 2.2.13.
There is a long exact sequence :

0 Hú(L(n, k + 1)) Hú(L(n, k)) Hú(�kL(n ≠ 1, 2k))

Hú(�3kL(n ≠ 2, 4k)) Hú(�7kL(n ≠ 3, 8k)) · · · .

jú
n,k iú

n,k

�kiú
n≠1,2k

�3kiú
n≠2,4k �7kiú

n≠3,8k

Proof : It is straightfoward from last proposition. We proved already that jú
n,k is injective,

so the basis of its image is :

{◊J | J = (j1, . . . , jn) : admissible and jn Ø k + 2},

which is the same as the basis of the kernel of iú
n,k by previous proposition. Its image has basis :

{◊J | J = (j1, . . . , jn≠1) : admissible and jn≠1 Ø 2k + 2},

but this is the basis of the kernel of �kiú
n≠1,2k.

2.3. Takayasu Cofibre Sequence

Lemma 2.3.1.
The map :

jn,k : L((n, n ≠ 1), k) ≠æ L((n, n ≠ 1), k + 1),

is nullhomotopic.

Proof : First notice that the GLn(F2)-map jn,k : Xk
n,n≠1 =∆ Xk

n,n≠1 obviously restricts to a
GLn≠1(F2)-map :

jn,k : (Xk
n,n≠1)

C(n≠1) =∆ (Xk+1
n,n≠1)

C(n≠1),

in the sense of Definition A.11. This natural transformation extends obviously into a GLn≠1(F2)-
map :

jn,k : M
1
(Xk

n,n≠1)
C(n≠1)

2
=∆ M

1
(Xk+1

n,n≠1)
C(n≠1)

2
,

using Notation A.14 for the mapping cone diagram. Now recall the homotopy equivalence “ in
the proof of Theorem 2.1.7. It fits in the commutative diagram :

L((n, n ≠ 1), k) en · hocolim(Xk
n,n≠1) en≠1 · hocolim

1
M

1
(Xk

n,n≠1)
C(n≠1)

22

L((n, n ≠ 1), k + 1) en · hocolim(Xk+1
n,n≠1) en≠1 · hocolim

1
M

1
(Xk+1

n,n≠1)
C(n≠1)

22
.

jn,k jn,k

“
ƒ

jn,k

“
ƒ

Therefore, in order to prove that the left vertical map jn,k is nullhomotopic, it su�ces to show
that the natural transformation :

jn,k : (Xk
n,n≠1)

C(n≠1) =∆ (Xk+1
n,n≠1)

C(n≠1)
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is nullhomotopic, as a GLn≠1(F2)-map. But using Theorem 1.4.10, it fits in the commutative
diagram of GLn≠1(F2)-maps :

(Xk
n,n≠1)

C(n≠1) �kX2k
n≠1

(Xk+1
n,n≠1)

C(n≠1) �k+1X2(k+1)
n≠1 .

jn,k

≥=

≥=

The right vertical natural transformation is defined for all W in C(n ≠ 1) as the maps :

Sk · BW 2kfln≠1 W = BW 2kfln≠1 W
üÁk ≠æ BW 2(k+1)fln≠1 W

üÁk+1 = Sk+1 · BW 2(k+1)fln≠1 W ,

induced by the inclusion Sk Òæ Sk+1 and the bundle inclusions :

2kfln≠1 W Òæ (2k + 1)fln≠1 W Òæ 2kfln≠1 W .

The inclusion Sk Òæ Sk+1 is nullhomotopic, as the standard map of spaces Sm Òæ Sm+1 is
nullhomotopic for all m Ø 0 since it factors through Sm+1 ≠ {ú}. Since this inclusion is induced
by Ák Òæ Ák+1, the nullhomotopy is compatible with the GLn≠1(F2)-action. The commutativity
of the diagram in S C(n≠1) proves that jn,k is nullhomotopic.

Proposition 2.3.2 (A Second Cofibre Sequence).
There is a cofibre sequence :

L((n, n ≠ 1), k) L(n, k) L(n, k + 1).
jn,k

Proof : The left map is induced by the inclusion C(n, n ≠ 1) Òæ C(n). Let us prove that the
sequence induces an exact sequence in cohomology :

0 Hú(L(n, k + 1)) Hú(L(n, k)) Hú(L((n, n ≠ 1), k) 0.
jú

n,k

Recall the cohomological spectral sequence of L((n, n ≠ 1), k) :

E
p,q
r = Ep,q

r (Xk
n,n≠1) · en ∆ Hp+q(L((n, n ≠ 1), k)).

Its E2-page is given, according to Lemma 2.1.4 (ii) :

E
p,q
2 = Hp(Kq

•(Xk
n,n≠1)[≠1]).

Here the cochain complex Kq
•(Xk

n,n≠1)[≠1] is simply :

0 Hq(�kL(n ≠ 1, 2k)) Hq(�3kL(n ≠ 2, 4k)) · · · ,
�kiú

n≠1,2k

where used repeatdly Theorem 1.4.10 and Lemma 1.4.6. We recognize the long exact sequence
of Theorem 2.2.13. Therefore, the E

p,q
2 is trivial for every colunms p > 0, and for p = 0, we

get :
E

0,q
2 = ker(�kiú

n≠1,2k) = im(iú
n,k),
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by exactness. Thus the convergence of the spectral sequence gives Hú(L((n, n≠1), k) = im(iú
n,k)

and so :

0 Hú(L(n, k + 1)) Hú(L(n, k)) Hú(L((n, n ≠ 1), k)¸ ˚˙ ˝
im(iú

n,k
)

0
jú

n,k

is exact. Notice that the right map can indeed be regarded as the map induced by the inclusion
C(n, n ≠ 1) Òæ C(n). Notice now that the diagram :

L((n, n ≠ 1), k) L(n, k)

L((n, n ≠ 1), k + 1) L(n, k + 1),

jn,k jn,k

is commutative, where the horizontal maps are induced by the inclusion C(n, n ≠ 1) Òæ C(n).
But previous Lemma 2.3.1 says that the left map is nullhomotopic, whence the composite :

L((n, n ≠ 1), k) L(n, k) L(n, k + 1),
jn,k

is nullhomotopic. Using the fact that the sectra are 2-completed and of finite type (their mod
2 cohomology are finite-dimensional in each degree) proves that we obtained the sequence is a
cofibre sequence.

Theorem 2.3.3 (Takayasu’s Cofibre Sequence).
(i) There exists a (non-unique) homotopy equivalence :

µn,k : �kL(n ≠ 1, 2k + 1) ƒ≠æ L((n, n ≠ 1), k).

(ii) There exist maps :
iÕ
n,k : �kL(n ≠ 1, 2k + 1) ≠æ L(n, k),

such that the diagram commutes :

�kL(n ≠ 1, 2k) L(n, k)

�kL(n ≠ 1, 2k + 1),

�kjn≠1,2k

in,k

iÕ
n,k

which induce the cofibre sequence :

�kL(n ≠ 1, 2k + 1) L(n, k) L(n, k + 1).
iÕ
n,k jn,k

Proof : We relate the two cofibre sequences. Consider the second cofibre sequence (Propo-
sition 2.3.2) and substitute 2k for k and n ≠ 1 for n, and consider with k-fold suspension, i.e.,
consider the map �kjn≠1,2k instead of jn,k. Then we get the commutative diagram :

· · · �kL((n ≠ 1, n ≠ 2), 2k) �kL(n ≠ 1, 2k) �kL(n ≠ 1, 2k + 1) · · ·

· · · �kL((n ≠ 1, n ≠ 2), 2k) �kL(n ≠ 1, 2k) L((n, n ≠ 1), k) · · · ,

�kjn≠1,2k

in,k
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where the bottom row is the first cofibre sequence (Corollary 2.1.8). Since S is a triangu-
lated category (or see Lemma 8.31 in [Switzer, 1975]), there exists a non-unique homotopy
equivalence, say :

µn,k : �kL(n ≠ 1, 2k + 1) ƒ≠æ L((n, n ≠ 1), k),

such that the previous diagram is homotopy commutative. This proves (i). For (ii), define the
map :

iÕ
n,k : �kL(n ≠ 1, 2k + 1) ≠æ L(n, k),

as the composite :

�kL(n ≠ 1, 2k + 1) L((n, n ≠ 1), k) L((n, n), k) ƒ L(n, k),
µn,k

ƒ

where the right map is the usual map induced by the inclusion C(n, n ≠ 1) Òæ C(n). Now the
commutativity of the above diagram proves that iÕ

n,k ¶ �kjn≠1,2k = in,k. Now the second cofibre
sequence (Proposition 2.3.2) induces the cofibre sequence :

�kL(n ≠ 1, 2k + 1) L(n, k) L(n, k + 1)

L((n, n ≠ 1), k),

iÕ
n,k

ƒµn,k

jn,k

which is the desired cofibre sequence.

For instance, if we pick n = 1, we get the cofiber sequence :

Sk ≠æ �ŒRP Œ
k ≠æ �ŒRP Œ

k+1.

Very recently, the paper [Hai Nguyen and Schwartz, 2015] proves the Takayasu cofibre se-
quence for k Ø 0 in a di�erent way using the machinery of the category of unstable modules
over the Steenrod algebra.
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APPENDIX A

Grothendieck Construction

We denote by Cat the category of small categories whose objects are small categories and whose
morphisms are functors between categories.

Definition A.1.
Let J be any category. Given a functor F : J æ Cat, the Grothendieck construction of F is
the category denoted J

⁄
F defined as follows :

• Ob
3

J
⁄

F
4

= {(j, v) | j œ ObJ , v œ ObF (j)},

• Mor
3

J
⁄

F
4

=
;

(j, v) (Ï,f)≠æ (jÕ, vÕ) |
1
j

Ïæ jÕ
2

œ MorJ ,
3

F (Ï)(v) fæ vÕ
4

œ MorF (jÕ)
<

,

• and the composition of morphisms (v, j) (Ï,f)≠æ (vÕ, jÕ) (ÏÕ,jÕ)≠æ (vÕÕ, jÕÕ) is defined as :

(ÏÕ, f Õ) ¶ (Ï, f) = (ÏÕ ¶ Ï, f Õ ¶ F (ÏÕ)(f)).

In other words, the Grothendieck construction is a way to index small categories by a category
J via a functor F .

For any object j œ ObJ , define a functor :

ÿj : F (j) ≠æ J
⁄

F

v ‘≠æ (j, v)3
v

fæ w
4

‘≠æ (idj , f).

For any morphism
1
j

Ïæ jÕ
2

œ MorJ , define a natural transformation :

ÿÏ : ÿj =∆ ÿjÕ ¶ F (Ï),

which is given, for any v œ ObF (j), by :

(ÿÏ)v : (Ï, idF (Ï)(v)) : (j, v) ≠æ (jÕ, F (Ï)(v)).
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Lemma A.2.
These above natural transformations are compatible with composition, meaning that for any two
morphisms Ï : j æ jÕ and ÏÕ : jÕ æ jÕÕ in J , we have : ÿÏÕ¶Ï = (ÿÏÕ)F (Ï) ¶ ÿÏ, where (ÿÏÕ)F (Ï)
is the natural transformation obtained by restricting ÿÏÕ along the functor F (Ï) : F (j) æ F (jÕ).

Proof : This follows directly from the functoriality of F : J æ Cat.

(J
s

F )-Shaped Diagrams Consider any category C and a functor X : J
s

F æ C . To
any object j œ ObJ , we define a functor :

Xj := X ¶ ÿj : F (j) ≠æ C .

To any morphism
1
j

Ïæ jÕ
2

œ MorJ , we define a natural transformation :

XÏ : Xj =∆ XjÕ ¶ F (Ï),

via ÿÏ : for any v œ ObF (j), we have (XÏ)v := X((ÿÏ)v). From Lemma A.2, we get directly the
following result.

Lemma A.3.
These above natural transformations are compatible with compositions : XÏÕ¶Ï = (XÏÕ)F (Ï)¶XÏ.

The next proposition tells us that each functor X : J
s

F æ C is a collection of functors Xj

from a small category to C which fit naturally.

Proposition A.4.
A functor X : J

s
F æ C is uniquely determined by functors {Xj}jœObJ and natural trans-

formations {XÏ}ÏœMorJ which are compatible with composition in MorJ .

Proof : Given {Xj}jœObJ and {XÏ}ÏœMorJ as above, we recover X by defining :

X : J
⁄

F ≠æ C

(j, v) ‘≠æ Xj(v),3
(j, v) (Ï,f)æ (jÕ, vÕ)

4
‘≠æ XjÕ(f) ¶ (XÏ)v,

as X(Ï, f) = X(idjÕ , f) ¶ X(Ï, idF (Ï)(v)). Let us check that this definition of X defines indeed
a functor. It is easy to see that X(idj , idv) = idX(j,v) for any object (j, v) œ Ob (J

s
F ). Now,

given two morphisms (j, v) (Ï,f)æ (jÕ, vÕ) (ÏÕ,f Õ)æ (jÕÕ, vÕÕ) in J
s

F , we have :

X((ÏÕ, f Õ) ¶ (Ï, f)) = X(ÏÕ ¶ Ï, f Õ ¶ F (ÏÕ)(f))
= XjÕÕ(f Õ ¶ F (ÏÕ)(f)) ¶ (XÏÕ¶Ï)v

= XjÕÕ(f Õ) ¶ XjÕÕ(F (ÏÕ)(f)) ¶ (XÏÕ¶Ï)v, by functoriality of XjÕÕ ,
= XjÕÕ(f Õ) ¶ XjÕÕ(F (ÏÕ)(f)) ¶ (XÏÕ)F (Ï)(v) ¶ (XÏ)v, by compatibility,

= XjÕÕ(f Õ) ¶ (XÏÕ)vÕ ¶ XjÕ(f) ¶ (XÏ)v, by naturality of XÏÕ ,

= X(ÏÕ, f Õ) ¶ X(Ï, f).

Thus X is indeed a functor.
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We are interested in computing the homotopy colimit of a (J
s

F )-diagram. In what follows,
the result are also true for colimits. We will work with the category S , but the results remain
valid for any category where homotopy colimits make sense.

Proposition A.5.
Let X : J

s
F :æ S be a functor. Then there is a functor :

J ≠æ S

j ‘≠æ hocolimF (j)Xj1
j

Ïæ jÕ
2

‘≠æ
1
hocolimF (j)Xj æ hocolimF (j)

1
X Õ

j ¶ F (Ï)
2

æ hocolimF (jÕ)XjÕ

2
.

Proof : The morphism hocolimF (j)Xj æ hocolimF (j)
1
X Õ

j ¶ F (Ï)
2

is induced by the natural
transformation XÏ. The second morphism stems from the following Lemma A.6. Identity and
compositions will be simple to verify.

Lemma A.6.
Suppose I

Fæ K is a functor between small categories. Let X : K æ S be a functor. Then
there is a natural morphism :

hocolimI (X ¶ F ) ≠æ hocolimK X.

Sketch of the Proof : This is a generalization of the morphism :

colimI (X ¶ F ) æ colimK X.

Let us give a concrete definition. As in [Bousfield and Kan, 1972], for simplicity replace S by
the category of based spaces. For i œ ObI , denote I /i the over category as defined in Chapter
XI in [Bousfield and Kan, 1972], and B(I /i) its underlying space (geometric realization).
Recall we have :

hocolimK X := coequ

Qccca ·1
k

“ækÕ
2

œMorK

B(K /kÕ)op n X(k)
·

kœObK

B(K /k)op n X(k)

Rdddb ,

where the morphisms are induced respectively by X(“) and B(K /“). In other words, an
element in hocolimK X can be regarded as an element :

[k, (k æ k0 æ · · · æ ks) · x] ,

in
·

kœObK

B(K /k)op n X(k), under some relations. Then the morphism :

hocolimI (X ¶ F ) æ hocolimK X,

is given by :

[i, (i æ i0 æ · · · æ is) · x] æ [F (i), (F (i) æ F (i0) æ · · · æ F (is)) · x] ,

where x œ X(F (i)), and i œ ObI .

If J is also a small category, one can take also the homotopy colimit of the functor J æ S
defined in Proposition A.5. It turns out that this gives a way to compute the homotopy colimit
of X : J

s
F æ S , as we see in the following theorem.
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Theorem A.7.
Let J be a small category, and F : J æ Cat a functor. Then for any functor X : J

⁄
F æ

S , we have :
hocolimJ

1
hocolimF (j)Xj

2
ƒ hocolimJ

s
F X.

Sketch of the Proof1 : We make use of the left Kan extansion. Recall that given a
functor G : I æ K and a category D , the left Kan extansion of a functor X : I æ D is the
functor LX : K æ D , where L is the left adjoint functor in :

L : Fun(I , D) ⌧ Fun(K , D) : Gú.

A concrete construction of LX can be given as follows. For any k in ObK , we define :

(LX)(k) := colim
1
G/k æ I

Xæ D
2

,

where G/k is the category with objects given by an object i in I and a morphism –i : G(i) æ k
in K . The morphisms in G/k are defined from morphisms in I . The functor G/k æ I is
the obvious projection. Now, each morphism Ï : k æ kÕ in ObK defines an obvious functor
Ïú : G/k æ G/kÕ such that it commutes with the projection :

G/k G/kÕ

I ,

Ïú

whence this defines the morphism (LX)(k) æ (LX)(kÕ). Notice that if K = ú, then we get
LX = colimI X. One can generalize this construction to a functor Lh where one replaces
colimits by homotopy colimits.
Returning to our problem, we make use of the property that left Kan extansions commute, so
that if we define the functor :

P : J
⁄

F æ J ,

to be the obvious projection, and denote Lh
P X : J æ S the left Kan extansion :

J
s

F S

J ,

X

P
Lh

p X

then the commutativity of the diagram :

J
⁄

F S

J

ú,

X

P

LhX

gives the equivalence :

LhX = hocolimJ
s

F X ƒ hocolimJ (Lh
P X).

1A full detailed proof can be found in [Dotto and Moi, 2014].
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It remains to prove that for each object j in J , we have the equivalence :

(Lh
P X)(j) ƒ hocolimF (j)Xj .

For this, recall that (Lh
P X)(j) = hocolim

1
P/j æ J

s
F

Xæ S
2
. We define a functor :

� : P/j æ F (j),

as follows. We have :

Ob(P/j) =
Ó1

(jÕ, v), jÕ –æ j
2

| jÕ œ ObJ , v œ Ob(F (jÕ)), – œ MorJ
Ô

,

so we define �(jÕ, v, –) = F (–)(v), and define the morphisms in an obvious way, so that we have
the following commutative diagram of functors :

P/j J
s

F

F (j) S .

� X
ÿj

Xj

This defines a morphism �ú : (Lh
P X)(j) ≠æ hocolimF (j)Xj as in Lemma A.6. Now the cofinality

Theorem (see in [Bousfield and Kan, 1972] in Chapter XI) states that the map �ú is an
equivalence if the underlying space B(�/v) is contractible, for any object v in F (j). This
happens when the category �/v admits a terminal object. Since :

Ob(�/v) =
;31

(jÕ, vÕ), jÕ –æ j
2

, vÕ —æ v
4

| (jÕ, vÕ, –) œ Ob(P/j), — œ Mor(F (j))
<

,

it can be verified that the element (j, v, idj , idv) is the desired terminal object.

Monoid Diagrams We apply the Grothendieck construction for J a monoid acting on
a poset (F, Æ). This means that J is some category with one object, say ú. If we require
the morphism in J to be all invertible, then J is a group in the usual sense. Recall also
that a poset can be regarded as a small category with objects its elements such that there is a
morphism between a and b in F if and only if a Æ b. Since J acts on F , this defines a functor,
denoted by abuse of notation also F , as follow :

F : J ≠æ Cat

ú ‘≠æ F1
ú gæ ú

2
‘≠æ

A
F æ F
v ‘æ gv

B
.

In this case, we get :
Ob

3
J

⁄
F

4
= Ob(F ),

Mor
3

J
⁄

F
4

=
Ó

v
gæ w | v, w œ F, g œ MorJ , va Æ w

Ô
.

We denote 1J = idú œ MorJ . Subsequently, we will write simply g œ J instead of g œ MorJ .
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Definition A.8 (J -Diagram).
Let J and F be as above. For any category C , a functor X : J

s
F æ C is called a monoid

diagram in C . If J is a group, then X is called a group diagram in C . If the structure of J
is understood, we will say that X is a J -diagram.

Proposition A.9.
A monoid diagram X : J

s
F æ C is a functor X : F æ C together with a collection of

natural transformations {gú : X ∆ X ¶ F (g)}gœJ , such that :

(i) (1J )ú = idX ,

(ii) (gh)ú = (gú)F (h) ¶ hú, for all g, h œ J ,

where (gú)F (h) is the natural transformation obtained by restricting gú along the functor F (h).

Proof : This is Proposition A.4 for J a monoid acting on the poset F . The functor
Xú = X ¶ ÿú is the underlying functor F æ C . The natural transformations {Xg} are the
natural transformations {gú}, and the compatibiliy with composition is the statement (ii). The
statement (i) follows from the functoriality of ÿú.

Corollary A.10.
For two J -diagrams X, Y : J

s
F æ C , a natural transformation ÷ : X =∆ Y is equivalent

to a natural transformation between their underlying functors such that the following diagram
commutes in C F for all g œ J :

X Y

X ¶ F (g) Y ¶ F (g).

÷

gú gú

(÷)F (g)

Definition A.11 (J -Map).
Such a natural transformation ÷ is called a J -map of F -shaped diagrams.

Proposition A.12.
Let X : J

s
F æ S be a group diagram. The homotopy colimit of the underlying functor

hocolimF X is endowed with a J -action.

Proof : This is Proposition A.5.

Mapping Cone Diagrams Let J = {b Ω a æ c}. Let C be a small category, and let C

Õ

be a full subcategory of C. Recall that the terminal object in Cat is the category ú with one
object and one morphism. Define a functor F as follows :

F : J ≠æ Cat

a ‘≠æ C

Õ

b ‘≠æ ú
c ‘≠æ C

(a ‘æ b) ‘≠æ
1
C

Õ !æ ú
2

(a ‘æ c) ‘≠æ (CÕ Òæ C).
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The Grothendieck construction in this case is given by :

Ob
3

J
⁄

F
4

= ObC Û ú,

Mor
3

J
⁄

F
4

= MorC fi {vÕ æ ú | vÕ œ ObC

Õ}.

Definition A.13.
Let J , C, C

Õ and F be as above. For any category C , we say that a functor X : J
s

F æ C
is a mapping cone diagram in C of shape C over C

Õ.

Notation A.14.
We refer to the category J

⁄
F by Cone(CÕ, C).

Definition A.15.
Given a functor X : C æ C , where C admits a terminal object, we define its mapping cone
diagram M X : Cone(CÕ, C) æ C as follows :

M X : Cone(CÕ, C) ≠æ C

v ‘≠æ X(v)
ú ‘≠æ ú1

v æ w
2

‘≠æ
1
X(v) æ X(w)

2
1
vÕ æ ú) ‘≠æ

1
X(vÕ) !æ ú

2
.

Proposition A.16.
Let X be as previous definition. Let C be a poset such that a monoid I acts on C. If X is a
I -diagram, then so is M X.

Proof : The natural transformations {gú : X =∆ X ¶ C(g)}gœI extends naturally into nat-
ural transformations {gú : M X =∆ M X ¶ C(g)}gœI

Theorem A.17.
Let X be as previous definition. Let C = S be the stable homotopy category. Then the homotopy
colimit hocolim M X is the mapping cone of the map hocolim X

C

Õ æ hocolim X, which is
induced by the inclusion C

Õ Òæ C.

Proof : This is Theorem A.7 which states that the diagram :

hocolim X
C

Õ hocolim X

ú hocolim M X,

is a homotopy pushout.
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APPENDIX B

2-Completion via the Bousfield
Localization

We gather in this Appendix all the results needed in this paper. We shall not make any proofs
as they are not enlightening in our case. We refer the reader to [Bousfield, 1979] for any
details. We present the 2-completion via the Bousfield localisation with the Moore spectrum
SZ/2. We present the results in a more general way for p-completion, for any p a prime number.

Definition B.1.
Let Eú be a generalized homology theory. A spectrum X is called Eú-acyclic if Eú(X) = 0, i.e.,
we have the homotopy equivalence E · X ƒ ú. A spectrum X is called Eú-local if [A, X]ú = 0,
for every Eú-acyclic spectrum A. A map of spectra f : A æ B in S is called an Eú-equivalence
if Eú(f) : Eú(A)

≥=æ Eú(B) is an isomorphism.

Lemma B.2.
A spectrum X is Eú-local if and only if every Eú-equivalence A æ B induces an isomorphism
of abelian groups : [B, X]ú ≥= [A, X]ú.

Proof : An Eú-equivalence is a map with an Eú-acyclic cofiber.

Definition B.3.
An Eú-localization is a functor LE : S æ S together with a natural equivalence 1S ∆ LE ,
with the property that for any spectrum X, the natural map X æ LEX is an Eú-equivalence,
such that LEX is Eú-local.

Theorem B.4.
If f : X æ Y is an Eú-equivalence of Eú-local spectra in S , then f is a homotopy equivalence.

Proof : Since X and Y are Eú-local, we obtain that [X, Y ]ú ≥= [Y, Y ]ú and [Y, X]ú ≥= [X, X]ú.
The isomorphisms provide an isomorphism [S, X]ú

≥=≠æ [S, Y ]ú.

The localization LE exists for any spectrum E (see Theorem 1.1 in [Bousfield, 1979]). The
functor LE is unique in the following way. If f : A æ B is any Eú-equivalence in S with B
Eú-local, then f is canonically equivalent to the functor LE . Moreover, for any spectrum X, we
have LE(LE(X)) ƒ LE(X).
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The Moore Spectrum Let G be an abelian group. Then there is a free resolution of G,
i.e. free abelian groups F0 and F1 that fit in the exact sequence of abelian groups :

0 F1 F0 G 0

Let us consider
x

–œA S0 and
x

—œB S0 such that :

fi0

A fl
–œA

S
B

= F1, fi0

Qa fl
—œB

S

Rb = F0

Then there exists a map f :
x

–œA S æ
x

—œB S inducing the inclusion F1 Òæ F0. Define the
Moore spectrum SG of G to be the cofibre of f :

fl
–œA

S
fl

—œB

S SG.
f

Notice that the above construction is completely similar to the Moore spaces. In particular, we
get :

fir(SG) = 0, for r < 0

fi0(SG) = (HZ)0(SG) = G,

(HZ)r(SG) = 0, for r > 0.

Definition B.5 (p-Completion).
Let p be a prime number in Z. The p-completion of a spectrum X is its (SZ/p)ú-localization,
i.e., Lp := LSZ/p(X).

Proposition B.6.
For any spectrum X, its p-completion is given by :

Lp := LSZ/p(X) = holim
3

SZ/p · X SZ/p2 · X SZ/p3 · X · · ·q1·idX q2·idX

4
,

where qi · idX : SZ/pi+1 ·X ≠æ SZ/pi ·X is given by the quotient homomorphism Z/pi+1 ≠æ
Z/pi. Moreover, if the groups fiú(X) are finitely generated abelian groups, then fiú(LSZ/p(X)) ≥=‚Zp ¢ fiú(X).

Proof : See Proposition 2.5 in [Bousfield, 1979].

The p-completion Lp = LSZ/p can be regarded as a functor :

Lp : S ≠æ Sp,

where Sp is the full subcategory of S consisting of (SZ/p)ú-localized spectra. We can work
just as well with the category Sp as we can in S , meaning for instance that the functor Lp

sends cofibre sequences to cofibre sequences.

Theorem B.7.
Let E and X be connective spectra. Suppose fi0(E) = G. Then LE(X) ƒ LSG(X).

Proof : See Theorem 3.1 in [Bousfield, 1979].

If one take E = HZ/p, then LHZ/p(X) ƒ LSZ/p(X), we obtain the following result.
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Corollary B.8.
An (HZ/p)ú-equivalence f : X æ Y between connective p-completed spectra is a homotopy
equivalence. If the spectra X and Y are moreover locally finite type (i.e. with finitely generated
homology HZ/p), then if a map f : X æ Y induces an isomorphism on cohomology (HZ/p)ú,
then f is also a (HZ/p)ú-equivalence, and thus f is a homotopy equivalence.

Proof : When X and Y are locally of finite type, then if f induces an isomorphism on
cohomology, then its cofibre has trivial cohomology. But a usual universal coe�cient argument
implies that its homology is also trivial, as the homology of X and Y are finitely generated.
Thus f induces also an isomorphism on homology.

We finish this appendix with the following remark. The Eú-localization functor need not to
preserve smash products, but there is a canonical map LE(X) · LE(Y ) æ LE(X · Y ). If G is a
commutative ring spectrum (see page 246 in [Adams, 1974] for a definition), then so is LE(G).
In particular the localized sphere spectrum LE(S) is a commutative ring spectrum and each
Eú-local spectrum is canonically a module spectrum over LE(S). Moreover, for each spectrum
X in S , there is a canonical map LE(S) · LE(X) ≠æ LE(X). The Kunneth map then gives
a structure of fi0(LE(S))-module for the homotopy class [LE(X), LE(X)]. In particular, by
Proposition B.6, we have fi0(Lp(S)) = „Zp, so we obtain the following result.

Proposition B.9.
For any p-complete spectrum X, the abelian group of all self maps [X, X] is a „Zp-module.
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