
An Introduction to Borel Reducibility for Countable
Structures

Matthew Harrison-Trainor

University of Illinois Chicago

CiE 2024 Tutorial

Invariants

Let X be some class of mathematical objects with a notion of equivalence
E , such as:

Groups up to isomorphism

Topological spaces up to homeomorphism

Linear orders up to bi-embeddability

One of the major goals up mathematics is to classify these objects, often
by giving complete invariants.

To each object x ∈ X , we want to assign an invariant f (x). The invariants
should tell us when two objects are equivalent:

x E y ⇐⇒ f (x) = f (y).

Example

Vector spaces V are classified by the invariant dim(V).

Invariants are not always numbers; they can also be groups or some other
kind of structure.

If the invariants are groups, then instead of checking whether the
invariants are equal, we should check whether they are isomorphic.

In general, we also have an equivalence relation on the space of invariants.

Example

Consider the rank one torsion-free abelian group, i.e., subgroups of the
additive group Q.

Baer (1937) gave invariants as follows.

Given a ∈ G , the p-height hp(a) of a is the highest power n of p dividing a:

∃x pnx = a.

The p-height may be ∞.

The height sequence of a is

h(a) = (h2(a),h3(a),h5(a), . . .).

The height sequence of a is

h(a) = (h2(a),h3(a),h5(a), . . .).

Two height sequences are equivalent if they are ∞ in the same places and
differ in at most finitely many other places.

Fact: All elements of G have equivalent height sequences.

Call this equivalence class the type of G . It is a complete invariant.

Consider the groups

Z, picking 1, has type (0,0,0,0,0, . . .).
Z, picking 12, has type (2,1,0,0,0,0,0, . . .).
Z[12], picking 1, has type (1,0,0,0,0, . . .).

These are all isomorphic.

Consider the groups

Z[1/p ∶ p prime], picking 1, has type (1,1,1,1, . . .).
Z[1/2n ∶ n ∈ N], picking 1, has type (∞,0,0,0,0,0, . . .).

These are not isomorphic to each other or to Z.

Given (X ,E), a complete set of invariants for (X ,E) is an equivalence
relation (Y ,F) and a function f such that

x E y ⇐⇒ f (x) F f (y).

For invariants to be useful, two things should be true:

It is easy to compute the invariants f (x).
It is easy to tell when two invariants f (x) and f (y) are equivalent.

We will think of “easy to compute” as meaning Borel.

Why Borel and not computable?

Some invariants which we think of as easy, such as the dimension of a
vector space, are Borel but not computable.

If we show that there are no good Borel invariants, this is stronger
than showing that there are no good computable invariants.

There is a reasonable analogy

polynomial time on finite structures ≡ Borel on countable structures.

What does Borel mean?
(You will not lose much in the rest of the tutorial if you think of a
Borel function as a reasonably constructive function.)

Definition

A Polish space is a separable completely metrizable topological space.

Example

N = ω.

Example

2ω = {0,1}N, the infinite binary strings.

Example

ωω = {0,1,2, . . .}N, the infinite strings of natural numbers.

Let L be a signature / language.

Definition

Mod(L) is the Polish space of countable L-structures.

Formally:

We consider L-structures with domain N.
The basic clopen sets are determined by atomic and negated atomic
formulas, e.g.,

[R(n1, . . . ,nℓ)] = {A ∶ A ⊧ R(n1, . . . ,nℓ)}

for n1, . . . ,nℓ ∈ N.

Continuous functions on Mod(L) are analogous to computable functions.
(In fact every computable function is continuous but not vice versa.)

E.g., consider a function f ∶Mod(L)→ 2ω.

Then f is continuous if for every finite string σ, there is a (possibly infinite)
sequence of atomic or negated atomic formulas φi(n1, . . . ,nℓi) such that

f (A) extends σ⇐⇒ for some i , A ⊧ φi(n1, . . . ,nℓi).

That is, the function f , when it reads A as input and sees that A satisfies
some φi , has output beginning with σ.

Definition

Let X be a Polish space. The Borel sets are the smallest subsets of X
containing all open sets and closed under countable unions, countable
intersections, and relative complements.

The Borel sets are those that can be built using quantification over
elements of X but not over higher-order objects like subsets of X .

Example

In 2ω, the set of binary strings with infinitely many 0’s and infinitely many
1’s is Borel.

Definition

A function f ∶X → Y is Borel if for every open set U ⊆ Y , f −1(U) is Borel.

Any computable function is continuous, and every continuous function is
Borel.

You will not lose much in the rest of the tutorial if you think of a
Borel function as a reasonably constructive functions.

Definition

Let (X ,E) and (Y ,F) be Polish spaces with equivalence relations. E is
Borel reducible to F , written E ≤B F , if there is a Borel function g ∶X → Y
such that

xEy ⇐⇒ g(x) F g(y).

This means that F is at least as complicated as E :

If we know how to tell if elements of Y are F -equivalent, then we can
tell if elements of X are E -equivalent.

Any Borel invariants for F would also be Borel invariants for E .

Isomorphism is not a Borel equivalence relation. It is an analytic
equivalence relation:

A ≅ B⇐⇒ ∃f ∶ f is an isomorphism A→ B.

Definition

Let X be a Polish space. A set is analytic if it is the projection of a Borel
set.

In descriptive set theory, there is an entire field of studying equivalence
relations up to Borel reducibility, particularly when the equivalence
relations are Borel.

In this tutorial, we are going to be concerned with the specific problem of
classifying isomorphism among countable structures of particular kinds.

Borel reducibility for countable structures

In a seminal paper A Borel reducibility theory for classes of countable
structures (1989), H. Friedman and Stanley introduced the Borel
reduction between classes of structures.

Definition

Suppose K ⊆Mod(L) and K ′ ⊆Mod(L′) are closed under isomorphism.
We say that K is Borel embeddable in K ′ if (K ,≅) is Borel reducible to
(K ′,≅), i.e., there is a Borel function Φ∶K → K ′ such that for A,B ∈ K ,

A ≅ B⇐⇒ Φ(A) ≅ Φ(B).

We write K ≤B K ′.

Any invariants that could be used to classify K ′ could be used to classify
K . K ′ is at least as hard to classify as K .

Example

The class of Q-vector spaces is Borel reducible to the class of subgroups of
Q, but not vice versa.

Let p0,p1,p2, . . . list the primes. We get a Borel reduction

V z→ Z
⎡⎢⎢⎢⎢⎣

1

pn
dim(V)

∶ n ∈ N
⎤⎥⎥⎥⎥⎦
.

It is a little harder to show that there is no Borel reduction in the other
direction.

There are classes of structures which are as complicated as possible.

Definition

A class of structures C is Borel complete if for every other class D and
language L, D ≤B C.

In practice, the Borel reduction is very often a computable reduction.

Theorem

The class of graphs is Borel complete.

Let’s see why.

Theorem

The class of graphs is Borel complete.

Fix a language L, say, for simplicity, L has a binary function symbol f .

For each L-structure A, we must produce a graph Φ(A) such that

A ≅ B⇐⇒ Φ(A) ≅ Φ(B).

The structure A will be somehow embedded into the graph Φ(A).

We will have a bunch of vertices of the graph Φ(A) representing the
elements of A. Pick a “widget” that we will use to identify these vertices
to distinguish them from all of the other vertices.

For example, we can identify a vertex a as representing an element of a if
it has a 4-clique attached to it:

a

Given a,b, c ∈ A, we represent that f (a,b) = c by attaching a widget to
the vertices representing a,b, c , e.g.:

a

b

c

Remember that each of these three vertices also has a 4-clique attached to
them representing that they are elements of A.

It is important that none of these widgets embeds in any other, so that we
do not confuse part of one widget for part of another.

Given a copy of Φ(A), we can recover a copy of A:
First, search for the vertices which have a 4-clique attached to them.
These vertices represent to domain of the copy of A.
Now we must determine f . For every two vertices a,b as determined
above, look for a vertex c (also with a 4-clique) and a widget
representing that f (a,b) = c .

If we choose the widgets properly, this will yield an isomorphic copy of A.
If there are more functions or relations, we need to include more widgets.
For a relation R, we also need to add a widget to represent the negation.

Theorem

The class of graphs is Borel complete.

Now to show that another class is Borel complete, you just need to reduce
graphs (or your favourite Borel-complete class) to it.

Fact

There are analytic equivalence relations which are not Borel reducible to
isomorphism of graphs:

Bi-embeddability of graphs (Louveau and Rosendal).

Homeomorphism of compact topological spaces (Zielinski).

Scott’s isomorphism theorem says that for each particular countable
structure A, the set

{B ∣ A ≅ B}

of countable structures isomorphic to A is Borel.

This means that every ≅-equivalence class is Borel. This is not true for
general analytic equivalence relations.

What other classes of structures are Borel complete?

partial orders

rings

integral domains

2-step nilpotent groups

These are all proved by codings graphs into the given class, possibly
indirectly.

Theorem

Partial orders are Borel complete.

Let G = (V ,E) be a graph.

Define a partial order (P,≤) = P(G) with domain:

{a,b} ∪V ∪ {x{u,v} ∶ u, v ∈ V }.

Put

a is greater than every v and b is less than every v ;

the v are incomparable;

x{u,v} < u, v if (u, v) ∈ E , and x{u,v} > u, v if (u, v) ∉ E .

transforms into

Trees and linear orders

Some classes of structures require a slightly different strategy. The
classical examples are linear orders and trees.

We’ll start with coloured trees. For us, a tree has a distinguished root
node, and there is a binary relation “x is a child of y”:

Definition

The tree of tuples of a structure A, T (A), is a labeled tree consisting of
all the tuples from A ordered by extension where each tuple ā is labeled by
a number coding its finite atomic diagram DA(ā).

Let A have elements a1, a2, a3, Then T (A) looks like:

a1a2 a1a3 ⋯ a2a1 a2a3 ⋯

a1 a2 a3 a4 ⋯

∅

We also have the labels on the vertices which specify the relations holding
of the corresponding tuple.

It is clear that
A ≅ BÔ⇒ T (A) ≅ T (B).

We also need the reverse,

A ≅ B⇐Ô T (A) ≅ T (B).

This follows from a back-and-forth argument.

Let A consist of elements a1, a2, a3, . . . and let B consist of elements
b1,b2,b3, Suppose that T (A) and T (B) are isomorphic via an
isomorphism f . We argue that A and B are isomorphic.

a1a2
tt

f

**
a1a3 ⋯ a2a1 a2a3 ⋯ b1b2 b1b3 ⋯ b3b1 b3b2 ⋯

a1
uu

f

))
a2 a3 a4 ⋯ b1 b2 b3 b4 ⋯

∅ ∅
a1 ↦?a1 ↦ b3

?↦ b1a2 ↦ b1

We have shown that

A ≅ B⇐⇒ T (A) ≅ T (B).

Theorem

Labeled trees are Borel complete.

Now we need to code the labels into a tree.

We will define a way to recursively replace a labeled subtree T by an
unlabeled tree T̃ .

Given T with root node labeled s and labeled subtrees T1,T2, . . .:

T1 T2 T3 ⋯

Define T̃ as follows:

⋮s nodes

T̃1 T̃2 T̃3

⋯

We can construct this tree from the labeled tree, and recover a copy of the
labeled tree from a copy of this tree.

Theorem

Trees are Borel complete.

Theorem

Linear orders are Borel complete.

To do this, we need the construction of a shuffle sum.

Choose a partition Q = ⊔nQn where each part is dense.

Given q ∈ Q let n(q) be the part that q is in.

Given a sequence of linear orders Ln, the shuffle sum is

∑
q∈Q
Ln(q).

The isomorphism type does not depend on the partition.

We will make use of the fact that labeled trees are Borel complete. Given
a labeled tree T , we form a linear order L(T).
We may assume that the label of each node encodes what level of the tree
that node is on.

Define L(T) recursively: L(T) is the shuffle sum of

Q + ℓ(σ) + 2 +Q +L(Tσ)

for all children σ of the root node, where

Tσ is the subtree of T below σ and

ℓ(σ) is the (integer code for) the label of σ.

What, formally, is the difference between the former examples (graphs,
rings, partial orders) and the latter examples (trees, linear orders)?

For graphs, the structure can be found inside the graph. Certain vertices
of the graph, which can be identified, represent elements of the structure.
Certain aspects of the graph allow us to recover the relations on the
structure.

For trees (and linear orders), the structure cannot be found inside the tree
in the same way.

We will call classes of structures with the stronger kind of reduction
universal.

What do we formally mean by this?

One approach, from Hirschfeldt, Khoussainov, Shore, and Slinko is that the
former examples allow one to transfer examples from one class to another:

Theorem (Hirschfeldt, Khoussainov, Shore, and Slinko)

Given a structure with some property from the list below, there is a graph,
partial order, integral domain, and 2-step nilpotent group with that
property.

The list of properties is:

degree spectra of nontrivial structures,

effective dimensions,

expansion by constants, and

degree spectra of relations.

Linear orders cannot be added to this list.

Another way of differentiating the constructions is that for graphs, partial
orders, integral domains, and 2-step nilpotent groups,

the Borel reductions are functorial, and

there is a functorial inverse to the Borel reduction.

E.g., given the encoding of a structure into a graph, we can recover the
original structure from the graph in a functorial way.

This is equivalent to saying that there is an “infinitary bi-interpretation”
between the two structures. (Harrison-Trainor, Melnikov, Miller,
Montalbán)

In particular, they have the same automorphism group.

Moreover, often the functorial Borel reduction and its inverse are both
computable. In this case, we say that the class is computably universal.

This is equivalent to saying that there is a “computable bi-interpretation”
between the two structures.

Theorem (Harrison-Trainor, Montalbán)

For each computable ordinal α, there is a structure A with no
∆0

α-computable copies but for which T (A) has a computable copy.

In particular, there are no Lω1ω formulas that uniformly (in the choice of
language) interpret the structure A in the tree of tuples T (A). (Also
proved by Knight, A. Soskova, and Vatev.)

Theorem (Friedman, Stanley)

Fields are Borel complete and are universal.

In their argument, the recovery of the graph from the field is not
computable. For a long time it was not known that this could be done
computably, until 2017.

Theorem (Miller, Poonen, Schoutens, Shlapentokh)

Fields are computably universal.

Theorem (Miller, Poonen, Schoutens, Shlapentokh)

Fields are computably universal.

The idea to reduce a graph G to a field is:

take the pure transcendental extension Q(t1, t2, . . .);
use t1, t2, . . . to represent the vertices of G , and distinguish those
elements by adding solutions to a certain equation involving ti ;

for each ti , tj , add a solution to a certain equation involving ti and tj
if they are adjacent in G , and add a solution to another equation if
they are not.

Choosing the equations carefully, this encodes the graph in the field.

That’s it for today!
Next time:

Comparisons with the graph isomorphism problem in complexity
theory

Torsion-free abelian groups

