
An Introduction to Borel Reducibility for Countable
Structures

Matthew Harrison-Trainor

University of Illinois Chicago

CiE 2024 Tutorial, Part 2



Review from yesterday



Definition (H. Friedman, Stanley)

Suppose C ⊆Mod(L) and D ⊆Mod(L′) are closed under isomorphism.
We say that C is Borel reducible to D if there is a Borel function Φ∶C → D
such that for A,B ∈ C,

A ≅ B⇐⇒ Φ(A) ≅ Φ(B).

A class of structures C is Borel complete if for every other class D, D ≤B C.



Definition (H. Friedman, Stanley)

Suppose C ⊆Mod(L) and D ⊆Mod(L′) are closed under isomorphism.
We say that C is Borel reducible to D if there is a Borel function Φ∶C → D
such that for A,B ∈ C,

A ≅ B⇐⇒ Φ(A) ≅ Φ(B).

A class of structures C is Borel complete if for every other class D, D ≤B C.



The following classes of structures are Borel complete:

graphs,

partial orders,

rings,

integral domains,

2-step nilpotent groups,

fields.

Moreover, in each of these cases, we have something stronger.

The reduction is by a computable bi-interpretation, i.e., if Φ is the
reduction and Φ(A) = B, then a copy of A can be found inside of B and
can be recovered computably.



The following classes of structures are Borel complete:

graphs,

partial orders,

rings,

integral domains,

2-step nilpotent groups,

fields.

Moreover, in each of these cases, we have something stronger.

The reduction is by a computable bi-interpretation, i.e., if Φ is the
reduction and Φ(A) = B, then a copy of A can be found inside of B and
can be recovered computably.



The following classes of structures are Borel complete:

graphs,

partial orders,

rings,

integral domains,

2-step nilpotent groups,

fields.

Moreover, in each of these cases, we have something stronger.

The reduction is by a computable bi-interpretation, i.e., if Φ is the
reduction and Φ(A) = B, then a copy of A can be found inside of B and
can be recovered computably.



In particular:

A and Φ(A) have the same automorphism group.

A copy of A can be computed from any copy of Φ(A).

A and Φ(A) share all the same computable-structure-theoretic
properties, such as computable dimension or degree spectrum.

We called these classes universal or computably universal.



In particular:

A and Φ(A) have the same automorphism group.

A copy of A can be computed from any copy of Φ(A).

A and Φ(A) share all the same computable-structure-theoretic
properties, such as computable dimension or degree spectrum.

We called these classes universal or computably universal.



In particular:

A and Φ(A) have the same automorphism group.

A copy of A can be computed from any copy of Φ(A).

A and Φ(A) share all the same computable-structure-theoretic
properties, such as computable dimension or degree spectrum.

We called these classes universal or computably universal.



In particular:

A and Φ(A) have the same automorphism group.

A copy of A can be computed from any copy of Φ(A).

A and Φ(A) share all the same computable-structure-theoretic
properties, such as computable dimension or degree spectrum.

We called these classes universal or computably universal.



In particular:

A and Φ(A) have the same automorphism group.

A copy of A can be computed from any copy of Φ(A).

A and Φ(A) share all the same computable-structure-theoretic
properties, such as computable dimension or degree spectrum.

We called these classes universal or computably universal.



Trees and linear orders are also Borel complete, but by a different kind of
argument where the reducing structure cannot be found inside of the tree
or linear order.

Trees and linear orders are not universal; in particular, there are
automorphism groups of structures which are not the automorphism group
of a tree (or of a linear order).

A number of the hardest questions of computable structure theory are
about whether, even though they are not universal, trees and linear orders
still satisfy some of the consequences of universality.



Trees and linear orders are also Borel complete, but by a different kind of
argument where the reducing structure cannot be found inside of the tree
or linear order.

Trees and linear orders are not universal; in particular, there are
automorphism groups of structures which are not the automorphism group
of a tree (or of a linear order).

A number of the hardest questions of computable structure theory are
about whether, even though they are not universal, trees and linear orders
still satisfy some of the consequences of universality.



Trees and linear orders are also Borel complete, but by a different kind of
argument where the reducing structure cannot be found inside of the tree
or linear order.

Trees and linear orders are not universal; in particular, there are
automorphism groups of structures which are not the automorphism group
of a tree (or of a linear order).

A number of the hardest questions of computable structure theory are
about whether, even though they are not universal, trees and linear orders
still satisfy some of the consequences of universality.



The degree spectrum of a structure A is the set of Turing degrees that can
compute a copy of A.

Question

Is every degree spectrum the degree spectrum of a tree?

Question

Is there a linear order whose degree spectrum is exactly the
non-computable degrees?



The degree spectrum of a structure A is the set of Turing degrees that can
compute a copy of A.

Question

Is every degree spectrum the degree spectrum of a tree?

Question

Is there a linear order whose degree spectrum is exactly the
non-computable degrees?



The degree spectrum of a structure A is the set of Turing degrees that can
compute a copy of A.

Question

Is every degree spectrum the degree spectrum of a tree?

Question

Is there a linear order whose degree spectrum is exactly the
non-computable degrees?



There are also interesting questions about whether there are better Borel
reductions for trees and linear orders than the ones we gave yesterday.

Theorem (Harrison-Trainor, Montalbán)

There is no Borel way to recover a copy of A from a copy of T (A).

Question

Is there a Borel reduction T ∗ from graphs to trees such that A can be
recovered in a Borel way from T (A)?



There are also interesting questions about whether there are better Borel
reductions for trees and linear orders than the ones we gave yesterday.

Theorem (Harrison-Trainor, Montalbán)

There is no Borel way to recover a copy of A from a copy of T (A).

Question

Is there a Borel reduction T ∗ from graphs to trees such that A can be
recovered in a Borel way from T (A)?



There are also interesting questions about whether there are better Borel
reductions for trees and linear orders than the ones we gave yesterday.

Theorem (Harrison-Trainor, Montalbán)

There is no Borel way to recover a copy of A from a copy of T (A).

Question

Is there a Borel reduction T ∗ from graphs to trees such that A can be
recovered in a Borel way from T (A)?



In a similar vein, we can ask about the image of the reduction. For all of
the nice reductions, the image is Borel.

Theorem (Gonzalez, Rossegger)

The image of T is not Borel.

Question

Is there a Borel reduction T ∗ from graphs to trees such that the image is
Borel?



In a similar vein, we can ask about the image of the reduction. For all of
the nice reductions, the image is Borel.

Theorem (Gonzalez, Rossegger)

The image of T is not Borel.

Question

Is there a Borel reduction T ∗ from graphs to trees such that the image is
Borel?



Structures which are Borel complete but not universal are some of the
most interesting classes of structures in computable structure theory.



The Isomorphism Problem



For a class C let
I (C) = {(A,B) ∣ A ≅ B}.

We call this set the isomorphism problem of C.

It is an analytic or Σ1
1 subset of Mod(L) ×Mod(L):

A ≅ B⇐⇒ ∃f isomorphism f ∶A→ B.

For graphs, it is Σ1
1-complete and so not Borel. Thus if C is Borel

complete, then I (C) Σ1
1-complete.



For a class C let
I (C) = {(A,B) ∣ A ≅ B}.

We call this set the isomorphism problem of C.

It is an analytic or Σ1
1 subset of Mod(L) ×Mod(L):

A ≅ B⇐⇒ ∃f isomorphism f ∶A→ B.

For graphs, it is Σ1
1-complete and so not Borel. Thus if C is Borel

complete, then I (C) Σ1
1-complete.



For a class C let
I (C) = {(A,B) ∣ A ≅ B}.

We call this set the isomorphism problem of C.

It is an analytic or Σ1
1 subset of Mod(L) ×Mod(L):

A ≅ B⇐⇒ ∃f isomorphism f ∶A→ B.

For graphs, it is Σ1
1-complete and so not Borel. Thus if C is Borel

complete, then I (C) Σ1
1-complete.



C is universal

⇓

C is Borel complete

⇓

Isomorphism for C is analytic complete



These are all strict implications. The classical example is that of Abelian
p-groups.

Theorem (Friedman, Stanley)

The class of Abelian p-groups is not Borel complete, but the isomorphism
problem is analytic-complete.

Theorem (Laskowski, Rast, Ulrich)

Binary splitting, refining equivalence relations are not Borel complete, but
the isomorphism problem is analytic-complete.



These are all strict implications. The classical example is that of Abelian
p-groups.

Theorem (Friedman, Stanley)

The class of Abelian p-groups is not Borel complete, but the isomorphism
problem is analytic-complete.

Theorem (Laskowski, Rast, Ulrich)

Binary splitting, refining equivalence relations are not Borel complete, but
the isomorphism problem is analytic-complete.



These are all strict implications. The classical example is that of Abelian
p-groups.

Theorem (Friedman, Stanley)

The class of Abelian p-groups is not Borel complete, but the isomorphism
problem is analytic-complete.

Theorem (Laskowski, Rast, Ulrich)

Binary splitting, refining equivalence relations are not Borel complete, but
the isomorphism problem is analytic-complete.



The graph isomorphism problem in
complexity theory



Borel reducibility is analogous to the study of the graph isomorphism
problem in complexity theory.

Definition

The graph isomorphism problem is the computational problem of
determining whether two finite graphs are isomorphic.

Theorem (Babai, 2015)

Graph isomorphism can be solved in quasipolynomial time 2O((log n)
c).

Graph isomorphism is a good candidate for a natural problem intermediate
between P and NP.



Borel reducibility is analogous to the study of the graph isomorphism
problem in complexity theory.

Definition

The graph isomorphism problem is the computational problem of
determining whether two finite graphs are isomorphic.

Theorem (Babai, 2015)

Graph isomorphism can be solved in quasipolynomial time 2O((log n)
c).

Graph isomorphism is a good candidate for a natural problem intermediate
between P and NP.



Borel reducibility is analogous to the study of the graph isomorphism
problem in complexity theory.

Definition

The graph isomorphism problem is the computational problem of
determining whether two finite graphs are isomorphic.

Theorem (Babai, 2015)

Graph isomorphism can be solved in quasipolynomial time 2O((log n)
c).

Graph isomorphism is a good candidate for a natural problem intermediate
between P and NP.



Definition

We say that a problem P is GI-complete if graph isomorphism is
polynomial-time reducible to P.

Certain subclasses of graphs are rich enough that the graph isomorphism
problem restricted to the subgraph is GI-complete.

While the graph isomorphism problem is analogous to the isomorphism
problem for countable structures, in practice we always use a reduction like
the polynomial-time version of a Borel reduction, and in fact (as far as I
know) the constructions are always of the universal type.



Definition

We say that a problem P is GI-complete if graph isomorphism is
polynomial-time reducible to P.

Certain subclasses of graphs are rich enough that the graph isomorphism
problem restricted to the subgraph is GI-complete.

While the graph isomorphism problem is analogous to the isomorphism
problem for countable structures, in practice we always use a reduction like
the polynomial-time version of a Borel reduction, and in fact (as far as I
know) the constructions are always of the universal type.



Definition

We say that a problem P is GI-complete if graph isomorphism is
polynomial-time reducible to P.

Certain subclasses of graphs are rich enough that the graph isomorphism
problem restricted to the subgraph is GI-complete.

While the graph isomorphism problem is analogous to the isomorphism
problem for countable structures, in practice we always use a reduction like
the polynomial-time version of a Borel reduction, and in fact (as far as I
know) the constructions are always of the universal type.



Theorem

Bipartite graphs are GI-complete.

Given a graph G = (V ,E), produce a bipartite graph with one part being
V and the other part being E .

Connect an edge e = (u, v) to both u and v .

u v w
Ô⇒

u v w



Theorem

Bipartite graphs are GI-complete.

Given a graph G = (V ,E), produce a bipartite graph with one part being
V and the other part being E .

Connect an edge e = (u, v) to both u and v .

u v w
Ô⇒

u v w



Theorem

Bipartite graphs are GI-complete.

Given a graph G = (V ,E), produce a bipartite graph with one part being
V and the other part being E .

Connect an edge e = (u, v) to both u and v .

u v w
Ô⇒

u v w



Graph theorists are interested in classes of graphs defined by forbidden
subgraphs, induced subgraphs, or minors.

H is an induced subgraph of G if it is a subgraph and all of the non-edges
of H are non-edges of G .

Theorem (Booth, Colbourn)

Let C be the class of graphs with no induced copy of H.

Then C is GI-complete if and only if H is not induced subgraph of the path
on four vertices.



Graph theorists are interested in classes of graphs defined by forbidden
subgraphs, induced subgraphs, or minors.

H is an induced subgraph of G if it is a subgraph and all of the non-edges
of H are non-edges of G .

Theorem (Booth, Colbourn)

Let C be the class of graphs with no induced copy of H.

Then C is GI-complete if and only if H is not induced subgraph of the path
on four vertices.



Graph theorists are interested in classes of graphs defined by forbidden
subgraphs, induced subgraphs, or minors.

H is an induced subgraph of G if it is a subgraph and all of the non-edges
of H are non-edges of G .

Theorem (Booth, Colbourn)

Let C be the class of graphs with no induced copy of H.

Then C is GI-complete if and only if H is not induced subgraph of the path
on four vertices.



When these classes are GI-complete, it is via a universal construction.

Let’s consider a case that is not GI-complete: the case where we forbid P4,
the path on four vertices.

Definition

A graph is a cograph if and only if it has no induced P4.



When these classes are GI-complete, it is via a universal construction.

Let’s consider a case that is not GI-complete: the case where we forbid P4,
the path on four vertices.

Definition

A graph is a cograph if and only if it has no induced P4.



When these classes are GI-complete, it is via a universal construction.

Let’s consider a case that is not GI-complete: the case where we forbid P4,
the path on four vertices.

Definition

A graph is a cograph if and only if it has no induced P4.



Theorem (Many people?)

The finite cographs are the smallest class of graphs satisfying:

The graph with one vertex is a cograph.

The disjoint union of two cographs is a cograph.

The complement of a cograph is a cograph.

Each cograph has a unique tree decomposition in normal form. Thus we
can reduce checking isomorphism for cographs to isomorphism for
(labeled) trees.



Theorem (Many people?)

The finite cographs are the smallest class of graphs satisfying:

The graph with one vertex is a cograph.

The disjoint union of two cographs is a cograph.

The complement of a cograph is a cograph.

Each cograph has a unique tree decomposition in normal form. Thus we
can reduce checking isomorphism for cographs to isomorphism for
(labeled) trees.



Isomorphism for (labeled) trees is computable in linear time using an
algorithm by Aho, Hopcroft, and Ullman. Importantly, this uses counting
and so is unique to the finite realm.

Theorem

The isomorphism problem for cographs is in polynomial time.



Isomorphism for (labeled) trees is computable in linear time using an
algorithm by Aho, Hopcroft, and Ullman. Importantly, this uses counting
and so is unique to the finite realm.

Theorem

The isomorphism problem for cographs is in polynomial time.



For countable structures, trees are Borel complete and thus complicated!

Observation (Harrison-Trainor, Ko)

Countable cographs are Borel-complete but not universal.

Given a countable tree, we can transform it into a cograph by using it as
the tree decomposition. Because trees are Borel complete, countable
cographs are Borel complete.

The cyclic group of order 3 is not the automorphism group of any cograph.
This follows from the modular decomposition which adds to the tree
decomposition for finite cographs the fact that countable cographs are also
closed under nested unions.



For countable structures, trees are Borel complete and thus complicated!

Observation (Harrison-Trainor, Ko)

Countable cographs are Borel-complete but not universal.

Given a countable tree, we can transform it into a cograph by using it as
the tree decomposition. Because trees are Borel complete, countable
cographs are Borel complete.

The cyclic group of order 3 is not the automorphism group of any cograph.
This follows from the modular decomposition which adds to the tree
decomposition for finite cographs the fact that countable cographs are also
closed under nested unions.



For countable structures, trees are Borel complete and thus complicated!

Observation (Harrison-Trainor, Ko)

Countable cographs are Borel-complete but not universal.

Given a countable tree, we can transform it into a cograph by using it as
the tree decomposition. Because trees are Borel complete, countable
cographs are Borel complete.

The cyclic group of order 3 is not the automorphism group of any cograph.
This follows from the modular decomposition which adds to the tree
decomposition for finite cographs the fact that countable cographs are also
closed under nested unions.



Question

Is there any class C of finite structures which is analogous to countable
trees in that it is GI-complete, not via a universal-type argument?

Question

Is there any class C of finite structures which is analogous to p-groups in
that it is GI-complete, but there is no map Φ from finite graphs to C such
that

G ≅ H ⇐⇒ Φ(G) ≅ Φ(H).



Question

Is there any class C of finite structures which is analogous to countable
trees in that it is GI-complete, not via a universal-type argument?

Question

Is there any class C of finite structures which is analogous to p-groups in
that it is GI-complete, but there is no map Φ from finite graphs to C such
that

G ≅ H ⇐⇒ Φ(G) ≅ Φ(H).



Torsion-free abelian groups



One of the first examples we considered was rank 1 torsion-free abelian
groups, or subgroups of Q.

In general we can consider rank n torsion-free abelian groups, or subgroups
of Qn (which are not subgroups of Qn−1). Call these TFAGn.

We have
TFAG1 ≤B TFAG2 ≤B TFAG3 ≤B ⋯.

The reduction is G ↦ G ⊕Z.

By Cohn and Walker’s cancellation for Z from direct sums:

G ≅ H ⇐⇒ G ⊕Z ≅ H ⊕Z



One of the first examples we considered was rank 1 torsion-free abelian
groups, or subgroups of Q.

In general we can consider rank n torsion-free abelian groups, or subgroups
of Qn (which are not subgroups of Qn−1). Call these TFAGn.

We have
TFAG1 ≤B TFAG2 ≤B TFAG3 ≤B ⋯.

The reduction is G ↦ G ⊕Z.

By Cohn and Walker’s cancellation for Z from direct sums:

G ≅ H ⇐⇒ G ⊕Z ≅ H ⊕Z



One of the first examples we considered was rank 1 torsion-free abelian
groups, or subgroups of Q.

In general we can consider rank n torsion-free abelian groups, or subgroups
of Qn (which are not subgroups of Qn−1). Call these TFAGn.

We have
TFAG1 ≤B TFAG2 ≤B TFAG3 ≤B ⋯.

The reduction is G ↦ G ⊕Z.

By Cohn and Walker’s cancellation for Z from direct sums:

G ≅ H ⇐⇒ G ⊕Z ≅ H ⊕Z



One of the first examples we considered was rank 1 torsion-free abelian
groups, or subgroups of Q.

In general we can consider rank n torsion-free abelian groups, or subgroups
of Qn (which are not subgroups of Qn−1). Call these TFAGn.

We have
TFAG1 ≤B TFAG2 ≤B TFAG3 ≤B ⋯.

The reduction is G ↦ G ⊕Z.

By Cohn and Walker’s cancellation for Z from direct sums:

G ≅ H ⇐⇒ G ⊕Z ≅ H ⊕Z



These classes cannot be distinguished in terms of their isomorphism
problem, which is Σ0

3-complete in all cases.

For Borel reducibility, Hjorth and Thomas proved that these are all strict.

Theorem (Hjorth, Thomas)

TFAG1 <B TFAG2 <B TFAG3 <B ⋯.

This is a hard theorem. (Thomas’s paper was in JAMS.)



These classes cannot be distinguished in terms of their isomorphism
problem, which is Σ0

3-complete in all cases.

For Borel reducibility, Hjorth and Thomas proved that these are all strict.

Theorem (Hjorth, Thomas)

TFAG1 <B TFAG2 <B TFAG3 <B ⋯.

This is a hard theorem. (Thomas’s paper was in JAMS.)



Question (Ho, Knight, Miller, (Dittman))

Let TDn be the class of fields of transcendence degree n (in characteristic
zero). Then

TD1 ≤B TD2 ≤B TD3 ≤B ⋯.

Are these strict?

The reductions uses Henselian valued fields. Given K of transcendence
degree n, form K(x) with the natural valuation. Let Φ(K) be the
Henselization of K(x).

Fact: The valuation on a Henselian field is unique, and K is the residue
field of Φ(K).

(Note that K ↦ K(x) does not work!)



Question (Ho, Knight, Miller, (Dittman))

Let TDn be the class of fields of transcendence degree n (in characteristic
zero). Then

TD1 ≤B TD2 ≤B TD3 ≤B ⋯.

Are these strict?

The reductions uses Henselian valued fields. Given K of transcendence
degree n, form K(x) with the natural valuation. Let Φ(K) be the
Henselization of K(x).

Fact: The valuation on a Henselian field is unique, and K is the residue
field of Φ(K).

(Note that K ↦ K(x) does not work!)



Question (Ho, Knight, Miller, (Dittman))

Let TDn be the class of fields of transcendence degree n (in characteristic
zero). Then

TD1 ≤B TD2 ≤B TD3 ≤B ⋯.

Are these strict?

The reductions uses Henselian valued fields. Given K of transcendence
degree n, form K(x) with the natural valuation. Let Φ(K) be the
Henselization of K(x).

Fact: The valuation on a Henselian field is unique, and K is the residue
field of Φ(K).

(Note that K ↦ K(x) does not work!)



Question (Ho, Knight, Miller, (Dittman))

Let TDn be the class of fields of transcendence degree n (in characteristic
zero). Then

TD1 ≤B TD2 ≤B TD3 ≤B ⋯.

Are these strict?

The reductions uses Henselian valued fields. Given K of transcendence
degree n, form K(x) with the natural valuation. Let Φ(K) be the
Henselization of K(x).

Fact: The valuation on a Henselian field is unique, and K is the residue
field of Φ(K).

(Note that K ↦ K(x) does not work!)



One of the longstanding problems left open by Friedman and Stanley was
whether torsion-free abelian groups are Borel complete.

Building on ideas of Hjorth, Downey and Montalbán proved:

Theorem (Downey, Montalbán)

The isomorphism problem for torsion-free abelian groups is analytic
complete.

Recall that this is a consequence of Borel completeness.



One of the longstanding problems left open by Friedman and Stanley was
whether torsion-free abelian groups are Borel complete.

Building on ideas of Hjorth, Downey and Montalbán proved:

Theorem (Downey, Montalbán)

The isomorphism problem for torsion-free abelian groups is analytic
complete.

Recall that this is a consequence of Borel completeness.



In 2021, Shelah and Paolini announced that torsion-free abelian groups are
Borel complete; their original proof had some mistakes which are now
fixed. While the mistakes were being fixed, Laskowski and Ulrich
announced another proof.

Theorem

Torsion-free abelian groups are Borel complete.



In 2021, Shelah and Paolini announced that torsion-free abelian groups are
Borel complete; their original proof had some mistakes which are now
fixed. While the mistakes were being fixed, Laskowski and Ulrich
announced another proof.

Theorem

Torsion-free abelian groups are Borel complete.



The Shelah-Paolini proof is highly technical:

⋮

⋮



The Laskowski-Ulrich proof builds on an argument of Shelah-Ulrich and is
also quite technical.

To finish the tutorial, I will highlight the main ideas from the
Shelah-Paolini proof, and in particular the two key ideas.



The Laskowski-Ulrich proof builds on an argument of Shelah-Ulrich and is
also quite technical.

To finish the tutorial, I will highlight the main ideas from the
Shelah-Paolini proof, and in particular the two key ideas.



The proof breaks up into two parts:

The combinatorial part.

The group-theoretic part.

The two are intertwined in the sense that each of them influences the
other.



Given a graph (V ,E), you probably want to have certain group elements,
say xv , represent vertices v . To do this, you will probably want to add
certain divisibility relations to xv .

The problem is that if p divides xu and xv , then it also divides xu + xv and
any other combination of them.

Similarly, if there is an edge between u and v , you might want to add a
divisibility relation to an element such as xu + xv .

But then if there are edges s − t − u − v then

xs + xv = (xs + xt) − (xt + xu) + (xu + xv)

and so the divisibility relation would suggest that there is an edge between
s and v .



Given a graph (V ,E), you probably want to have certain group elements,
say xv , represent vertices v . To do this, you will probably want to add
certain divisibility relations to xv .

The problem is that if p divides xu and xv , then it also divides xu + xv and
any other combination of them.

Similarly, if there is an edge between u and v , you might want to add a
divisibility relation to an element such as xu + xv .

But then if there are edges s − t − u − v then

xs + xv = (xs + xt) − (xt + xu) + (xu + xv)

and so the divisibility relation would suggest that there is an edge between
s and v .



Given a graph (V ,E), you probably want to have certain group elements,
say xv , represent vertices v . To do this, you will probably want to add
certain divisibility relations to xv .

The problem is that if p divides xu and xv , then it also divides xu + xv and
any other combination of them.

Similarly, if there is an edge between u and v , you might want to add a
divisibility relation to an element such as xu + xv .

But then if there are edges s − t − u − v then

xs + xv = (xs + xt) − (xt + xu) + (xu + xv)

and so the divisibility relation would suggest that there is an edge between
s and v .



Given a graph (V ,E), you probably want to have certain group elements,
say xv , represent vertices v . To do this, you will probably want to add
certain divisibility relations to xv .

The problem is that if p divides xu and xv , then it also divides xu + xv and
any other combination of them.

Similarly, if there is an edge between u and v , you might want to add a
divisibility relation to an element such as xu + xv .

But then if there are edges s − t − u − v then

xs + xv = (xs + xt) − (xt + xu) + (xu + xv)

and so the divisibility relation would suggest that there is an edge between
s and v .



Warning!

The rest of the tutorial is (a) technical and (b) not technical.



Warning!
The rest of the tutorial is

(a) technical and (b) not technical.



Warning!
The rest of the tutorial is (a) technical and

(b) not technical.



Warning!
The rest of the tutorial is (a) technical and (b) not technical.



First main idea: If we are transforming a structure A into a torsion-free
abelian group, we will have many independent elements representing each
a ∈ A.

For each a ∈ A, we have an infinite set Xa. Our group G(A) will have
Z-basis X = ⋃a∈AXa:

∑
x∈X

Za ⊆ G(A) ⊆ ∑
x∈X

Qx .

We can think of an equivalence relation X on X of being in the same Xa.



First main idea: If we are transforming a structure A into a torsion-free
abelian group, we will have many independent elements representing each
a ∈ A.

For each a ∈ A, we have an infinite set Xa. Our group G(A) will have
Z-basis X = ⋃a∈AXa:

∑
x∈X

Za ⊆ G(A) ⊆ ∑
x∈X

Qx .

We can think of an equivalence relation X on X of being in the same Xa.



First main idea: If we are transforming a structure A into a torsion-free
abelian group, we will have many independent elements representing each
a ∈ A.

For each a ∈ A, we have an infinite set Xa. Our group G(A) will have
Z-basis X = ⋃a∈AXa:

∑
x∈X

Za ⊆ G(A) ⊆ ∑
x∈X

Qx .

We can think of an equivalence relation X on X of being in the same Xa.



Second main idea: There will be equivalence relations En on n-tuples
from X .

X together with these equivalence relations will form a combinatorial
structure. The idea is to have a lifting principal:

Every automorphism of A induces an automorphism on X respecting
X and fixing each equivalence class En, and vice versa.

Think of x̄Enȳ as saying that it is allowable to map x̄ to ȳ in such an
automorphism. The En must capture the structure being coded.

We call an automorphism fixing each En class a strong automorphism.



Second main idea: There will be equivalence relations En on n-tuples
from X .

X together with these equivalence relations will form a combinatorial
structure. The idea is to have a lifting principal:

Every automorphism of A induces an automorphism on X respecting
X and fixing each equivalence class En, and vice versa.

Think of x̄Enȳ as saying that it is allowable to map x̄ to ȳ in such an
automorphism. The En must capture the structure being coded.

We call an automorphism fixing each En class a strong automorphism.



Second main idea: There will be equivalence relations En on n-tuples
from X .

X together with these equivalence relations will form a combinatorial
structure. The idea is to have a lifting principal:

Every automorphism of A induces an automorphism on X respecting
X and fixing each equivalence class En, and vice versa.

Think of x̄Enȳ as saying that it is allowable to map x̄ to ȳ in such an
automorphism. The En must capture the structure being coded.

We call an automorphism fixing each En class a strong automorphism.



Second main idea: There will be equivalence relations En on n-tuples
from X .

X together with these equivalence relations will form a combinatorial
structure. The idea is to have a lifting principal:

Every automorphism of A induces an automorphism on X respecting
X and fixing each equivalence class En, and vice versa.

Think of x̄Enȳ as saying that it is allowable to map x̄ to ȳ in such an
automorphism. The En must capture the structure being coded.

We call an automorphism fixing each En class a strong automorphism.



For each q̄ ∈ Zn
>0 and equivalence class e we will have a distinct prime pq̄,e .

(For technical reasons, we will have pq̄,e ∤ qi .)

Define G(A) by putting, for x̄ ∈ e,

∀n pnq̄,e divides ∑qixi .

Then strong automorphisms of the combinatorial structure induce
automorphisms of G(A), and essentially we want to make sure that this
works in the other direction as well.



For each q̄ ∈ Zn
>0 and equivalence class e we will have a distinct prime pq̄,e .

(For technical reasons, we will have pq̄,e ∤ qi .)

Define G(A) by putting, for x̄ ∈ e,

∀n pnq̄,e divides ∑qixi .

Then strong automorphisms of the combinatorial structure induce
automorphisms of G(A), and essentially we want to make sure that this
works in the other direction as well.



For each q̄ ∈ Zn
>0 and equivalence class e we will have a distinct prime pq̄,e .

(For technical reasons, we will have pq̄,e ∤ qi .)

Define G(A) by putting, for x̄ ∈ e,

∀n pnq̄,e divides ∑qixi .

Then strong automorphisms of the combinatorial structure induce
automorphisms of G(A), and essentially we want to make sure that this
works in the other direction as well.



Here’s an example of how this works. Given x ∈ XA, we want to show that
x does not satisfy the same divisibility as any element ∑ℓ

i=1 qiyi for any
ℓ ≥ 2. This is because we want to distinguish the single elements of X
from tuples.

Suppose

x =
ℓ

∑
i=1

qiyi .

Let e be the equivalence class of ȳ . Let p = pq̄,e . Then p∞ ∣ x .

Thus x can be written as

x =∑ rj
ℓ

∑
i=1

qizi ,j

where each z̄j Eℓȳ .

But maybe this could be true?



Here’s an example of how this works. Given x ∈ XA, we want to show that
x does not satisfy the same divisibility as any element ∑ℓ

i=1 qiyi for any
ℓ ≥ 2. This is because we want to distinguish the single elements of X
from tuples.

Suppose

x =
ℓ

∑
i=1

qiyi .

Let e be the equivalence class of ȳ . Let p = pq̄,e . Then p∞ ∣ x .

Thus x can be written as

x =∑ rj
ℓ

∑
i=1

qizi ,j

where each z̄j Eℓȳ .

But maybe this could be true?



Here’s an example of how this works. Given x ∈ XA, we want to show that
x does not satisfy the same divisibility as any element ∑ℓ

i=1 qiyi for any
ℓ ≥ 2. This is because we want to distinguish the single elements of X
from tuples.

Suppose

x =
ℓ

∑
i=1

qiyi .

Let e be the equivalence class of ȳ . Let p = pq̄,e . Then p∞ ∣ x .

Thus x can be written as

x =∑ rj
ℓ

∑
i=1

qizi ,j

where each z̄j Eℓȳ .

But maybe this could be true?



Here’s an example of how this works. Given x ∈ XA, we want to show that
x does not satisfy the same divisibility as any element ∑ℓ

i=1 qiyi for any
ℓ ≥ 2. This is because we want to distinguish the single elements of X
from tuples.

Suppose

x =
ℓ

∑
i=1

qiyi .

Let e be the equivalence class of ȳ . Let p = pq̄,e . Then p∞ ∣ x .

Thus x can be written as

x =∑ rj
ℓ

∑
i=1

qizi ,j

where each z̄j Eℓȳ .

But maybe this could be true?



Here’s an example of how this works. Given x ∈ XA, we want to show that
x does not satisfy the same divisibility as any element ∑ℓ

i=1 qiyi for any
ℓ ≥ 2. This is because we want to distinguish the single elements of X
from tuples.

Suppose

x =
ℓ

∑
i=1

qiyi .

Let e be the equivalence class of ȳ . Let p = pq̄,e . Then p∞ ∣ x .

Thus x can be written as

x =∑ rj
ℓ

∑
i=1

qizi ,j

where each z̄j Eℓȳ .

But maybe this could be true?



Third main idea: Given x̄1, . . . , x̄k ∈ X
n in the same En-equivalence class,

there are x j1i1 , x
j2
i2

such that

x j1i1 ∉ {x
j
i ∶ (i1, j1) ≠ (i , j)}

and
x j2i2 ∉ {x

j
i ∶ (i2, j2) ≠ (i , j)}

Then, in the right-hand-side of

x =∑ rj
ℓ

∑
i=1

qizi ,j

there must be at least two elements which only show up once!



Third main idea: Given x̄1, . . . , x̄k ∈ X
n in the same En-equivalence class,

there are x j1i1 , x
j2
i2

such that

x j1i1 ∉ {x
j
i ∶ (i1, j1) ≠ (i , j)}

and
x j2i2 ∉ {x

j
i ∶ (i2, j2) ≠ (i , j)}

Then, in the right-hand-side of

x =∑ rj
ℓ

∑
i=1

qizi ,j

there must be at least two elements which only show up once!



The heart of the combinatorics can be captured in the following
construction:

Theorem

There is a structureM with an equivalence relation X and equivalence
relations En on n-tuples such that:

1 There are infinitely many X-equivalence classes, each of which is
infinite.

2 If α ∶M/X→M/X is a permutation of the X-equivalence classes,
then there is a strong automorphism ofM which acts as α on the
X-equivalence classes.

3 Given x̄1, . . . , x̄k ∈ X
n in the same En-equivalence class, there are

x j1i1 , x
j2
i2

such that

x j1i1 ∉ {x
j
i ∶ (i1, j1) ≠ (i , j)}

and
x j2i2 ∉ {x

j
i ∶ (i2, j2) ≠ (i , j)}



The heart of the combinatorics can be captured in the following
construction:

Theorem

There is a structureM with an equivalence relation X and equivalence
relations En on n-tuples such that:

1 There are infinitely many X-equivalence classes, each of which is
infinite.

2 If α ∶M/X→M/X is a permutation of the X-equivalence classes,
then there is a strong automorphism ofM which acts as α on the
X-equivalence classes.

3 Given x̄1, . . . , x̄k ∈ X
n in the same En-equivalence class, there are

x j1i1 , x
j2
i2

such that

x j1i1 ∉ {x
j
i ∶ (i1, j1) ≠ (i , j)}

and
x j2i2 ∉ {x

j
i ∶ (i2, j2) ≠ (i , j)}



The heart of the combinatorics can be captured in the following
construction:

Theorem

There is a structureM with an equivalence relation X and equivalence
relations En on n-tuples such that:

1 There are infinitely many X-equivalence classes, each of which is
infinite.

2 If α ∶M/X→M/X is a permutation of the X-equivalence classes,
then there is a strong automorphism ofM which acts as α on the
X-equivalence classes.

3 Given x̄1, . . . , x̄k ∈ X
n in the same En-equivalence class, there are

x j1i1 , x
j2
i2

such that

x j1i1 ∉ {x
j
i ∶ (i1, j1) ≠ (i , j)}

and
x j2i2 ∉ {x

j
i ∶ (i2, j2) ≠ (i , j)}



The heart of the combinatorics can be captured in the following
construction:

Theorem

There is a structureM with an equivalence relation X and equivalence
relations En on n-tuples such that:

1 There are infinitely many X-equivalence classes, each of which is
infinite.

2 If α ∶M/X→M/X is a permutation of the X-equivalence classes,
then there is a strong automorphism ofM which acts as α on the
X-equivalence classes.

3 Given x̄1, . . . , x̄k ∈ X
n in the same En-equivalence class, there are

x j1i1 , x
j2
i2

such that

x j1i1 ∉ {x
j
i ∶ (i1, j1) ≠ (i , j)}

and
x j2i2 ∉ {x

j
i ∶ (i2, j2) ≠ (i , j)}



It is natural to try building this as a Fraisse limit, but this does not work.

The problem is two different tuples ā and b̄ might be extended in two
different, but incompatible, ways.



It is natural to try building this as a Fraisse limit, but this does not work.

The problem is two different tuples ā and b̄ might be extended in two
different, but incompatible, ways.



a1 b2b1a2

f f

e e

f

f

f

If we have a map taking ā = (a1, a2) to b̄ = (b1,b2), then we would have
to have to add a node b′ as in the following diagram:

a1 b2b1a2

f f

e e

f

f

f

b′

f f



a1 b2b1a2

f f

e e

f

f

f

If we have a map taking ā = (a1, a2) to b̄ = (b1,b2), then we would have
to have to add a node b′ as in the following diagram:

a1 b2b1a2

f f

e e

f

f
f

b′

f f



The way to think of this is that for a tuple ā, there are “potential
problems”. If two tuples have the same atomic type but incompatible
“potential problems” then we should not try to homogenize them.

Think of each tuple ā as having associated to it a larger set Cl(ā) which
contains all of the potential problems. This will be a closure operator. We
can think of Cl(ā) as “guarding” ā from problems.

We will only homogenize ā and b̄ when their closures are isomorphic.

a1

b′

b2b1

a′

a2

f f

e e
f f



The way to think of this is that for a tuple ā, there are “potential
problems”. If two tuples have the same atomic type but incompatible
“potential problems” then we should not try to homogenize them.

Think of each tuple ā as having associated to it a larger set Cl(ā) which
contains all of the potential problems. This will be a closure operator. We
can think of Cl(ā) as “guarding” ā from problems.

We will only homogenize ā and b̄ when their closures are isomorphic.

a1

b′

b2b1

a′

a2

f f

e e
f f



The way to think of this is that for a tuple ā, there are “potential
problems”. If two tuples have the same atomic type but incompatible
“potential problems” then we should not try to homogenize them.

Think of each tuple ā as having associated to it a larger set Cl(ā) which
contains all of the potential problems. This will be a closure operator. We
can think of Cl(ā) as “guarding” ā from problems.

We will only homogenize ā and b̄ when their closures are isomorphic.

a1

b′

b2b1

a′

a2

f f

e e
f f



The way to think of this is that for a tuple ā, there are “potential
problems”. If two tuples have the same atomic type but incompatible
“potential problems” then we should not try to homogenize them.

Think of each tuple ā as having associated to it a larger set Cl(ā) which
contains all of the potential problems. This will be a closure operator. We
can think of Cl(ā) as “guarding” ā from problems.

We will only homogenize ā and b̄ when their closures are isomorphic.

a1

b′

b2b1

a′

a2

f f
e e

f f



Definition

A guarded structure is anM equipped with a guard map
Cl∶ [M]<ω → [M]<ω such that:

Cl is a closure operator.

There is no tuple in Cl(ā) in the same E-equivalence class as ā other
than ā itself.

Given āEnb̄, there is a strong partial isomorphism Cl(ā)↔ Cl(b̄)
mapping ā to b̄.

⋯



Definition

A guarded structure is anM equipped with a guard map
Cl∶ [M]<ω → [M]<ω such that:

Cl is a closure operator.

There is no tuple in Cl(ā) in the same E-equivalence class as ā other
than ā itself.

Given āEnb̄, there is a strong partial isomorphism Cl(ā)↔ Cl(b̄)
mapping ā to b̄.

⋯



Definition

A guarded structure is anM equipped with a guard map
Cl∶ [M]<ω → [M]<ω such that:

Cl is a closure operator.

There is no tuple in Cl(ā) in the same E-equivalence class as ā other
than ā itself.

Given āEnb̄, there is a strong partial isomorphism Cl(ā)↔ Cl(b̄)
mapping ā to b̄.

⋯



Definition

A guarded structure is anM equipped with a guard map
Cl∶ [M]<ω → [M]<ω such that:

Cl is a closure operator.

There is no tuple in Cl(ā) in the same E-equivalence class as ā other
than ā itself.

Given āEnb̄, there is a strong partial isomorphism Cl(ā)↔ Cl(b̄)
mapping ā to b̄.

⋯



Definition

A guarded structure is anM equipped with a guard map
Cl∶ [M]<ω → [M]<ω such that:

Cl is a closure operator.

There is no tuple in Cl(ā) in the same E-equivalence class as ā other
than ā itself.

Given āEnb̄, there is a strong partial isomorphism Cl(ā)↔ Cl(b̄)
mapping ā to b̄.

⋯



Definition

A guarded structure is anM equipped with a guard map
Cl∶ [M]<ω → [M]<ω such that:

Given x̄1, . . . , x̄k in the same En-equivalence class, and not all
contained in Cl(ā), there is x j

∗

i∗ such that

x j
∗

i∗ ∉ {ak} ∪ {x
j
i ∶ (i

∗, j∗) ≠ (i , j)}.

Given x̄1, . . . , x̄k ∈M
n in the same En-equivalence class, there are

x j1i1 , x
j2
i2

such that

x j1i1 ∉ {x
j
i ∶ (i1, j1) ≠ (i , j)} and x j2i2 ∉ {x

j
i ∶ (i2, j2) ≠ (i , j)}



Definition

A guarded structure is anM equipped with a guard map
Cl∶ [M]<ω → [M]<ω such that:

Given x̄1, . . . , x̄k in the same En-equivalence class, and not all
contained in Cl(ā), there is x j

∗

i∗ such that

x j
∗

i∗ ∉ {ak} ∪ {x
j
i ∶ (i

∗, j∗) ≠ (i , j)}.

Given x̄1, . . . , x̄k ∈M
n in the same En-equivalence class, there are

x j1i1 , x
j2
i2

such that

x j1i1 ∉ {x
j
i ∶ (i1, j1) ≠ (i , j)} and x j2i2 ∉ {x

j
i ∶ (i2, j2) ≠ (i , j)}



Definition

A guarded structure is anM equipped with a guard map
Cl∶ [M]<ω → [M]<ω such that:

Given x̄1, . . . , x̄k in the same En-equivalence class, and not all
contained in Cl(ā), there is x j

∗

i∗ such that

x j
∗

i∗ ∉ {ak} ∪ {x
j
i ∶ (i

∗, j∗) ≠ (i , j)}.

Given x̄1, . . . , x̄k ∈M
n in the same En-equivalence class, there are

x j1i1 , x
j2
i2

such that

x j1i1 ∉ {x
j
i ∶ (i1, j1) ≠ (i , j)} and x j2i2 ∉ {x

j
i ∶ (i2, j2) ≠ (i , j)}



Such a structure can be built with a Fraisse-style amalgamation
construction.

In the language of generalized Fraisse limits, the structure we build will be
weakly homogeneous and its age will have the cofinal amalgamation
property.



Such a structure can be built with a Fraisse-style amalgamation
construction.

In the language of generalized Fraisse limits, the structure we build will be
weakly homogeneous and its age will have the cofinal amalgamation
property.



This combinatorial structure does not include the structure to be encoded
in the group at all.

Fourth main idea: The class of structures with two equivalence relations
is Borel-complete, so we can reduce this to groups. Equivalence relations
are easier to incorporate into the construction.



This combinatorial structure does not include the structure to be encoded
in the group at all.

Fourth main idea: The class of structures with two equivalence relations
is Borel-complete, so we can reduce this to groups. Equivalence relations
are easier to incorporate into the construction.



Of course, there are many more details and a lot more to check, but that
is the general idea of the argument.

Theorem

Torsion-free abelian groups are Borel complete.



Takeaway: Structures which are Borel complete but not universal are
some of the most interesting classes of structures in computable structure
theory.

Thanks for listening!



Takeaway: Structures which are Borel complete but not universal are
some of the most interesting classes of structures in computable structure
theory.

Thanks for listening!


