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Abstract. We follow Isaac Goldbring's solution, which employs nonstandard
analysis, to the local Hilbert's �fth problem - that every locally euclidean local
group is locally isomorphic to a Lie group. The discussion develops and uses
the nonstandard machinery in a similar way to how it is developed and used in
Joram Hirschfeld's treatment of the global version of Hilbert's �fth problem.

1. Introduction

David Hilbert poses his problem of giving a classi�cation of Lie groups in publi-
cations following his 1900 speech at the Paris conference of the International Con-
gress of Mathematicians. His original formulation has consequently been seen as
somewhat vague. One interpretation is the question whether a locally euclidean
topological group is isomorphic to a Lie group (call this H5). This question was
answered in the a�rmative in 1952 by Andrew Gleason, Deane Montgomery and
Leo Zippin in [1] and [2]. However, it was still held at a symposium on Hilbert's
problems in 1976, that the proof of H5 is too complicated and technical to be clearly
presented to a wide audience. It was also considered a challenge to �nd a simpler
proof.

A signi�cant simpli�cation of the proof was achieved with the use of nonstandard
analysis. This new methodology was introduced by Abraham Robinson in the early
60s [3] and was initially developed through a model theoretic approach. Others,
such as Wilhelmus Luxemburg, showed that the same results could be achieved
using ultra�lters, which made Robinson's work more accessible to mathematicians
who lacked training in formal logic. (It is the ultra�lter construction that will be
presented here in 2.1.) Robinson's nonstandard setting made possible the presenta-
tion of the solution to H5 to be �tted in a 22 page paper - that by Joram Hirschfeld
in 1990 [4].

Some have found another formulation of Hilbert's �fth problem more natural -
since the original conception of Lie groups by Sophus Lie was that they were not
groups but `local groups' where multiplication and inversion can be carried out only
near the identity, it makes sense to ask whether a locally euclidean local group is
locally isomorphic to a Lie group (call this local version LH5). This is the question
tackled by Isaac Goldbring [5], the solution to which will be presented here. The
approach resembles that of dealing with H5, particularly that of Hirschfeld, with
the modi�cation demanded by the move from a global to a local setting.

In section 2 we introduce nonstandard analysis and local groups, so as to ensure
that a relatively unfamiliar with these concepts person is well-equipped to read the
following discussion. Section 3 describes di�erent ways in�nitesimals can grow out
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of neighbourhoods of the identity and how these can be used to build local one-
parameter subgroups. In 4 we explore the relevant version of the exponential map
and some of its properties. Sections 5 and 6 are the technical heart of the solution.
7 gives the �rst substantial result - that locally compact NSS groups are locally
euclidean. Section 8 shows further that NSS local groups are locally isomorphic
to Lie groups. Finally, in 9 we show that locally euclidean local groups are NSS,
which completes the proof of LH5.
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2. Preliminaries

We assume familiarity with Lie groups and Lie algebras. Introductions to the
nonstandard component of the paper and to local groups are included in this chap-
ter.

2.1. The nonstandard setting.

2.1.1. General approach and construction. We start with a mathematical universe
V containing all relevant mathematical objects - N, R, various groups G, various
topological spaces X, cartesian products of the above, their powersets, etc.

We then want to extend to a nonstandard universe V ∗ such that:

• To each basic set A we have its nonstandard extension A∗ ⊇ A;
• To each function f : A → B between basic sets, we have the nonstandard
extension f∗ : A∗ → B∗, such that f∗|A = f .

Our main tool for communication between V and V ∗ is to be the transfer principle:

Theorem. (Transfer Principle) If S is a bounded �rst-order statement about ob-
jects in V , then it is true in V if and only if it is true in V ∗.

We can use Model Theory to show that there is an elementary extension V ∗

of V obeying the above, but one (arguably) more intuitive approach is to employ
ultrapowers.

The idea is the following. Given a set X and a set I, we want to de�ne a notion
of `closeness' on XI , and then take the quotient over that relation. We will say
that f ∈ XI agrees with g ∈ XI on a set A ⊆ I if f(i) = g(i) for all i ∈ A. Two
elements of XI will be considered `close' if they agree on a `big enough' subset of
I. Several intuitive consequences of that idea become immediate:

(1) If a and b do not agree on any subset of I they shouldn't be considered
`close'.

(2) If a is `close' to b, because they agree on a set ρ ⊆ I, then if c agrees with
b on a larger set ρ ⊆ τ ⊆ I, then c should also be considered `close' to b.

(3) If a is `close' to b and b is `close' to c, then a should be `close' to c (after
all we want `closeness' to be an equivalence relation so we would be able to
quotient it out later). This means that if a and b agree on ρ ⊆ I and b and
c agree on τ ⊆ I, then it is su�cient that a and c agree on ρ ∩ τ ⊆ I for
them to be considered `close'.

(4) For every a and b in XI they should either be considered `close' or not.

These considerations now make the following de�nition a lot less mysterious.

De�nition 2.1. Given a set I, a �lter on I is a set F ⊆ P(I) such that:

(1) ∅ /∈ F .
(2) A ∈ F , A ⊆ B =⇒ B ∈ F .
(3) A,B ∈ F =⇒ A ∩B ∈ F .
An ultra�lter is a �lter that cannot be enlarged, i.e. a �lter that satis�es the

further condition:

(4) ∀A ⊆ P(I) either A ∈ F or I\A ∈ F .

Now we can make precise the ultrapower construction.
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De�nition 2.2. Given sets X and I and an ultra�lter F of I, the ultrapower of
X with respect to F is XF = XI/ ∼F , where for f, g ∈ XI

f ∼F g if and only if {i ∈ I|f(i) = g(i)} ∈ F .
We can now identify X as a subset of XF by identifying X with

{f ∈ XI |f(i) = f(j)∀i, j ∈ I},
where x ∈ X is identi�ed with fx ∈ XI if fx(i) = x for all i ∈ I. And since with
this identi�cation fx ∼F fy if and only if x = y, then we can consider X ⊆ XF .
Moreover, a function f : X → Y naturally extends to a function f : XF → Y F by
f([(i)]F ) := [f(i)]F . Therefore XF serves as a nonstandard extension of X in the
sense de�ned above.

The transfer principle in this setting is known as �o±'s Theorem and is due to
Jerzy �o±. It states that any �rst-order formula is true in the ultraproduct if and
only if the set of indices i, such that the formula is true in the copy of X in the
ultraproduct corresponding to the index i, is in F .
De�nition 2.3. A set A ⊆ X∗ is said to be internal if there exists a set B ⊆ X
such that A = B∗. Otherwise A is said to be external.

The Internal De�nition Principle states that A∗ for any A in X is internal, and
any set de�ned from internal parameters in a �rst-order way is internal.

De�nition 2.4. Let κ be an in�nite cardinal. We say that X∗ is κ-saturated
if whenever {Oi|i < κ} is a family of internal sets such that any intersection of a
�nite number of them is nonempty, then the intersection of all of them is nonempty.

What the largest cardinal κ such that X∗ is κ-saturated depends both on the
cardinality of I and on the particular ultra�lter F we choose in the ultrapower
construction. However, since we can always choose a larger I and a `�ner' ultra�lter,
it is usually the case that we do not belabour the point and we assume that our
nonstandard extension is saturated for a large enough cardinal κ as is required by
our arguments.

2.1.2. Particular constructions in examples.
Hyperreals R∗. Calculus, as originally conceived by Gottfried Wilhelm Leibniz,
involved in�nitesimals. For reasons of mathematical rigour, however, this approach
to analysis has been substituted for one using limits that is due largely to Cauchy
and Weierstrass. Almost 300 years after the invention of calculus a rigourous way
to deal with in�nitesimals emerges in Robinson's hyperreal system. The key fact
that allows in�nitesimal quantities in the hyperreal extension R∗ is the fact that
R∗ is taken to be at least ℵ0-saturated. Therefore, when we take the family of
internal sets {(0, 1

n )∗ ∈ R∗|n ∈ N} saturation tells us that (since clearly every �nite
intersection of these sets in nonempty) there is an element (which we sometimes
will call ε) that is in the intersection of all of them, and is hence smaller than any
representative from R.

But we can construct this extension explicitly. There are many ways to do this,
of course. We show the (arguably) simplest one:

Take I = ω. We now want to pick an ultra�lter F on ω such that RF is ℵ0-
saturated.

Proposition 2.5. If there is a �nite set {a1, a2, . . . , an} ∈ F , then F is a principal
ultra�lter, i.e. F = {S ⊆ ω|a ∈ S} for some a ∈ ω, abbreviated F =↑ a.
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Proof. We proceed by induction on n.
Base case. If {a1} ∈ F , then F is clearly principal.
Inductive hypothesis. If {a1, a2, . . . , an} ∈ F , then F is a principal ultra�lter,

for all n < k.
Inductive step. Suppose {a1, a2, . . . , ak} ∈ F . Consider {a1, a2, . . . , ak−1}.

Either {a1, a2, . . . , ak−1} ∈ F or {a1, a2, . . . , ak−1} /∈ F . The �rst case implies
that F is a principal ultra�lter by IH. The second case implies (by property (4) of
ultra�lters) that ω\{a1, . . . , ak−1} ∈ F . But then, by property (3) of ultra�lters
{ak} = (ω\{a1, . . . , ak−1})∩({a1, a2, . . . , ak}) ∈ F and so F is a principal �lter. �

We want to avoid F being a principal ultra�lter. This is because in the case
where F =↑ a for some a ∈ ω, when we construct the ultraproduct RF as above
the equivalence classes of the relation ∼F would correspond to the values of f(a) in
R, and so RF will be isomorphic to R. R, however, is as we know not ℵ0-saturated,
which is what we are aiming for.

So we want for all �nite sets S, S not to be in F . This means (by property (4)
of ultra�lters) that our ultra�lter F has to be a superset of

C := {A ⊆ ω |ω\A is �nite},

the set of all co�nite sets in ω. We have to show that such an ultra�lter exists.
We do that by showing that C is a �lter and that any �lter can be extended to an
ultra�lter.

Proposition 2.6. C is a �lter.

Proof. We check the three requirements in the �lter de�nition:

(1) ∅ is a �nite set, so ∅ /∈ C.
(2) Suppose A ∈ C. So A = ω\S for some �nite S. If B ⊇ A, we have

B = (ω\S) ∪ T = ω\(S ∩ T ) for some T ⊆ ω. Since S is �nite, then S ∩ T
is also �nite, so B ∈ C.

(3) Suppose A = ω\S ∈ C and B = ω\T ∈ C. Then

A ∩B = (ω\S) ∩ (ω\T ) = ω\(S ∪ T ).

Since both S and T are �nite, then S ∪ T is �nite. So A ∩B ∈ C. �

Lemma 2.7. (The Ultra�lter Lemma) If K is a �lter, then there exists F ⊇ K �
an ultra�lter.

Proof. Let K be a �lter on a set I.
Let Ω = {W ⊆ P(I)|W is a �lter on I}.
Now, considering the subset relation as an ordering, we can see that that gives

us Ω as a partially ordered set.
If N ⊆ Ω is a non-empty chain, then we check that

⋃
N is a �lter as well (and

so is in Ω):

(1) ∅ /∈ W for all W ∈ N . So ∅ /∈
⋃
N .

(2) Suppose A ∈
⋃
N . Then A ∈ Wk for some Wk ∈ N . If B ⊇ A, then

B ∈ Wk (by Wk's being a �lter). So B ∈
⋃
N .

(3) Suppose A,B ∈
⋃
N . Then, by N 's being a chain, A,B ∈ Wk for some

Wk ∈ N . Then A ∩B ∈ Wk ⊆
⋃
N .
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So by Zorn's Lemma, there is a maximal element in Ω for everyW ∈ Ω. So there
is a maximal element F of Ωsuch that K ⊆ F . In this context this means that F
is an ultra�lter extending K. �

The previous two results show that there is an ultra�lter F that contains all
co�nite sets. We can now construct the ultraproduct RF . Choosing F to be
nonprincipal is enough to ensure that we have at least ℵ0-saturation. We shall thus
not endeavour to make the choice of ultra�lter any more precise, for this would be
enough for the present purposes. We denote the set RF by R∗ from now on and we
will be concerned with the properties shared by all ultrapowers of R with respect
to a nonprincipal ultra�lter.

We can give a concrete example of saturation. Take [f ] ∈ R∗ for f ∈ Rω such
that f(n) = 1

n . It is clear that −x < [f ] < x for all x ∈ R, because for any such x
x ≥ f(n) for only �nitely many n ∈ ω. So we have an in�nitesimal element of R∗.
Call this element ε.

De�nition 2.8. We call numbers e in R∗, such that −x < e < x for all x ∈ R,
in�nitesimal. We call numbers f in R∗ with in�nitesimal multiplicative inverse
in�nite. We further call all non-in�nite numbers �nite.

Consider the ring R̃∗ of all �nite numbers in R∗. It is clear that e.x is in�nitesimal
for all e � in�nitesimal and x � �nite. Therefore the set (ε) = {e -in�nitesimal} is
an ideal. Moreover, it is a maximal ideal. So we can now take the quotient R̃∗/(ε).
It is obvious that R̃∗/(ε) ∼= R.

De�nition 2.9. We denote by st(.) : R̃∗ → R the standard part function � the

composition of the natural map R̃∗ → R̃∗/(ε) with the isomorphism alluded to above

R̃∗/(ε)→ R. The st(.) map is thus an additive and multiplicative homomorphism.

We can now do some simple analysis in R by simply doing algebra in R̃∗.

Example 2.10. (The derivative of x2. ) We can calculate the derivative of the
function x 7→ x2 by considering the in�nitesimal change of x2 when x changes
in�nitesimally and taking the standard part:

st

(
(x+ e)2 − x2

e

)
= st

(
x2 + 2xe+ e2 − x2

e

)
= st

(
2xe+ e2

e

)
= st(2x+ e) = 2x

Another useful idea is to identify Z∗ as a subset of R∗. We take the �oor function

(b·c) : R→ Z de�ned by (b·c) : x 7→ max{n ∈ Z|n ≤ x}
We know this map is onto Z. We can take its nonstandard extension in R∗ and
identify image(b·c∗) = Z∗. This way we actually have some information as to what
kind of set Z∗ actually is.

Since R∗ inherits its order from R, then it is totally ordered. It is clear that
N = {n ∈ Z|n ≥ 0}. Therefore N∗ = {n ∈ Z∗|n ≥ 0}.

If we apply the transfer principle to the process of induction on N we get the
following analogue for N∗:
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Theorem 2.11. (Internal Induction) For any internal subset A of N∗ if
(1) 1 is an element of A, and
(2) for every n ∈ A, n+ 1 ∈ A,

then A = N∗.

This allows us to prove the over�ow principle, which we will need at several
points in our solution.

Theorem 2.12. (Over�ow Principle) Assume A ⊆ N∗ is internal and N ⊆ A.
Then there is a ν ∈ N∗\N such that ν ∈ A.

Proof. Assume for a contradiction that A = N ⊆ N∗ is internal. Then, clearly, for
all n ∈ A, n+1 ∈ A. But by Theorem 2.11 this implies that N = A = N∗. However,
we are assuming su�cient saturation for this to not be true (even ℵ0-saturation is
enough here). �

A Hausdor� space X∗. The nonstandard extension of a Hausdor� space has
interesting and useful properties. We will be using many of them in what is to
come.

Again we assume enough saturation of the extension as to make the in�nite
intersections we are concerned with nonempty.

De�nition 2.13. For any a ∈ X we de�ne the monad of a to be the set

µ(a) =
⋂
{O∗|O is a neighbourhood of a},

i.e. µ(a) is the set of elements of X∗ in�nitely close to a.

Our assumptions about the saturation of X∗ ensure that µ(a) 6= {a}, because
the intersection ⋂

{O∗\{a} |O is a neighbourhood of a}
has the �nite intersection property and thus has a nonempty intersection.

The analog to the set R̃∗ of �nite elements of R∗ here is the set

Xns :=
⋃
a∈X

µ(a)

of nearstandard elements of X∗. The Hausdor� axioms gives us µ(a) ∩ µ(b) = ∅
for all a 6= b ∈ X, so we can write st(α) (the standard part of α) for the unique
standard a ∈ X such that µ(a) ∩ {α} 6= ∅. Since R is a Hausdor� space with the
usual topology, we can see how this de�nition of the standard part function for
general spaces X coincides with the above de�nition of st(.) for the particular case

of R̃∗.
We write α ∼ β if α, β ∈ Xns and st(α) = st(β).
Note that if a is not isolated in X, then µ(a) is external. For otherwise O∗\µ(a)

would be an internal set for all neighbourhoods O of a in X. But then we can
consider ⋂

{O∗\µ(a) | O is a neighbourhood of a in X},
which will have the �nite intersection property, but an empty intersection. From
our assumptions about saturation this is impossible.
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Remark 2.14. We can now give useful characterisations of various concepts:

Continuity: Suppose X and Y are Hausdor� spaces, a is an element of X. A
function f : X → Y is continuous at a if and only if f(µ(a)) ⊆ µ(f(a)).

Convergence: A sequence (an) from X converges if and only if aσ ∼ aν for all
σ, ν ∈ N∗\N.

Interior and Closure: Suppose F ⊆ X, a ∈ F . Then
(1) a ∈ int(F ) if and only if µ(a) ⊆ F ∗.
(2) a ∈ F̄ if and only if µ(a) ∩ F ∗ 6= ∅.

Compactness: F ⊆ X is compact if and only if Fisclosed and F ∗ ⊆ Xns.

2.2. Local groups and technical tools. In this subsection we introduce the
main objects in the paper - the local groups, and the relevant �local� analogues to
subgroups and group morphisms. We also de�ne the key notion of a one-parameter
subgroup and at the end we give some further assumptions about local groups,
explaining why we can take them without loss of generality for our purpose.

De�nition 2.15. A group that is also a topological space, such that the group op-
erations of multiplication and inversion are continuous functions, is called a topo-

logical group.

De�nition 2.16. A local group is a tuple (G, 1, ı, ρ) where:

(1) G is a Hausdor� topological space with distinguished element 1 ∈ G.
(2) ı : Λ→ G is continuous, where Λ ⊆ G is open.
(3) ρ : Ω→ G is continuous, where Ω ⊆ G×G is open.
(4) 1 ∈ Λ, {1} ×G ⊆ Ω, G× {1} ⊆ Ω.
(5) ρ(1, x) = ρ(x, 1) = x.
(6) If x ∈ Λ, then (x, ı(x)), (ı(x), x) ∈ Ω, and

ρ(x, ı(x)) = ρ(ı(x), x) = 1

(7) If (x, y), (y, z), (ρ(x, y), z), (x, ρ(y, z)) ∈ Ω, then

ρ(ρ(x, y), z) = ρ(x, ρ(y, z))

From now on, unless otherwise stated, byG we will mean a local group (G, 1, ι, ρ).
We usually write x−1 instead of ι(x) and xy or x.y instead of ρ(x, y). Note that
(5) and (6) above give us 1−1 = 1 and just (6) gives us that if x, y ∈ Λ, (x, y) ∈ Ω
and xy = 1, then x = y−1 and y = x−1.

We can now de�ne several important notions at once:

De�nition 2.17.

• The restriction of G to U is the local group UG := (U, 1, ι|ΛU , ρ|ΩU ),
where U is an open neighbourhood of 1 in G, ΛU := Λ ∩ U ∩ ι−1(U), and
ΩU := Ω ∩ (U × U) ∩ ρ−1(U).

• G is locally euclidean if there is an open neighbourhood of 1 homeomor-
phic to an open subset of Rn for some n.

• G is a local Lie group if G admits a Cω structure such that the maps ι
and ρ are Cω.

• G is globalisable if there is a topological group H and an open neighbour-
hood U of 1 in H such that G = UH .



NONSTANDARD ANALYSIS AND THE LOCAL HILBERT'S FIFTH PROBLEM 9

• A subgroup H of G is a set with H ⊆ G that is an actual group with
the inherited inversion and multiplication from G; i.e. 1 ∈ H,H ⊆ Λ,
H ×H ⊆ Ω and for all x, y ∈ H,x−1 ∈ H and xy ∈ H.

• G has no small subgroups (abbreviated G is NSS), if there is a neigh-
bourhood U of 1 in G, such that U does not contain a subgroup of G other
than {1}; equivalently, such that UG has no nontrivial subgroups.

We can now state the result that we will be aiming for.

Theorem. (The Local Hilbert's Fifth Problem) If G is a locally euclidean local
group, then some restriction of G is a local Lie group.

The Category of Local Groups. To re�ect the local nature of local groups we
need to develop speci�c to the current debate notions of subgroup, normal subgroup,
morhism, isomorphism and quotient group. We do this by investigating the category
of local groups LocGrp.

De�nition 2.18. Let us put G = (G, 1, ι, ρ), G′ = (G′, 1′, ι′, ρ′), domain(ι) = Λ,
domain(ι′) = Λ′, domain(ρ) = Ω, domain(ρ′) = Ω′. Then a morphism between
G and G′ is a contonuous function f : G→ G′ such that:

(1) f(1) = 1′, f(Λ) ⊆ Λ′ and (f × f)(Ω) ⊆ Ω′,
(2) f(ι(x)) = ι′(f(x)) for x ∈ Λ, and
(3) f(ρ(x, y)) = ρ′(f(x), f(y)) for (x, y) ∈ Ω.

We de�ne an equivalence relation on the set of all morphisms f : UG → G′,
where U ranges over all open neighbourhoods of 1 in G:

For f1 : UG → G′ and f2 : U ′G → G′:

f1 ∼ f2 if and only if there exists U ′′ - a neighbourhood of 1 in G

such that U ′′ ⊆ U ′ ∩ U and f1|U ′′ = f2|U ′′ .

De�nition 2.19. The equivalence classes of morphisms in this relation we will call
local morphisms.

Instead of specifying a concrete morphism f and then considering [f ] we will
say that f : G → G′ is a local morphism to mean the equivalence class of partial
functions from G to G′.

We can now show that the local groups with the so-de�ned local morphisms form
a category LocGrp.

Objects: All local groups G,H . . .
Morphisms: All local morphisms [f ], [g], . . .
Composition: Let f : G → G′ and g : G′ → G′′ be local morphisms. We can

choose a representative from f with image in the domain of a representative
from g (because every morphism is a continuous map from an open set
around 1G into an open set around 1G′). We de�ne g ◦ f as the equivalence
class of the composition of the above two representatives.

Identity: The identity local morphism is the equivalence class of the identity mor-
phism on a particular local group.

It is an easy check to verify that these satisfy the category axioms. An isomor-
phism in this category we will call a local isomorphism. Hence if f : G→ G′ is a
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local isomorphism, then there is a representative f : UG → U ′G′ , where U and U ′ are
open neighbourhoods of 1G and 1G′ respectively, f : U → U ′ is a homeomorphism,
and f : UG → U ′G′ and f

−1 : U ′G′ → UG are morphisms.
If there is a morphism between G and G′ we will say that G and G′ are locally

isomorphic.
We now need to deal with the potential lack of generalised associativity in local

groups.

The sets Un.
De�nition 2.20. Let a1, a2, . . . , an, b ∈ G with n ≥ 1. We will say that (a1, . . . , an)
represents b, denoted (a1, . . . , an)→ b if

(1) (a)→ b if and only if a = b;
(2) (a1, . . . , an+1)→ b if and only if for every i ∈ 1, . . . , n, there exists

b′i, b
′′
i ∈ G such that (a1, . . . , ai)→ b′i, (ai+1, . . . , an+1)→ b′′i ,

(b′i, b
′′
i ) ∈ Ω and b′i.b

′′
i = b.

By convention, we say that (a1, . . . , an) represents 1 if n = 0.
We will say that (a1, . . . , an) is de�ned if (a1, . . . , an) → b for some b. From

the de�nition above and the fact that ρ is a function it is easy to see that if
(a1, . . . , an)→ b1 and (a1, . . . , an)→ b2, then b1 = b2.

If (a1, . . . , an) is de�ned, then we have ensured that all possible combinations
of products are de�ned and that there is full associativity in the product a1 · · · an.
We can thus write (a1, . . . , an) → a1 · · · an, because a1 · · · an is now a well-de�ned
product. Therefore, (a, . . . , a)︸ ︷︷ ︸

n times

→ an.

From now on A×n := A× . . .×A︸ ︷︷ ︸
n times

.

De�nition 2.21. A subset W ⊆ G is symmetric if W ⊆ Λ and W = ι(W ).

We now prove that as we get closer to the identity in G, we can multiply more
and more elements unambiguously.

Lemma 2.22. There are open symmetric neighbourhoods Un of 1 for n > 0 such
that Un+1 ⊆ Un and for all (a1, . . . , an) ∈ U×nn , a1 · · · an is de�ned.

Proof. We proceed by induction on n.
Base case. Let U1 be any open symmetric neighbourhood of 1. Since Ω is open

in G×G and U1 is open in G, we can choose an open symmetric neighbourhood of
1 U2 such that U2 ×U2 ⊆ Ω and U2 ⊆ U1. Then, the map φ2 : U×2

2 → G de�ned by
φ2 : (a1, a2) 7→ a1.a2 is continuous, because it coincides with ρ.

Inductive hypothesis. For all m ≤ n (where n ≥ 2) the following hold

• Um is a symmetric open neighbourhood of 1;
• Um+1 ⊆ Um if m < n;
• For all (a1, . . . , am) ∈ U×mm , a1 · · · am is de�ned;
• The map φm : U×mm → G de�ned by φm : (a1, · · · , am) 7→ a1 · · · am is
continuous.

Inductive step. Since φn is continuous and U2 is open, then φ−1
n (U2) is open in

G× . . .×G︸ ︷︷ ︸
n times

. Thus, we can choose Un+1 to be an open symmetric neighbourhood

of 1 such that Un+1 ⊆ Un and U×nn+1 ⊆ φ−1
n (U2). We claim that this choice works.
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We want to show that a1 · · · an+1 is de�ned.
For all i ∈ 1, . . . , n a1 · · · ai and ai+1 · · · an+1 are de�ned. This means that

however we place the brackets on writing out the product properly, we still get a
well-de�ned expression and the same result.

Let k ∈ 1, . . . , n− 1. We will show that

φk(a1, . . . , ak).φn+k−1(ak+1, . . . , an+1) =

= φk+1(a1, . . . , ak+1).φn+k−2(ak+2, . . . , an+1)

Therefore we will have that (a1, . . . , an+1) → b for some b in G by the de�nition
of representation. But this follows easily from the simple associativity of ρ, the
de�nedness of all products shorter than n + 1 and the fact that we can put the
brackets however we desire:

(. . . ((a1.a2) · · · ak).(ak+1.(ak+2 · · · (an.an+1) . . .) =

= (. . . (a1.a2) · · · ak).ak+1).(ak+2 · · · (an.an+1) . . .)

Moreover, φn+1 as de�ned above is continuous, because it is the continuous ρ prod-
uct of two continuous maps -

φn+1(a1, . . . , an+1) = φn(a1, . . . , an).id(an+1)

This completes the induction. �

From now on we will refer to the above sets always as Un. Also, for A ⊆ Un, we
de�ne

An := {a1 · · · an|(a1, . . . , an) ∈ A×n}
We can now de�ne the local analogues of a subgroup and of a normal subgroup.

De�nition 2.23. A sublocal group of G is a set H ⊆ G containing 1 for which
there exists an open neighbourhood V of 1 in G such that

(1) H ⊆ V and H is closed in V ;
(2) if x ∈ H ∩ Λ and x−1 ∈ V , then x−1 ∈ H;
(3) if (x, y) ∈ (H ×H) ∩ Ω and xy ∈ V , then xy ∈ H;

A set H ⊆ G is a normal sublocal group of G if it is a sublocal group with
associated normalizing neighbourhood V and

(4) if y ∈ V and x ∈ H are such that yxy−1 is de�ned and yxy−1 ∈ V , then
yxy−1 ∈ H.

We can see that if H is a sublocal group of G with associated neighbourhood V ,
then

(H, 1, ι|H∩Λ∩ι−1(V ), ρ|(H×H)∩Ω∩ρ−1(V ))

is a local group, which we will usually denote simply by H, and that the inclusion
H ↪→ G is a morphism. We say that two sublocal groups H and H ′ are equivalent
if there is an open neighbourhood U of 1 in G such that H ∩ U = H ′ ∩ U .

Lemma 2.24. Suppose H is a normal sublocal group of G with associated normal-
izing neighbourhood V . Suppose U ⊆ H is open in H and symmetric. Let U ′ ⊆ V
be a symmetric open neighbourhood of 1 in G such that U = H ∩ U ′. Then UH is
a normal sublocal group of G with associated normalizing neighbourhood U ′.

Proof. We want to show that UH = (U, 1, ι|ΛU , ρ|ΩU ) obeys the normal sublocal
group axioms:
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(1) U ⊆ U ′ and U is closed in U ′. U = H∩U ′, so clearly U ⊆ U ′. H is closed in
V (by the de�nition of a normal sublocal group). So H is closed in U ′ ⊆ V .
Therefore H ∩ U ′ = U is closed in U ′.

(2) If x ∈ U ∩Λ and x−1 ∈ U ′, then x−1 ∈ U . Assuming x ∈ U ∩Λ, since U is
symmetric, then x−1 ∈ U .

(3) If (x, y) ∈ (U × U) ∩ Ω and xy ∈ U ′, then xy ∈ U . Now we assume that
(x, y) ∈ (U × U) ∩ Ω and xy ∈ U ′. Then (x, y) ∈ (H ×H)∩Ω and xy ∈ V .
So xy ∈ H, by the normality of H. But then xy ∈ H ∩ U ′ = U .

(4) If y ∈ U ′, x ∈ U and yxy−1 is de�ned and in U ′, then yxy−1 ∈ U . Assume
y ∈ U ′, x ∈ U and yxy−1 is de�ned and in U ′. So, again, y ∈ V , x ∈ H,
yxy−1 ∈ V , so yxy−1 ∈ H. Therefore yxy−1 ∈ H ∩ U ′ = U .

�

We now investigate quotients in the category LocGrp. For the remainder of
this section we will take H to be a normal sublocal group of G with associated
neighbourhood V .

Lemma 2.25. Let W be a symmetric open neighbourhood of 1 in G such that
W ⊆ U6 and W6 ⊆ V . Then

(1) The binary relation EH on W is de�ned by

EH(x, y) if and only if x−1y ∈ H

is an equivalence relation on W .
(2) For x ∈ W , let xH := {xh|h ∈ H and (x, h) ∈ Ω}. Then for x, y ∈ W ,

EH(x, y) if and only if (xH) ∩W = (yH) ∩W . In other words, if EH(x)
denotes the equivalence class of x, then EH(x) = (xH) ∩W . We call the
equivalence classes local cosets of H.

Proof.

(1) We check the equivalence relation axioms.
Re�exivity: Trivial.
Symmetry: Assume EH(x, y). Now, note that x−1y(x−1y)−1 = 1 and

multiplying by x and then y−1 on the left gives us (x−1y)−1 = y−1x.
Since we are de�ning EH on W , then x, y ∈W . But W is symmetric,
so y−1 ∈ W . Also, W 6 ⊆ V , so y−1x = (x−1y)−1 ∈ V . Therefore
(x−1y)−1 = y−1x ∈ H and EH(y, x).

Transitivity: Assume EH(x, y) and EH(y, z). Again, x, y, z ∈ W , so
x−1, y−1, z−1 ∈ W . Then x−1yy−1z ∈ W 6 ⊆ V , so x−1yy−1z ∈ V .
Therefore x−1yy−1z = x−1z ∈ H, so EH(x, z).

(2) (=>): Suppose EH(x, y). Suppose further that w = xh ∈ (xH) ∩W , for
some w ∈W,h ∈ H. Then h = x−1w ∈W 2 ∩H, and so

(y−1x)h = (y−1x)(x−1w) ∈W 4 ⊆ V

and also the product (y−1x, x−1w) ∈ (H ×H). So

(y−1x)h = y−1w ∈ H,w = y(y−1x)h ∈ (yH) ∩W

So (xH) ∩ W ⊆ (yH) ∩ W . Analogously, using the fact that W is
symmetric, we get (yH) ∩W ⊆ (xH) ∩W . Therefore we have that
(xH) ∩W = (yH) ∩W .
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(<=): Assume (xH) ∩W = (yH) ∩W . Since y ∈ (yH) ∩W , we know
that y ∈ (xH) ∩W . Let h be such that y = xh. Now, x−1 and y are
both in W and so x−1y = x−1(xh) is de�ned. By associativity of ρ
and because all of (x−1, xh), (x−1x, h), (x, h), (x−1, x) ∈ Ω, we have

x−1y = x−1(xh) = (x−1x)h = h ∈ H
Therefore x−1y ∈ H, i.e. EH(x, y).

�

Let πH,W : W → W/EH be the canonical map. Give W/EH the quotient
topology. Then πH,W becomes an open continuous map.

We want to de�ne maps ιH,W and ρH,W on W/EH to make it a local group.

(1) Let ιH,W : W/EH →W/EH be de�ned by ιH,W : EH(x) 7→ EH(x−1) Since
x in this setting is from W and W is symmetric, then ιH,W can be de�ned
globally on the whole group. So here ΛH,W = W/EH .

(2) Let ΩH,W := (πH,W × πH,W )((W × W ) ∩ ρ−1(W )). Now we can de�ne
ρH,W : ΩH,W → W/EH by ρH,W : (EH(x), EH(y)) 7→ EH(xy), where x
and y are representatives from their respective local cosets, chosen so that
xy ∈W .

We thus get the following lemma.

Lemma 2.26. With the notations as above,

(G/H)W := (W/EH , EH(1), ιH,W , ρH,W )

is a local group and πH,W : WG → (G/H)W is a morphism.

We need to show that if we had made di�erent choices in the construction of the
above local group, then we would have ended up with a locally isomorphic one.

Lemma 2.27. Suppose that H ′ is also a normal sublocal group of G with associated
normalizing neighbourhood V ′ such that H is equivalent to H ′. Let W ′ be a sym-
metric open neighbourhood of 1 in G used to construct (G/H ′)W ′ . Then (G/H)W
and (G/H ′)W ′ are locally isomorphic.

Proof. Since H is equivalent to H ′, we can take U -open neighbourhood of 1 in G
such that H ∩ U = H ′ ∩ U . Now choose an open U1 ⊆ U2 containing 1 such that
U2

1 ⊆ U . Let U2 := W ∩W ′ ∩ U1. Let φ : πH,W (U2) → W ′/EH′ be de�ned by
φ : EH(x) 7→ EH′(x) for x ∈ U2. Then φ : πH,W (U2)(G/H)W → (G/H ′)W ′ is a
representative of the desired local isomorphism. �

The above lemma allows us to write the quotient of G byH as G/H, meaning the
local group (G/H)W for any appropriate open neighbourhood of 1 W . We will also
write π : G→ G/H for the local morphism represented by πH,W : WG → (G/H)W .
This is no loss of generality, because wherever confusion may occur we have locally
isomorphic local groups.

We now de�ne a key notion in the discussion - that of a local one-parameter
subgroup.
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De�nition 2.28. A local 1-parameter subgroup of G, henceforth abbreviated
an LPS of G, is a continuous map X : (−r, r) → G, for some r ∈ (0,∞], such
that

(1) image(X) ⊆ Λ, and
(2) if r1, r2, r1 + r2 ∈ (−r, r), then (X(r1), X(r2)) ∈ Ω and

X(r1 + r2) = X(r1).X(r2).

Remark 2.29. (2) above is a very involved requirement in the local group setting -
it allows extensive multiplication. Note that it straightforwardly implies that if we
have an LPS of G X : (−r, r)→ G and s ∈ (−r, r), then ns ∈ (−r, r) implies that
X(s)n is de�ned and X(ns) = X(s)n.

We now de�ne the space of LPS - the local analogue of the space which plays a
key role in the solution of the H5.

De�nition 2.30. Let X,Y be LPSs of G. We say that X is equivalent to Y if
there is r ∈ R+ such that

r ∈ domain(X) ∩ domain(Y ) and X|(−r,r) = Y |(−r,r)

We let [X] denote the equivalence class of X with respect to this equivalence relation.
We also let L(G) := {[X] |X is an LPS of G}.

We will usually write X for an element of L(G), and X for an LPS X ∈ X.

Remark 2.31. Firstly, put O ∈ L(G) to be the equivalence class of the trivial LPS;
i.e. O = [O], where O : R → G is de�ned by O : t 7→ 1G. We want to de�ne an
expression of the form s · X. We put 0 · X = O for all X ∈ L(G).

Let X ∈ X be an LPS with X : (−r, r)→ G. De�ne

sX :

(
−r
|s|
,
r

|s|

)
→ G by sX : t 7→ X(st).

Then sX is an LPS of G and we set s · X = [sX]. It is easy to see that for all
X ∈ L(G) and s, s′ ∈ R, 1 · X = X and s · (s′ · X) = (ss′) · X. We can now de�ne
scalar multiplication on L(G).

(. · .) : R× L(G)→ L(G) is de�ned by (. · .) : (s,X) 7→ s · X

Let X1, X2 be LPSs of G with [X1] = [X2], t ∈ domain(X1)∪domain(X2). Since
X1 is equivalent to X2, then we can �nd a r ∈ R+ such that we have X1|(−r,r) =

X2|(−r,r). Now choose n ∈ Z+ such that t
n ∈ (−r, r). Then

X1(t) =

(
X1

(
t

n

))n
=

(
X2

(
t

n

))n
= X2(t)

Hence, we can meaningfully de�ne, for X ∈ L(G),

domain(X) :=
⋃
X∈X

domain(X)

and for t ∈ domain(X), we will write X(t) to denote X(t) for any X ∈ X with
t ∈ domain(X).
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Further assumptions on our group G. Since we are concerned with local groups
up to local isomorphism, if we show that any local group has a restriction with
certain properties, then we can incorporate that property into our assumptions. The
idea is that since any group is locally isomorphic to one with a particular property,
then it would be bene�cial to consider exactly the groups in the isomorphism class
with that property.

Remark 2.32. Let U := Λ ∩ ι−1(Λ), an open neighbourhood of 1 in G. Then, if
g ∈ U , we have ι(g) ∈ Λ and

ι(g).ι(ι(g)) = 1 (by the de�nition of local group)

=⇒ g.(ι(g).ι(ι(g))) = g

=⇒ (g.ι(g)).ι(ι(g)) = g (by direct associativity)

=⇒ 1.ι(ι(g)) = ι(ι(g)) = g ∈ Λ

Therefore ΛU = U , where ΛU = Λ ∩ U ∩ ι−1(U) as before.

The above remark shows that every local group has a restriction U satisfying
ΛU = U . We can therefore, from here on, consider our local group of choice G as
one for which Λ = G.

Remark 2.33. With this further assumption on G, if (x, y) ∈ Ω and xy = 1, then
x = y−1, y = x−1, (x−1)−1 = 1 for all x ∈ G and G is symmetric.

A corollary of the following lemma will provide another useful further assumption
we can take on G.

Lemma 2.34. (Homogeneity)

(1) For any g ∈ G, there are open neighbourhoods V and W of 1 and g respec-
tively such that {g} × V ⊆ Ω, gV ⊆ W, {g−1} ×W ⊆ Ω, g−1W ⊆ V , and
the maps

v 7→ gv : V →W and w 7→ g−1w : W → V

are each other's inverses (and hence homeomorphisms).
(2) G is locally compact if and only if there is a compact neighbourhood of 1.

Proof. (1) clearly implies (2). So it su�ces to show (1).
For any g ∈ G de�ne

Ωg := {h ∈ G | (g, h) ∈ Ω}.
Ωg is thus an open subset of G and we de�ne Lg : Ωg → G by Lg : h 7→ gh,

which is continuous. Let V := (Lg)
−1(Ωg−1). Then V is open and 1 ∈ V . Let

W := Lg(V ) ⊆ Ωg−1 . Then W is open since W = L−1
g−1(V ). Therefore, the maps

Lg|V and Lg−1 |W are inverses of each other and thus satisfy the requirements of
the lemma. �

Corollary 2.35. Let U = U3. Then for any g, h ∈ U such that (g, h) ∈ ΩU , one
has (h−1, g−1) ∈ ΩU and (gh)−1 = h−1g−1.

Proof. Assume g, h ∈ U and (g, h) ∈ ΩU . The latter assumption implies that
gh ∈ U . Also, since U3 is symmetric, g−1, h−1 ∈ U . Therefore h−1 · g−1 · (gh) is
de�ned and

h−1 · g−1 · (gh) = h−1 · (g−1 · (gh)) = h−1((g−1g) · h) = h−1h = 1,
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since (g−1, g), (g, h), (g−1, gh), (g−1g, h) ∈ Ω and we can use direct associativity.
But we can write the same product as (h−1g−1) · (gh). So h−1g−1 = (gh)−1.
Moreover, again by the symmetry of U3, h

−1g−1 = (gh)−1 ∈ U and therefore
(h−1, g−1) ∈ ΩU . �

The above corollary allows us to make another further assumption on G, because
it proves that any local group has a restriction satisfying it. We assume that in G

if (g, h) ∈ Ω, then (h−1, g−1) ∈ Ω and (gh)−1 = h−1g−1.

We can now derive several useful results in G with these new assumptions.

Lemma 2.36. Let a, a1, . . . , an ∈ G. Then
(1) If a1 · · · an is de�ned and 1 ≤ i ≤ j ≤ n, then ai · · · aj is de�ned. In

particular, if an is de�ned and m ≤ n, then am is de�ned.
(2) If am is de�ned and i, j ∈ {1, . . . ,m} are such that i+ j = m, then we have

(ai, aj) ∈ Ω and ai · aj = am.
(3) If an is de�ned and, for all i, j ∈ {1, . . . , n} with i + j = n + 1, one has

(ai, aj) ∈ Ω, then an+1 is de�ned. More generally, if a1 · · · an is de�ned,
ai · · · an+1 is de�ned for all i ∈ {2, . . . , n} and

(a1 · · · ai, ai+1 · · · an+1) ∈ Ω for all i ∈ {1, . . . , n},

then a1 · · · an+1 is de�ned.
(4) If an is de�ned, then (a−1)n is de�ned and (a−1)n = (an)−1. (In this case,

we denote (a−1)n by a−n.) More generally, if a1 · · · an is de�ned, then
a−1
n · · · a−1

1 is de�ned and (a1 · · · an)−1 = a−1
n · · · a−1

1 .
(5) If k, l ∈ Z, l 6= 0, and ak.l is de�ned, then ak is de�ned, (ak)l is de�ned and

(ak)l = ak.l.

Proof.

(1) From the de�nition of representation `a1 · · · an � de�ned' implies 'a1 · · · aj
� de�ned', implies `ai · · · aj � de�ned'.

(2) This follows directly from the de�nition of representation.
(3) The proof of this mimics word for word the proof of Lemma 2.22.
(4) We do this one by induction on n with the base cases n = 1, 2 being obvious

from our assumptions about local groups.
Inductive hypothesis: We assume that n > 2 and for anym < n, if a1 · · · am

is de�ned, then a−1
m · · · a−1

1 is de�ned and (a1 · · · am)−1 = a−1
m · · · a−1

1 .
Inductive step: Suppose a1 · · · an.

First note that all the various products of the form a−1
j · · · a

−1
i are

de�ned for all 1 ≤ i ≤ j ≤ n, except when i = 1 and j = n. We just
need to show that for all i, j ∈ {1, . . . , n− 1} we have

(a−1
n · · · a−1

i+1) · (a−1
i · · · a

−1
1 ) = (a−1

n · · · a−1
j+1) · (a−1

j · · · a
−1
1 )

We can do this by showing that every two consequetive i and j in the
above the equality holds. But this is simple:

(a−1
n · · · a−1

i+1) · (a−1
i · · · a

−1
1 ) = ((a−1

n · · · a−1
i+2) · a−1

i+1) · (a−1
i · · · a

−1
1 )

= (a−1
n · · · a−1

i+2) · (a−1
i+1 · (a

−1
i · · · a

−1
1 ))

= (a−1
n · · · a−1

i+2) · (a−1
i+1 · · · a

−1
1 )



NONSTANDARD ANALYSIS AND THE LOCAL HILBERT'S FIFTH PROBLEM 17

So a−1
m · · · a−1

1 is de�ned. We now show the second claim of this part:

(a1 · · · an)−1 = ((a1 · · · an−1) · an)−1 (by de�nedness)

= (a−1
n · (a1 · · · an−1)−1) (by Corollary 2.35)

= (a−1
n · (a−1

n−1 · · · a
−1
1 )) (by IH)

= (a−1
n · · · a−1

1 ) (by de�nedness)

(5) Let k, l ∈ N, k, l 6= 0. This restriction is without loss of generality by the
previous part of this lemma. Assume ak/l is de�ned. By part (1) ak is
de�ned. For the rest we give another induction, this time on l. The claim
clearly holds for l = 1. Suppose it holds for all i < l. We need to show that
(ak)l is de�ned. If we put b = ak we can use part (2) to get bi.bj = bl for all
i, j ∈ {1, . . . , l− 1} such that i+ j = l. But by our IH bi = (ak)i = ak.i for
all i ∈ {1, . . . , l − 1}. So (ak)l is de�ned. Finally, from IH again, we have

(ak)l = (ak)l−1 · ak = ak.(l−1) · ak = ak.l

�

Corollary 2.37. Suppose i, j ∈ Z and i.j < 0. If ai and aj are de�ned and
(ai, aj) ∈ Ω, then ai+j is de�ned and ai · aj = ai+j.

Proof. The fact that ai+j is de�ned follows directly from the previous lemma. Also,
the case i = −j is trivial. Again by the lemma above we can assume without loss
of generality that i > 0, j < 0 and i > |j|. The lemma also implies that here a−j is
de�ned. Finally, we can see that, since all powers are positive, ai = ai+j · a−j . By
multiplying on the right by aj we get ai · aj = ai+j . �

Nonstandard results in G. The nonstandard extension G∗ of our local group of
choice G will play a crucial role in our proof of LH5. Since our local group is a
Hausdor� space, we can use all the results on nonstandard extensions of Hausdor�
spaces described before - the monad of a point, the set of nearstandard points, the
standard part map, etc.

For the sake of readability we will only denote with a star the nonstandard ex-
tensions of basic sets and not the extensions of functions or relations. For example,
we will write Ω∗ for the set of allowed product pairs in G∗, but we will usually
write ρ : Ω∗ → G∗ for the product map in G∗. Sometimes we will add the star
sign on functions when it is particularly crucial to the proof that we are using the
nonstandard extension of the function.

We �x some notation: ν, σ, τ, η,N will range over N∗; i, j will range over Z∗; m,n
will range over N. We let µ := µ(1) be the monad of 1 in G∗. Note that by transfer
and Lemma 2.22 µ is an actual group with product map (x, y) 7→ xy := ρ(x, y).

We use some asymptotical (Landau) notation:

(1) i ∈ o(ν) means that i is `much smaller than ' ν; formally, |i| < ν
n for all

n > 0.
(2) i ∈ O(ν) means that i is `not much bigger than ' ν; formally, there is an

n > 0 such that |i| < nν.



18 MIHAIL HURMUZOV

As remarked in the subsection on the nonstandard setting, in our arguments we
will assume that G∗ is su�ciently saturated (κ-saturated for a su�ciently large
cardinal κ) so that out deductions make sense.

Lemma 2.38. G is NSS if and only if there are no internal subgroups of µ other
than {1}.

Proof. First note that if S is an internal subgroup of G∗, then if a ∈ S we have
that ai ∈ S for all i ∈ N∗.
(<=): Suppose G is not NSS. Therefore, for all neighbourhoods V of 1 in G there

is a nontrivial subgroup HV of G in V .
The transfer principle then gives us that for all internal neighbourhoods

V ∗ of 1 in G∗ there is a nontrivial internal subgroup H∗V of G∗.
By saturation, we can intersect all such internal neighbourhoods V ∗ and

still get a nontrivial subgroup in the intersection. So µ contains a nontrivial
internal subgroup of G∗.

(=>): Suppose G is NSS. Then there exists a neighbourhood S of 1 such that
S ⊆ G and there are no subgroups of G in S except {1}.

Transfer gives us that S∗ contains no nontrivial internal subgroups of
G∗. But µ ⊆ S∗, so µ contains no internal subgroups of G∗ other than {1}.

�

We have the internal versions of the notions de�ned up until now, so it makes
sense to say that (a1, . . . , an) → b for a1, . . . , an, b ∈ G∗. With that in mind, the
following lemma is trivial.

Lemma 2.39.

(1) Suppose a, b ∈ G, a′ ∈ µ(a) and b′ ∈ µ(b). If (a, b) ∈ Ω, then we have
(a′, b′) ∈ Ω∗, a′ · b′ ∈ G∗ns, and st(a′ · b′) = a · b.

(2) For any a ∈ G∗ns and b ∈ µ, (a, b), (b, a) ∈ Ω∗, a · b, b · a ∈ G∗ns, and
st(a · b) = st(b · a) = st(a).

(3) For any a, b ∈ G∗ns, if (a, b−1) ∈ Ω∗ and ab−1 ∈ µ, then a b.
(4) For any a ∈ G, a′ ∈ µ(a), and any n, if an is de�ned, then (a′)n is de�ned

and (a′)n ∈ µ(an).

Lemma 2.40. Suppose U is a neighbourhood of 1 in G and a ∈ µ. Then there is
a ν > N such that aσ is de�ned and aσ ∈ U∗ for all σ ∈ {a, . . . , ν}.

Proof. Let X := {σ ∈ N∗|aσ is de�ned and aσ ∈ U∗}. Then X is an internal subset
of N∗ (because it is de�ned in a �rst-order way). Moreover, µ ⊆ U∗ and so we have
that am is de�ned and am ∈ U∗ for all m. Therefore, by the over�ow principle
(Theorem 2.12) we have that there is a ν ∈ N∗\N such that {0, 1, . . . , ν} ⊆ X. �
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3. Connectedness and Purity

Let us recap the assumptions on our local group G. We are considering G to be
a local group as de�ned in De�nition 2.16 with

(1) Λ = G, and
(2) if (x, y) ∈ Ω, then (y−1, x−1) ∈ Ω and (xy)−1 = y−1x−1.

We also assume that G is locally compact. Since in the end we are concerned with
locally euclidean local groups and it is clear that locally euclidean implies locally
compact, then for our purposes this produces no loss of generality.

In this chapter we start with all the relevant de�nitions �rst, so as to make the
following arguments �ow more naturally. We will investigate the di�erent ways
in�nitesimals can `grow out' of µ and also how we can build LPSs from a certain
kind of in�nitesimals.

From now on, unless otherwise stated, consider a, b ∈ G∗ and U to be a compact
symmetric neighbourhood of 1 such that U ⊆ U2.

De�nition 3.1. For ν > N, we set:

G(ν) : = {a ∈ µ | ai is de�ned and ai ∈ µ for all i ∈ o(ν)},
Go(ν) : = {a ∈ µ | ai is de�ned and ai ∈ µ for all i ∈ O(ν)}.

Note that Go(ν) ⊆ G(ν) and, since the de�nitions we gave of o(ν) and O(ν)
involved only the absolute value of i, we see that both sets G(ν) and Go(ν) are
symmetric.

We let Q range over symmetric internal neighbourhoods Q ⊆ µ of 1 in G∗. If ν
is such that for all internal sequences a1, . . . , aν from Q, a1 · · · aν is de�ned, then
we de�ne Qν to be the following internal subset of G∗:

Qν := {a1 · · · aν | a1, . . . , aν is an internal sequence from Q}.

In this situation, we say that Qν is de�ned.

De�nition 3.2.

(1) For a ∈ G∗, if for all i, ai is de�ned and ai ∈ U∗, de�ne ordU (a) = ∞.
Otherwise, de�ne

ordU (a) := max{ν | for all i with |i| ≤ ν, ai is de�ned and ai ∈ U∗}.

Q ⊆ G∗, if for all ν, Qν is de�ned and Qν ⊆ U∗, de�ne ordU (Q) = ∞.
Otherwise, de�ne

ordU (Q) := max{ν | for all i with |i| ≤ ν, Qi is de�ned and Qi ⊆ U∗}.

The above maximums exist by over�ow.
(2) We say that an element a ∈ µ is degenerate if for all i, ai is de�ned and

ai ∈ µ. We say that a set Q ⊆ µ is degenerate if for all ν, Qν is de�ned
and Qν ⊆ µ.

(3) We say that a ∈ µ is U-pure if it is nondegenerate and a ∈ G(ordU (a)).
We say that a ∈ µ is pure if it is V -pure for some compact neighbourhood
V of 1 such that V ⊆ U2.

We say that Q ⊆ µ is U-pure if it is nondegenerate and if Qν ⊆ µ for
all ν = o(ordU (Q)).. We say that Q ⊆ µ is pure if it is V -pure for some
compact neighbourhood V of 1 such that V ⊆ U2.
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(4) G has no small connected subgroups, abbreviated as G is NSCS, if
there is a neighbourhood of 1 in G that contains no connected subgroup of
G other than {1}. We say that G is pure if every nondegenerate Q as above
is pure.

Remark 3.3. We know (from Lemma 2.38) that G is NSS is equivalent to there
being no nontrivial internal subgroups of µ. It is clear that the existence of a
nontrivial internal subgroup of µ is equivalent to the existence of a such that ai is
de�ned for all i and {ai | i ∈ Z∗} ⊆ µ. Therefore, G is NSS is equivalent to there
being no degenerate elements in µ.

Lemma 3.4. Let a ∈ µ and ν > N. Then the following are equivalent:

(1) ai is de�ned and ai ∈ µ for all i ∈ {1, . . . , ν};
(2) a ∈ Go(ν);
(3) there is τ ∈ {1, . . . , ν} such that ν ∈ O(τ) and ai is de�ned and ai ∈ µ for

all i ∈ {1, . . . , τ}.

Proof.

((2) => (1)): Since for all i ∈ {1, . . . , ν} we have i ∈ O(ν), then by the de�nition
of Go(ν) if a ∈ Go(ν), then (1) holds.

((1) => (3)): Assume (1) Then there certainly is a τ that satis�es (3), namely
τ = ν.

((3) => (1)): Assume τ ∈ {1, . . . , ν} is such that ν ∈ O(τ) and ai is de�ned
and ai ∈ µ for all i ∈ {1, . . . , τ}. We �rst show that aj is de�ned for all
j ∈ {1, . . . , ν} by internal induction.

The base case clearly holds (a is de�ned), so suppose aj is de�ned for
j < ν. To prove that aj+1 is de�ned it su�ces to show (by Lemma 2.36)
that (ak, al) ∈ Ω∗ for all k, l ∈ {1, . . . , j} with k + l = j + 1. However,
(ak, al) ∈ µ×µ ⊂ Ω∗. Therefore, by internal induction, aj is de�ned for all
j ∈ {1, . . . , ν}.

By our assumptions aj ∈ µ for j ∈ {1, . . . , τ}. Now let i ∈ {τ, . . . , ν}
(if this set is empty there is nothing to prove). We can now write i as
i = nτ + η for n > 0, η < τ . By Lemma 2.36, again, we have

ai = (aτ )n · aη ∈ µ · µ ⊂ µ,
which completes the proof. �

Lemma 3.5. Let a1, . . . aν be an internal sequence of elements of G∗ with ν > N
such that for all i ∈ {1, . . . , ν} we have ai ∈ µ, a1 · · · ai is de�ned and a1 · · · ai ∈ G∗ns.
Then the set

S := {st(a1 · · · ai) : 1 ≤ i ≤ ν} ⊆ G
is compact, connected and contains 1.

Proof. Clearly, S contains 1.
Since S∗ = {a1 · · · ai | 1 ≤ i ≤ ν} and a1 · · · ai is de�ned with a1 · · · ai ∈ G∗ns,

then S∗ ⊆ G∗ns. Also, st(a) ∈ S for all elements a ∈ S∗ implies that S is closed.
By Remark 2.14 S is compact.

Suppose S is not connected. Then, there exist V,W ⊆ G such that V,W are
open, V ∩W = ∅, S ⊆ V ∩W,S∩V 6= ∅ and S∩W 6= ∅. Assume 1 ∈ V , so a1 ∈ V ∗.
Let

i = min{j ∈ {1, . . . , ν} | a1 · · · aj ∈W ∗}.
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(This minimum exists by over�ow.) Clearly i ≥ 2. Consider a1 · · · ai−1.
By assumption a1 · · · ai−1 ∈ V ∗, so st(a1 · · · ai−1) ∈ V . Also we have that

st(a1 · · · ai) ∈W , since a1 · · · ai ∈W ∗. But this is impossible since ai ∈ µ.
So S is connected. �

Lemma 3.6. Suppose a ∈ µ and ai 6= µ for some i ∈ o(ordU (a)). Then U contains
a nontrivial connected subgroup of G.

Proof. For each σ ∈ o(ordU (a)) set

Sσ := {st(ai) | 1 ≤ i ≤ σ} ⊆ G,

as in the previous lemma. Then we set

GU (a) :=
⋃

σ∈o(ordU (a))

Sσ.

Since for all σ ∈ o(ordU (a)) σ < ordU (a), we have that ai is de�ned and ai ∈ U∗
for all i ∈ {1, . . . , σ}. Therefore, for all σ Sσ ⊆ U . Hence, GU (a) is a union of
connected subsets of U , all containing 1 (by Lemma refstandardimage.lemma). So
GU (a) is connected.
GU (a) is also a subgroup of G by Lemma 2.36 and Corollary 2.37. �

The previous lemma also shows that if U contains no nontrivial connected sub-
groups of G, then every a ∈ µ which is nondegenerate is U -pure.

Lemma 3.7. Let a ∈ µ. Then a is pure if and only if there is a ν > N such that
aν is de�ned, aν 6= µ and a ∈ G(ν).

Proof. Assume a ∈ µ.
(=>): Assume a is V -pure for some compact neighbourhood V of 1 with V ⊆ U2.

Put ν = ordV (a). Then by the de�nition of V -pure, a ∈ G(ν). Also, by
the de�nition of ordV (a), aν is de�ned and aν ∈ V ∗. It is clear that aν+1

is de�ned as well, so aν /∈ µ, because otherwise aν · a ∈ µ · µ ⊆ µ ⊆ V ∗

contradicting aν+1 /∈ V ∗ from the de�nition of ordV (a). Finally, since µ is
a subgroup of G∗ and aν /∈ µ, then certainly ν > N.

(<=): Assume ν > N, aν is de�ned, aν /∈ µ and a ∈ G(ν). We want to �nd a
compact neighbourhood V of 1 with V ⊆ U2 such that a is V -pure, i.e.
a ∈ G(ordV (a)).

Since aν /∈ µ we can pick a compact neighbourhood V of 1 with V ⊆ U2

such that aν /∈ V ∗. Set τ = ordV (a). Here the de�nition of ordV (a) directly
implies that τ < ν. Therefore, a ∈ G(τ) and so a is V -pure.

�

Lemma 3.8. Suppose Qν * µ for some ν ∈ o(ordU (Q)). Then U contains a
nontrivial connected subgroup of G.

Proof. Let (aν) := (a1, . . . , aν) be a special kind of internal sequence - one which
is such that ν ∈ o(ordU (Q)) and for all i ∈ {1, . . . , ν} a1 · · · ai is de�ned, ai ∈ Q,
and a1 · · · ai ∈ G∗ns. Now set

S(aν) := {st(a1 · · · ai) | 1 ≤ i ≤ ν} ⊆ G,
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as in Lemma 3.5. It is clear that Qν =
⋃

(aν)

{a1 · · · ai | 1 ≤ i ≤ ν}. Now put

GU (Q) :=
⋃
(aν)

S(aν).

Since ν ∈ o(ordU (Q)) ν < ordU (Q), we have that S(aν) ⊆ U for all sequences (aν).
Then, by Lemma 3.5 GU (Q) is a union of connected subsets of U , each containing
1. So GU (Q) is connected.

To see that GU (Q) is a group, let (aη), (bτ ) be two sequences as de�ned above.
Then η + τ ∈ o(ordU (Q)) and by Lemma 2.36 (cη+τ ) = (a1, . . . , aη, b1, . . . , bτ ) is
a sequence as de�ned above and the product of the members of (aη) and (bτ ) is
necessarily the product of the elements of (cη+τ ). Therefore, S(cη+τ ) ⊆ GU (Q).
Again by Lemma 2.36 it follows easily that GU (Q) is closed under inverses. �

The previous lemma also shows that if U contains no nontrivial connected sub-
groups of G, then every Q which is nondegenerate is U -pure.

Lemma 3.9. Q is pure if and only if there is some ν > N such that Qν is de�ned,
Qν * µ and Qτ ⊆ µ for all τ ∈ o(ν).

Proof. The proof of this lemma is exactly the same as the proof of Lemma 3.7. �

Corollary 3.10. If G is NSCS, then G is pure.

We can now prove the main theorem of the chapter.

Theorem 3.11. Suppose a ∈ µ is U -pure and τ = ordU (a). Then there is a
nontrivial LPS of G X : (−rτ,a,U , rτ,a,U ) → G such that if we denote by as ∈ G∗
the point X∗( 1

τ ), then ai ∼ ais for all i ∈ O(τ).

Proof. Note that a being U -pure with τ = ordU (a) means that if i
τ ∼ 0, then

ai ∈ µ. More generally, if ai, aj are de�ned, then i
τ ∼

j
τ implies i−j

τ ∼ 0 and so

ai−j ∈ µ. Hence ai ∼ aj . Let

rτ,a,U := sup{r ∈ R+ | there exists i with i

τ
∼ r,

ai is de�ned and aj ∈ U∗ if |j| ≤ i}.

If this supremum does not exist put rτ,a,U =∞. We know that ai is de�ned for all
a ∈ O(τ). Moreover, since aτ ∈ U∗, then aτ ∈ G∗ns and ai ∈ G∗ns for all i ∈ O(τ).

We now describe the function X. Let

X : (−rτ,a,U , rτ,a,U )→ G be de�ned by

X : t 7→ st(ai) for i such that
i

τ
∼ t.

By what we noted at the beginning of the proof, this gives a well-de�ned standard
map X. Since U ⊆ U2, we have that image(X) ⊆ U2. We now prove that X is an
LPS of G.

Let s1, s2, s1 + s2 ∈ (0, rτ,a,U ). Let i1
τ ∼ s1,

i2
τ ∼ s2. We then clearly have

i1+i2
τ ∼ s1 + s2. But also ai1 ∼ X(s1), ai2 ∼ X(s2) and ai1 · ai2 ∼ X(s1) ·X(s2).

So we also have

ai1 · ai2 = ai1+i2 ∼ X(s1 + s2).
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ThusX(s1+s2) ∼ X(s1)·X(s2), which means equality for standard group elements.
The above result, combined with Lemma 2.36 and Corollary 2.37 give that X is a
homomorphism.

Finally, we need to show that X is continuous. By Lemma 2.34 it is su�cient
to prove that X is continuous at 0. By Remark 2.14 it is enough to show that
X∗(µ(0)) ⊆ µ(X(0)) = µ.

Let s ∈ µ(0). Then there is i with i
τ ∼ s ∼ 0. But then, i ∈ o(τ) and so ai ∈ µ.

So X is an LPS of G.
Therefore, if we set as = X∗( 1

τ ), then clearly, ai ∼ ais for all i ∈ O(τ). �

At the end of this chapter we prove an extension lemma that will be useful in a
later argument. We denote I := [−1, 1] ⊆ R.

Lemma 3.12. Suppose X : I → G is a continuous function such that for all r, s ∈ I
with r+s ∈ I we have (X(r), X(s)) ∈ Ω and X(r+s) = X(r)·X(s). Assume further
that image(X) ⊆ U4. Then there exists ε ∈ R+ and an LPS X : (−1− ε, 1+ ε)→ G
of G such that X|I = X.

Proof. Fix ε ∈ (0, 1
2 ). Then de�ne X : (−1− ε, 1 + ε)→ G by

X : t 7→

 X(t) for t ∈ I
X(1) ·X(t− 1) for t ∈ (1, 1 + ε)
X(t+ 1) ·X(−1) for t ∈ (−1− ε,−1)

We want to show that for all r1, r2 ∈ (−1 − ε, 1 + ε), if r1 + r2 ∈ (−1 − ε, 1 + ε),
then (X(r1), X(r2)) ∈ Ω and X(r1 + r2) = X(r1) ·X(r2).

Since X(r1), X(r2) ∈ U2
4 for all r1, r2 ∈ (−1 − ε, 1 + ε), the (X(r1), X(r2)) ∈ Ω

part is clear.
For δ ∈ (−ε, ε) one of X(δ + 1), X(δ − 1) might not be de�ned. For that reason

we will need to �rst prove a small claim before we can show the additivity property
of X. We claim that if δ ∈ (−ε, ε), then X(1) ·X(δ) = X(δ) ·X(1). For δ ≥ 0 we
have

X(1) ·X(δ) = X(1) ·X(δ − 1) ·X(1)

= X(δ) ·X(1)

For δ < 0 we have

X(1) ·X(δ) = X(1− δ) ·X(δ) ·X(δ)

= X(δ) ·X(1− 2δ) ·X(2δ)

= X(δ) ·X(1)

With this the claim is veri�ed. Since ε ∈ (0, 1
2 ) and we have X(r) = (X(−r))−1

for all r ∈ (−1 − ε,−1) ∪ (1, 1 + ε), we just need to prove the �positive� cases of
additivity.

Case 1: Let r1, r2, r1+r2 ∈ I. ThenX(r1+r2) = X(r1)·X(r2) is clear byX|I = X
and the properties of X.
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Case 2: Let r1, r2 ∈ I, r1 +r2 ∈ (1, 1+ ε). Then at least one of r1 and r2 is strictly
positive. WLOG let r1 > 0. Then

X(r1 + r2) = X(1) ·X(r1 + r2 − 1)

= X(1) ·X(r1 − 1) ·X(r2)

= X(r1) ·X(r2)

= X(r1) ·X(r2)

Case 3: Let r1 ∈ I, r2 ∈ (1, 1 + ε), r1 + r2 ∈ I. So r1 < 0. Then

X(r1 + r2) = X(r1 + r2)

= X(r1 + 1) ·X(r2 − 1)

= X(r1) ·X(1) ·X(r2 − 1)

= X(r1) ·X(r2)

Case 4: Let r1 ∈ I, r2 ∈ (1, 1 + ε), r1 + r2 ∈ (1, 1 + ε). Then

X(r1 + r2) = X(1) ·X(r1 + r2 − 1)

= X(1) ·X(r1) ·X(r2 − 1)

= X(r1) ·X(1) ·X(r2 − 1) by the claim above

= X(r1) ·X(r2)

Case 5: Let r1 ∈ (−1− ε,−1), r2 ∈ (1, 1 + ε), so r1 + r2 ∈ I. Then
X(r1 + r2) = X(r1 + r2)

= X(r1 + 1) ·X(r2 − 1)

= X(r+1) · 1 ·X(r2 − 1)

= X(r1 + 1) ·X(−1) ·X(1) ·X(r2 − 1)

= X(r1) ·X(r2)

�



NONSTANDARD ANALYSIS AND THE LOCAL HILBERT'S FIFTH PROBLEM 25

4. Consequences of NSS

For this section assume G is NSS.

De�nition 4.1. A special neighbourhood of G is a compact symmetric neigh-
bourhood U of 1 in G such that U ⊆ U , U contains no nontrivial subgroup of G,
and for all x, y ∈ U , if x2 = y2, then x = y.

Lemma 4.2. G has a special neighbourhood.

Proof. We pick three symmetric neighbourhood of 1 U ⊇ W ⊇ V in the following
way:

• U ⊂ U6, U is compact and U contains no subgroups of G other than {1};
• W 3 ⊆ U ;
• V 2 ⊆W , V is compact and gV g−1 ⊆W for all g ∈ U .

We can make the last choice, because, intuitively, since U is compact, shrinking V
is an e�ective means of shrinking gV g−1.

We now claim that V is a special neighbourhood. We will prove this by picking
x, y ∈ V with x2 = y2 and showing that a := x−1y generates a subgroup of U . By
our choice of U that would mean that x−1y = 1, i.e. x = y.

We see by induction that an is de�ned, an ∈ U and an = xa−nx−1 for all n:

Base case.: x−1y is de�ned, because V ⊆ U2, and x
−1y ∈ U , because V is symmet-

ric with V 2 ⊆ W ⊆ U . Also, since x2 = y2 and V ⊆ U4, then 1 = x−2y2.
Then

xa−1x−1 = x(x−1y)−1x−1 (V ⊆ U4)

= xy−1xx−1

= x · 1 · y−1

= xx−2y2y−2 (V ⊆ U6)

= x−1y = a

Inductive hypothesis.: For all m < n, am is de�ned, am ∈ U and am = xa−mx−1.
Inductive step.: To show that an is de�ned we need to show, by Lemma 2.36, that

(ai, aj) ∈ Ω for all i, j ∈ {1, . . . , n − 1} such that i + j = n. But by IH
(ai, aj) ∈ U × U ⊆ Ω, so an is de�ned. Now,

an = an−1 · a = (xa−n+1x−1) · (xa−1x−1) (since U ⊆ U6)

= xa−nx−1.

Remains to show that an ∈ U .
If n = 2k for k ∈ N, then

an = ak · ak = xa−kx−1ak ∈ xW ⊆W 2 ⊆ U.
If n = 2k + 1 for k ∈ N, then

an = akaka = xa−kx−1aka ∈ xW ·W ⊆W 3 ⊆ U.
By Lemma 2.36 we now have that ak is de�ned for all k ∈ Z. This produces a
subgroup in U . So x = y. �

For the rest of the section we �x a special neighbourhood U of G. Then, since
G is NSS, every a ∈ µ\{1} is U-pure. For a ∈ G∗, we set ord(a) := ordU (a).
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Lemma 4.3. Let a ∈ G∗. Then a ∈ µ if and only if ord(a) > N.

Proof. We have seen before that, since µ is a subgroup, if a ∈ µ, then we have
ordU (a) > N for any compact symmetric neighbourhood U of 1 with U ⊆ U2. Now,
assume ord(a) > N. Then ak is de�ned and ak ∈ U∗ for all k ∈ Z. By induction, it
is easy to see that st(a)k is de�ned, and st(a)k ∈ U , since U is compact. But then
st(a) generates a subgroup of G in U . This implies that st(a) = 1, i.e. a ∈ µ. �

Lemma 4.4. Suppose σ > N and a ∈ G(σ). Then σ ∈ O(ord(a)) and ai is de�ned
with ai ∈ µ for all i ∈ o(σ).

Proof. a ∈ G(σ) means that ai is de�ned and ai ∈ µ for all i ∈ o(σ).
Suppose for a contradiction that σ /∈ O(ord(a)). This is equivalent to saying

that ord(a) ∈ o(σ). But then aord(a) ∈ µ, which implies aord(a)+1 ∈ µ and this
contradicts the maximality of ord(a). So ord(a) /∈ o(σ), i.e. σ ∈ O(ord(a)).

Since σ ∈ O(ord(a)), then if i ∈ o(σ), we have i ∈ o(ord(a)). This implies that
ai is de�ned and ai ∈ µ. �

Let ra := rσ,a,U . We then denote by Xa : (−ra, ra) → G the LPS of G formed
by (σ, a,U) as in Theorem 3.11.

Lemma 4.5. Suppose G is not discrete. Then L(G) 6= O.

Proof. Since G is not discrete we can pick a ∈ µ\{1}. Let σ := rd(a) and Xa be as
above. We want to show that [Xa] 6= O. Since we are in the local setting, we will
have to prove that no neighbourhood of 0R is sent to 1G by Xa. It will be enough to
show that for all n, Xa( 1

n ) 6= 1G, i.e. that for all n, a
i /∈ µ for some (and therefore

all) i with i
σ ∼

1
n .

Fix n ∈ N such that | 1n | < ra. Then
σ
n

σ ∼
1
n . Suppose for a contradiction that

a
σ
n ∈ µ. We know that aσ is de�ned and so by Lemma 2.36 (a

σ
n )n is de�ned. Thus

(a
σ
n )n ∈ µn ⊆ µ. But then aσ+1 = aord(a)+1 ∈ µ, which is impossible. �

Lemma 4.6. Let σ > N and let a ∈ G(σ)\{1}. Then:
(1) a−1 ∈ G(σ) and [Xa−1 ] = (−1) · [Xa], where the operation here is the scalar

multiplication de�ned in Remark 2.31;
(2) b ∈ µ =⇒ bab−1 ∈ G(σ) and [Xbab−1 ] = [Xa];
(3) [Xa] = O ⇐⇒ a ∈ Go(σ);
(4) L(G) = {[Xa] | a ∈ G(σ)}.

Proof. Suppose σ > N and a ∈ G(σ).

(1) If a ∈ G(σ), then a−1 ∈ G(σ) by the de�nition of G(σ). Moreover, by the
de�nition of the scalar multiplication in the vector space of LPSs, it is clear
that [Xa−1 ] = (−1) · [Xa].

(2) Let b ∈ µ. Let τ := ord(a). By Lemma 4.4 σ ∈ O(τ).We show by internal
induction on η that (bab−1)η is de�ned and (bab−1)η = baηb−1 for all η ≤ τ ,
the case η = 1 being clear. Now, suppose the claim is true for i < η and
consider (bab−1)η.

We have ai de�ned and ai ∈ U∗ for all |i| ≤ τ = ord(a). Then

(ai, aj) ∈ U∗ × U∗ ⊆ U∗2 × U∗2 ⊆ Ω∗
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for all i, j ∈ {1, . . . , η − 1} with i + j = η. So aη is de�ned. Then, since
b ∈ µ, baηb−1 is de�ned. Since all of b−1b, baη−1b−1, bab−1 are de�ned, then

baηb−1 = baη−1b−1bab−1

= (bab−1)η−1(bab−1) (by IH)

= (bab−1)η

Therefore (bab−1)η is de�ned and equal to baηb−1 for all η ≤ τ . Since
σ ∈ O(τ), we have that (bab−1)i is de�ned and (bab−1)i ∈ µ for all i ∈ o(σ)
and hence bab−1 ∈ G(σ).

Take i such that i
σ ∼ r with |r| < ra. Then we know that ai is de�ned

and ai ∈ U∗. Thus i ≤ ord(a) = τ . Therefore, by the above, (bab−1)i is
de�ned and (bab−1)i = baib−1.

Since U is a standard neighbourhood, there is an rbab−1 ≤ ra such that
for all i with i

σ ∼ r < rbab−1 , (bab−1)i ∈ U∗. Because b ∈ µ, this means that
the standard functions Xa and Xbab−1 agree on (−rbab−1 , rbab−1). Therefore
[Xa] = [Xbab−1 ].

(3) [Xa] = O means that there is an r ≤ ra, such that Xa|(−r,r) = O. So for

all i such that i
σ ∼ q < r, ai ∈ µ. By Lemma 3.4, this means that for all

i ∈ O(σ), ai ∈ µ. Thus a ∈ Go(σ). The other direction follows immediately.
(4) Let X ∈ L(G) and X ∈ X. Denote b = X∗( 1

σ ). Suppose X and Xb are both

de�ned on (−r, r). Then, if i is such that i
σ ∼ q ∈ (−r, r) we have

X(q) ∼ X∗( i
σ

)

= X∗(
1

σ
)i

= bi

∼ Xb(q) (by Theorem 3.11)

So X(q) ∼ Xb(q) for q ∈ (−r, r), which means equality for standard
functions. Therefore [X] = [Xb] and so L(G) = {[Xa] | a ∈ G(σ)}.

�

We now investigate the local analogue of the exponential map. Consider the fol-
lowing sets

K := {X ∈ L(G) | I ⊆ domain(X) and X(I) ⊆ U}
and

K := {X(1) |X ∈ K}.

Lemma 4.7. For every X ∈ L(G), there is an s ∈ (0, 1) such that s · X ∈ K.

Proof. Take X ∈ L(G) and X ∈ X. Let domain(X) = (−r, r). If r ≤ 1, we pick s1

to be such that 0 < s1 < r. Then s1 ·X : (− r
s1
, rs1 ) → G has domain(s1 ·X) ⊇ I.

If r > 1, let s1 = 1. The continuity of s1 ·X allows us to pick s2 with 0 < s2 < 1
such that (s2 · (s1 ·X))(I) ⊆ U . So for s := s1 · s2, s · X ∈ K. �

Lemma 4.8. The map E : K → K de�ned by X 7→ X(1) is bijective.

Proof. Let X1,X2 ∈ K, X1 ∈ X1, X2 ∈ X2, domain(X1) ∩ domain(X2) ⊇ I.
Suppose X1(1) = X2(1). Then (X1( 1

2 ))2 = (X1( 1
2 ))2, which, since U is a spe-

cial neighbourhood, implies X1( 1
2 ) = X2( 1

2 ). Repeating this inductively we have
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X1( 1
2n ) = X2( 1

2n ) for all n, and thus X1( k
2n ) = X2( k

2n ) for all k ∈ Z such that

| k2n | ≤ 1. Since X1, X2 are continuous with a dense domain, then the above implies
X1|I = X2|I , i.e. [X1] = [X2]. This proves injectivity. The surjectivity part of the
claim is trivial. �

Finally, we obtain a countable neighbourhood basis of the identity. Let the
partial map pn : G ⇀ G, be de�ned by pn : a 7→ an if an is de�ned. By Lemma 2.39
we have that pn has an open domain with domain(pn) ⊇ Un and is continuous.

For Q as before, we set ord(Q) := ordU (Q). We extend the ord(.) notation to
standard subsets of G analogously - for symmetric P ⊂ G with 1 ∈ P we let

ord(P ) := max{n |Pn is de�ned and Pn ⊆ U},
if this maximum exists, otherwise we put ord(P ) = ∞ when Pn is de�ned and
Pn ⊆ U for all n.

We now de�ne Vn := {x ∈ G | ord(x) ≥ n}. We note that for all n

p−1
1 (U) ∩ . . . ∩ p−1

n (U) ⊆ Vn ⊆ Un.

Lemma 4.9. (Vn |n ≥ 1) is a decreasing sequence of compact symmetric neigh-
bourhoods of 1 in G, ord(Vn) → ∞ as n → ∞, and {Vn |n ≥ 1} is a countable
neighbourhood basis of 1 in G.

Proof. For σ > N, consider the internal set
Vσ := {g ∈ G∗ | ord(g) ≥ σ}.

Since ord(g) ≥ σ > N for all g ∈ Vσ, then Vσ ⊆ µ. So given any neighbourhood U
of 1 in G, we have x1 · · ·xm is de�ned and in U∗ for all m and x1, . . . , xm ∈ Vσ. It
follows that for any neighbourhood U of 1 in G and any m we have (Vn)m is de�ned
and contained in U for all su�ciently large n. This shows that ord(Vn) → ∞ as
n→∞.

It is clear from the de�nition of the sets Vn that (Vn |n ≥ 1) is a decreasing
sequence of compact symmetric neighbourhoods of 1 in G. Then {Vn |n ≥ 1} gives
a countable neighbourhood basis of the identity in G. �
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5. Local Gleason-Yamabe Lemmas

The trickiest and most technical part of our solution is obtaining local analogues
of the Gleason-Yamabe Lemmas. The particular proofs, however, are highly un-
enlightening and tedious. Seeing as diving into them would be a laborious detour
from our discussion so far, we will just cite the direct results from the lemmas for
further use. Anyone interested in the derivations of the results in this section is
encouraged to read through section 5 of Goldbring's paper [5].

Lemma 5.1. Suppose ν ∈ N∗\N and a1, . . . , aν is a hyper�nite sequence such that
ai ∈ Go(ν) for all i ∈ {1, . . . , ν}. Let Q := {1, a1, . . . , aν , a

−1
1 , . . . , a−1

ν }. Then Qν

is de�ned and Qν ⊆ µ.

Lemma 5.2. Suppose U is a compact symmetric neighbourhood of 1 in G with
U ⊆ U2. Let ν > N be such that for all i ∈ {1, . . . , ν}, ai and bi are de�ned and
ai ∈ U∗, bi ∈ µ. Then for all i ∈ {1, . . . , ν}, we have that (ab)i is de�ned and
(ab)i ∼ ai.

Lemma 5.3. Let ν > N and a ∈ G(ν) be such that aν is de�ned and ai ∈ G∗ns for
all i ∈ {1, . . . , ν}. Suppose also that b ∈ µ is such that bν is de�ned and bi ∈ G∗ns
and ai ∼ bi for all i ∈ {1, . . . , ν}. Then a−1b ∈ Go(ν).

Theorem 5.4. Suppose σ > N. Then
(1) G(σ) and Go(σ) are normal subgroups of µ;
(2) if a ∈ G(σ) and b ∈ µ, then aba−1b−1 ∈ Go(σ);
(3) G(σ)/Go(σ) is abelian.
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6. Consequences of the Gleason-Yamabe Lemmas

In this section we use the results in the previous section to derive several key
theorems. We begin with a theorem that allows us to equip the space of LPSs L(G)
with an abelian group operation.

Remark 6.1. Let X ∈ L(G) and σ > N. Suppose i ∈ o(σ). Then (X( 1
σ ))i = X( iσ )

and since i
σ ∼ 0, we have X( iσ ) = 0. If we consider X as a nonstandard function,

then clearly X( iσ ∈ µ. Therefore X( iσ ) ∈ G(σ).

Theorem 6.2. The map S : L(G)→ G(σ)/Go(σ) de�ned by

S : X 7→ X(
1

σ
)Go(σ)

is a bijection.

Proof. Suppose S(X) = S(Y). Then if a = X( 1
σ ), b = Y( 1

σ ) we have a−1b ∈ Go(σ).
Pick a neighbourhood of 1 in G such that U ⊆ U2. We put τ := min{ordU (a), σ}.
Then we know that ai is de�ned and in U∗ and (a−1b)i is de�ned and in µ for
all i ∈ {1, . . . , τ}. By Lemma 5.2 this implies that (a · (a−1b))i is de�ned and
(a · (a−1b))i ∼ ai for all i ∈ {1, . . . , τ}. However, (a · (a−1b))i = ((aa−1) · b)i = bi,
since (a · (a−1b))i is de�ned. Therefore ai ∼ bi for all i ∈ {1, . . . , τ}. We know that
σ ∈ O(τ), so

st(domain(X) ∩ domain(Y) ∩ {r | i
σ
∼ r for some |i| ∈ {1, . . . , τ}}) 6= {0}.

Therefore X and Y agree on a standard neighbourhood of 0R, hence X = Y. So S
is injective.

Suppose b ∈ G(σ)/Go(σ). Consider Xb as in Theorem 3.11. Let τ with σ ∈ O(τ)
be such that if i ∈ {1, . . . , τ}, i

σ ∼ r ∈ R, then r ∈ domain(Xb). We know, again

by Theorem 3.11, that if b′ := Xb(
1
σ ) ∈ µ, then (b′)i ∼ bi for all i ∈ O(τ). By

Lemma 5.3 this implies that b−1b′ ∈ Go(τ) ⊆ Go(σ) and hence bGo(σ) = b′Go(σ).
By Lemma 4.6 we have that S is onto. �

Remark 6.3. We can now use the bijection from the previous theorem to de�ne an
abelian group operation +σ on L(G). We put X +σ Y := S−1(S(X) · S(Y)). That
means that if t ∈ domain(X +σ Y) and ν is such that ν

σ ∼ t, then

(X +σ Y)(t) ∼ [X(
1

σ
)Y(

1

σ
)]ν .

In [5, p. 35] Goldbring explains that in the local setting it is not required to prove
that the above de�nition of addition in L(G) is independent of σ. This is because
nowhere in our proof of LH5 do we use this independence, and moreover, the
independence itself is a consequence of LH5. With this in mind, we will write X+Y
instead of X +σ Y.

The next result, that will occupy us until the end of this section, is that the
image of the local exponential map (de�ned in Lemma 4.8) is a neighbourhood of
1 in G. Therefore, we will see that there is an open neighbourhood of 1 in G that
is ruled by LPS, by which we mean that every element of this neighbourhood lies
on some LPS.

In the rest of the section, we assume that G is NSS and that U is a special
neighbourhood of 1 in G.
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Lemma 6.4. Suppose σ > N and a, b ∈ G(σ). Then [Xa] + [Xb] = [Xab].

Proof. By the de�nition of addition in L(G) given in Remark 6.3 we have

S([Xa] + [Xb]) = S([Xa]) · S([Xb])

= (aGo(σ))(bGo(σ))

= (ab)Go(σ)

= S([Xab])

Since S in injective, then the above implies that [Xa] + [Xb] = [Xab]. �

Lemma 6.5. Suppose σ > N and a ∈ G(σ). Then a = bc2 with b ∈ Go(σ) and
c ∈ G(σ).

Proof. Put c := Xa( 1
2σ ) ∈ µ. Clearly c ∈ G(σ). Now, we have

c−2 =

(
Xa

(
1

2σ

))−2

= Xa

(
− 1

σ

)
= Xa−1

(
1

σ

)
.

Therefore, we have [Xc−2 ] = [Xa−1 ]. So

[Xac−2 ] = [Xa] + [Xc−2 ] = [Xa] + [Xa−1 ] = [X1] = O.
If we put b := ac−2, then [Xb] = O and so b ∈ Go(σ) by Lemma 4.6. �

Lemma 6.6. There exists q ∈ Q+ such that for all a, b, c ∈ µ, if a = bc2 and
ord(b) ≥ ord(a), then ord(c) ≥ q · ord(a).

Proof. First note, that if such a q exists, then taking any q′ with 0 < q′ < q also
satis�es the conditions of the lemma. So we are looking for a `small' such q.

Suppose there is no such q. That is, for all n there exist an, bn, cn ∈ µ such
that a = bc2, ord(b) ≥ ord(a), but ord(c) < 1

n · ord(a) (equivalently, we can say
n · ord(c) < ord(a)). By saturation, we can �nd a, b, c ∈ µ such that we get
a = bc2, ord(b) ≥ ord(a) and n · ord(c) < ord(a) for all n.

Let σ := ord(c) and generate the LPSs [Xa], [Xb] and [Xc] with σ as de�ned.
We clearly have σ ∈ o(ord(a)) and σ ∈ o(ord(b)). Moreover, G is NSS and hence
pure. This means that a ∈ G(ord(a)) and b ∈ G(ord(b)). Therefore ai, bi ∈ µ for
all i ∈ O(σ). But image(Xa) = {ai | i ∈ O(σ)} and image(Xb) = {bi | i ∈ O(σ)}.
Hence O = [Xa] = [Xb]. But then

O = [Xa] = [Xbc2 ] = [Xb] + [Xc2 ] = O + 2[Xc].

This implies [Xc] = O, which is a contradiction. �

We �x q as in the previous lemma.

De�nition 6.7. For a, b ∈ µ let the commutator of a and b be [a, b] := aba−1b−1.
Note that ab = [a, b]ba.

Lemma 6.8. Let a ∈ µ. Then for all ν ≥ 1, there are bν , cν ∈ G∗ such that
bν · cν · cν is de�ned, a = bνc

2
ν , ord(bν) ≥ νord(a) and ord(cν) ≥ q.ord(a).

Proof. First, suppose a = 1. Then we put bν = cν = 1 for all ν ≥ 1. Clearly this
choice of bν , cν satis�es the requirements of the lemma.

So suppose a 6= 1. Note that if the claim is true for some ν, then for those bν , cν
we will have ord(bν), ord(cν) > N. Therefore, for the statement to be true we at
least need bν , cν ∈ µ.
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a ∈ G(σ) for some σ > N. Then, by Lemma 6.5, a = bc2 with b ∈ Go(σ),
c ∈ G(σ). So σ ∈ o(ord(b)). Also a ∈ G(σ) =⇒ ord(a) ∈ O(σ). So therefore
ord(b) ≥ ord(a). Then, by Lemma 6.6, ord(c) ≥ q.ord(a).

Moreover, since ord(a) ∈ o(ord(b)), ord(a) ∈ O(σ) and σ ∈ O(ord(a)), then
ord(b) ≥ σ.ord(a). Then the claim of the lemma holds for some σ > N with b, c as
above. It is easy to see that then the claim holds for all σ′ < σ as well. We now
prove that the lemma holds for σ + 1, which is enough, by internal induction.

If b = 1, then ord(b) =∞ ≥ ν.ord(a) for all ν ∈ N∗ and we are done.
Suppose b 6= 1. By Lemma 6.5 again, we have b′, c′ ∈ µ with b = b′(c′)2 and

ord(b′) ≥ τ.ord(b) for some τ > N. Then ord(b′) ≥ τσord(a). By Lemma 6.6, we
also know that ord(c′) ≥ q.ord(b) ≥ q.σ.ord(a). Since µ is an actual group, we have

a = b′(c′)2c2 = b′c′c′cc

= b′c′[c′, c]cc′c

= b′[c′, [c′, c]][c′, c]c′cc′c

= b′[c′, [c′, c]][c′, c](c′c)2.

Let b′′ := b′[c′, [c′, c]][c′, c] and c′′ := c′c. We show that ord(b′′) ≥ (σ+1)ord(a) and
ord(c′′) ≥ q.ord(a).

Let α = c−1(c′)−1, β = (c′)−1c−1. Then ord(α), ord(β) ∈ O(ord(c′)) and
ord(c′) ∈ O(ord(α)) ∩O(ord(β)).

Then ord(α) > N, α ∈ G(ord(α)) (because G is pure) and αi is de�ned and
nonstandard for all i ∈ {1, . . . , ord(α)}. Clearly, β ∈ µ and βi is also de�ned and
nonstandard for i ∈ {1, . . . , ord(α)}. Moreover, for i as above,

αi = c−1(c′)−1 · · · c−1(c′)−1 = c−1βi−1(c′)−1 ∼ βi.
Then, by Lemma 5.3, we have α−1β = c′c(c′)−1c−1 = [c′, c] ∈ Go(ord(α)), i.e.

ord([c′, c]) ≥ η1ord(c′) ≥ η1qσ ord(a),

for η1 > N. Analogously we can �nd η2 > N such that

ord([c′, [c′, c]] ≥ η1η2ord(c′) ≥ η1η2qσ ord(a).

Therefore

ord(b′′) = ord(b′.[c′, [c′, c]].[c′, c])

≥ min{ord(b′), ord([c′, [c′, c]]), ord([c′, c])}
≥ (σ + 1)ord(a).

Finally, Lemma 6.6 directly implies ord(c′′) ≥ q.ord(a), which completes the inter-
nal induction and the proof. �

Lemma 6.9. For every a ∈ µ, there is b ∈ µ with a = b2.

Proof. Let Vn be as in Lemma 4.9. Fix σ > N.
Now, by the previous lemma, the internal set of all η ∈ N∗ such that for each

x ∈ V ∗η there are y, z ∈ U∗ such that y · z · z is de�ned, x = yz2, ord(y) ≥ σ.ord(x)
and ord(z) ≥ q.ord(x) includes all in�nite η. But we know that N∗\N is not an
internal subset of N∗ (because N is not), so there is some n > 0 in this set.

Now let x ∈ Vn ⊆ V ∗n . Then there are y, z ∈ U∗ such that y · z · z is de�ned,
x = yz2 and ord(y) ≥ σ.ord(x). Since ord(y) > N, we have y ∈ µ. Therefore
x = st(z)2. Hence every element of Vn has a square root in U .
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By transfer, the last statement implies that every a ∈ V ∗n (and, in particular,
every a ∈ µ) has a square root b ∈ U∗. Moreover, when a ∈ µ, then b ∈ µ, because
otherwise st(b2) = st(b)2 = 1 and {1, st(b)} would be a subgroup of G in U . �

Lemma 6.10. Suppose a ∈ µ, b ∈ G∗, ord(b) ≥ ν > 0 and a = bν . Then bi ∈ µ
for all i ∈ {1, . . . , ν}.

Proof. We �rst prove by induction on n that bnν is de�ned for all n, the case n = 1
being true by assumption.

Assume bnν is de�ned. Let j ∈ {1, . . . , nν}. Then we can write j = n′ν + j′ for
n′ ∈ N, j′ ∈ {1, . . . , ν − 1}. We have

bj = (bν)n
′
· bj
′
∼ bj

′
∈ U∗ ⊆ U∗2 ,

by bν ∈ µ, µ being an actual group and ord(b) ≥ ν. Therefore bj ∈ U∗2 for all
j ∈ {1, . . . , nν}. We know that bnν = an ∈ µ ⊆ U∗2 , so if we can prove that `bnν+i

� de�ned and in U∗2 ' implies `bnν+i+1 � de�ned and in U∗2 ' for all i ∈ {1, . . . , ν − 1},
then we will have bnν+ν = b(n+1)ν � de�ned and in U∗2 by internal induction.

Assume bnν+i � de�ned and bnν+i ∈ U∗2 for i ∈ {1, . . . , ν − 1}. To prove that
bnν+i+1 is de�ned we have to show (by Lemma 2.36) that (bk, bl) ∈ Ω∗ for all
k, l ∈ {1, . . . , nν+ i} with k+ l = nν+ i+1. But for any such k, l, we already know
that (bk, bl) ∈ U∗2 × U∗2 ⊆ Ω∗. Hence bnν+i+1 is de�ned. Therefore,

bnν+i+1 = (bν)n · bi+1 ∼ bi+1 ∈ U∗ ⊆ U∗2 .
This completes the internal induction on i, the result from which completes the
induction on n. So bnν is de�ned for all n.

Now suppose for a contradiction that bi /∈ µ for some i ∈ {1, . . . , ν − 1}. Let
x := st(bi) 6= 1. Let m ∈ Z. Consider xm = st(bi)m = st(bmi, where the equality
holds because st(·) is a homomorphism. Also, by the above, bmi is de�ned, because
i < ν. Then we can write mi = sν + q for s ∈ Z, q < ν. So

bmi = (bν)s · bq ∼ bq ∈ U∗,
and so we have st(bmi) ∈ U . Therefore xZ ⊆ U , which is a contradiction. �

Lemma 6.11. Given a ∈ µ and ν, there is b ∈ G∗ such that ord(b) ≥ 2ν and
a = b2

ν

.

Proof. First note that the statement in the lemma is internal. We can thus use
internal induction on ν.

Also note, that by Lemma 6.10 any b ∈ G∗ with ord(b) ≥ 2ν and a = b2
ν

is
actually in µ.

By Lemma 6.9 we know that the statement of the lemma holds for ν = 1. Now
suppose it holds for ν, i.e. a = b2

ν

with ord(b) ≥ 2ν . By Lemma 6.9 again we have

c ∈ µ with b = c2. Then a = (c2)2ν . We have to check that c2
ν+1

is de�ned to be

able to show that a = c2
ν+1

. We prove by (another) internal induction on i that
c2i is de�ned and (c2)i = c2i for all i ∈ {1, . . . , 2ν}.

First note that c2.1 = c2 is de�ned, because c ∈ µ, and (c2)1 = c2. Now suppose
c2i is de�ned and equal to (c2)i for i ∈ {1, . . . , 2ν-1}.

To prove that c2i+1 is de�ned, by Lemma 2.36, we have to show (ck, cl) ∈ Ω∗ for
k, l ∈ {1, . . . , 2i} with k + l = 2i+ 1. If k is even, we have

ck = (c2)
k
2 = b

k
2 ∈ µ,
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by Lemma 6.10 since k
2 ≤ i ≤ 2ν . Similarly, if k is odd, then

ck = c · (c2)
k−1
2 = c · b

k−1
2 ∈ µ · µ ⊆ µ.

So c2i+1 is de�ned. By repeating the above steps exactly, we get that c2i+2 is
de�ned. Then, by induction, we have

(c2)i+1 = (c2)i · c2 = c2i · c2 = c2i+2.

This concludes the induction and we now have that c2i is de�ned and equal to (c2)i

for all i ∈ {1, . . . , 2ν}. In particular, c2.2
ν

= (c2)2ν = b2
ν

= a.
Finally, we want to show that ord(c) ≥ 2ν+1. We know that ci is de�ned for i up

to 2ν+1. Considering the parity of i and using Lemma 6.10 as above, we get that
ci ∈ µ for all i ∈ {1, . . . , 2ν+1}. Hence ord(c) ≥ 2ν+1 and the induction is complete,
along with the proof. �

Theorem 6.12. K is a neighbourhood of 1.

Proof. We use the same trick as in Lemma 6.9. Let the sets Vn be as in Lemma 4.9.
Fix ν > N. Then the internal set of all η such that for each x ∈ V ∗η there is a

y ∈ U∗ such that ord(y) ≥ 2ν and x = y2ν contains all in�nite η. Since we know
that N∗\N is not an internal subset of N∗, then there is some n > 0 in this set. So
now, given x ∈ Vn ⊆ V ∗n , there is an a ∈ U∗ such that ord(a) ≥ 2ν and x = a2ν .

Let σ := 2ν . Now let i be such that i
σ ∼ t ∈ I = [−1, 1]. Since t ∈ I, for all

t we can choose i such that |i| ≤ σ. Then ai is de�ned and in U∗ for all such i.
Therefore, st(ai) ∈ U for all i as above. Then Xa(t) = st(ai) ∈ U and X∗a(1) = x.
Thus [Xa] ∈ K and x = [Xa](1) ∈ K. This shows that Vn ⊆ K, which means that
K is neighbourhood of 1 in G, since Vn itself is one. �
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7. The Space L(G)

In this section, our goal is to equip L(G) with a topology in such a wat that
it becomes a locally compact �nite dimensional real topological vector space. We
have already previously de�ned the operations of scalar multiplication and addition
on the vector space L(G) and we will continue using them as the operations of the
vector space. At the end we obtain the result that locally compact NSS local groups
are locally euclidean.

De�nition 7.1. A subbasis for a topological space X with topology T is a sub-
collection B of T , which generates T . That is, every element of T is an arbitrary
union of �nite intersections of elements of B.

So by specifying a subbasis B we �x a topology T on the space, there T is the
smallest(coarsest) topology such that B is a subbasis.

We specify a subbasis B of the space L(G):

B := {BC,U |C ⊆ (−2, 2) is compact, U ⊆ G is open}, where
BC,U := {X ∈ L(G) |C ⊆ domain(X), X(C) ⊆ U}.

This is usually called the compact-open topology on a functional space. We now
investigate the monad structure of L(G) with this topology.

Lemma 7.2. Let X ∈ L(G), Y ∈ L(G)∗. Then Y ∈ µ(X) if and only if

(1) domain(X) ∩ (−2, 2) ⊆ domain(Y), and
(2) for every t ∈ domain(X) ∩ (−2, 2) and for every t′ ∈ µ(t), Y(t′) ∈ µ(X(t)).

Proof.

(=>): Suppose Y ∈ µ(X). Then Y is in the extension of any open set of L(G)
containing X.

Take the sets BC,G for C ⊆ domain(X)∩ (−2, 2) compact. Then X is in
any such set. So Y ∈ B∗C,G for C ⊆ domain(X) ∩ (−2, 2) compact. This

means that C∗ ⊆ domain(Y) for all C ⊆ domain(X) ∩ (−2, 2) compact.
Therefore

domain(X) ∩ (−2, 2) ⊆ domain(X)∗ ∩ (−2, 2)∗ ⊆ domain(Y).

For the second part suppose t ∈ domain(X) ∩ (−2, 2), t′ ∈ µ(t). We will
show that Y(t′) ∈ U∗ for every U -open in G with X(t) ∈ U . This will imply
Y(t′) ∈ µ(X(t)).

Let U be an arbitrary open neighbourhood of X(t) in G. Choose CU
to be a compact neighbourhood of t with CU ⊆ domain(X) ∩ (−2, 2) and
X(CU ) ⊆ U . Then C∗U ⊆ domain(Y) ∩ (−2, 2)∗ by the above, and since
X ∈ BCU ,U , then Y ∈ B∗CU ,U . Therefore Y(C∗U ) ⊆ U∗ and in particular

Y(t′) ∈ U∗. Hence Y(t′) ∈ µ(X(t)) and we are done.
(<=): We now suppose that domain(X) ∩ (−2, 2) ⊆ domain(Y) and for every

t ∈ domain(X)∩ (−2, 2) and for every t′ ∈ µ(t), Y(t′) ∈ µ(X(t)). Note that
the sets BC,U as de�ned above with X ∈ BC,U form a neighbourhood basis
for X. So if we show that X ∈ BC,U implies Y ∈ B∗C,U , then Y ∈ µ(X).

Suppose X ∈ BC,U . Then for all t ∈ C∗ we have Y(t) ∈ µ(X(st(t))) ⊆ U∗,
since C is compact. Then Y ∈ B∗C,U . So Y ∈ µ(X).

�
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From now on we assume our special neighbourhood of choice U of an NSS local
group is chosen such that U ⊆ U6.

Lemma 7.3. K is a compact neighbourhood of O in L(G).

Proof. We �rst show that K is a neighbourhood of O. Choose W ⊆ U such that W
is open. Then

BI,W = {X ∈ L(G) | I ⊆ domain(X), X(I) ⊆W} ⊆ K.
Since O ∈ BI,W and BI,W is open by de�nition, so K is a neighbourhood of O.

Now we show that K is compact. It is enough to show that for an arbitrary
Y ∈ K∗, there is an X ∈ K with Y ∈ µ(X), by Remark 2.14.

Let Y ∈ K∗. Pick Y ∈ Y with I∗ ⊆ domain(Y ). We now put X : I → G to
be de�ned by X : t 7→ st(Y (t)). By Lemma 3.12, we know that there is an LPS
X : (−1 − ε, 1 + ε) → G of G, for some ε ∈ R+, with X|I = X. We claim that
if X = [X], then Y ∈ µ(X). We will prove the two conditions from the previous
lemma, equivalent to Y ∈ µ(X).

For t ∈ (1, 2)∗ we have (Y (1), Y (t − 1)) ∈ U∗ × U∗ ⊆ Ω∗ and for t ∈ (−2,−1)∗

we have (Y (t+ 1), Y (−1)) ∈ U∗ × U∗ ⊆ Ω∗. Therefore we can de�ne

Y : t 7→

 Y (t) for t ∈ I∗
Y (1) · Y (t− 1) for t ∈ (1, 2)∗

Y (t+ 1) · Y (−1) for t ∈ (−2,−1)∗

Now, analogously to the proof of Lemma 3.12, we can prove that Y is an internal
LPS of G∗. It is also clear that [Y ] = [Y ]. Since domain(Y ) = (−2, 2)∗, then
domain(Y) ⊇ (−2, 2) ⊇ (−2, 2) ∩ domain(X).

For the second condition suppose t ∈ domain(X) ∩ (−2, 2) and t′ ∈ µ(t). For
t ∈ [−1, 1], Y(t′) ∈ µ(X(t)) is clear by how we de�ned X. If t ∈ (1, 2), then

Y(t′) = Y(1) · Y(t′ − 1) ∈ µ(X(1) ·X(t− 1)) = µ(X(t)).

And �nally, if t ∈ (−2,−1), then

Y(t′) = Y(t′ + 1) · Y(−1) ∈ µ(X(t+ 1) ·X(−1)) = µ(X(t)).

�

We prove an easy topological lemma that we need in order to prove that
E : K → K is a homeomorphism.

Lemma 7.4. If T1 is a compact space, T2 is a Hausdor� space and f : T1 → T2 is
a continuous bijection, then f is a homeomorphism.

Proof. We need to show that g = f−1 : T2 → T1 is continuous. We will show that
if V is closed in T1, then g

−1(V ) = f(V ) is closed in T2.
Let V be closed in T1. Then, since T1 is compact, we have that V is compact.

Since the continuous image of a compact set is compact, we have that f(V ) is
compact. Moreover, a compact set in a Hausdor� space is always closed. So
g−1(V ) = f(V ) is closed and we are done. �

Corollary 7.5. E : K → K is a homeomorphism.

Proof. Lemma 7.2 implies that Y ∈ µ(X) only if E(Y) ∈ µ(E(X)), in other words
Y(1) ∈ µ(X(1)). So E is continuous. We know from Lemma 4.8 that E is also
bijective. By Lemma 7.3 we know that K is compact.

Then, by our previous lemma, E is a homeomorphism, since G is Hausdor�. �
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Now suppose X ∈ L(G) and [−s, s] ⊆ domain(X) for some s ∈ (0, 2), and
X([−s, s]) ⊆ U2. Let U ⊆ U2 be a neighbourhood of 1. Previously we de�ned
xH := {xh |h ∈ H and (x, h) ∈ Ω}. We investigate the set NX(s, U) of equivalence
classes of LPSs that have images of [−s, s] `U -close' to those of X. Formally,

NX(s, U) := {Y ∈ L(G) |Y(t) ∈ X(t)U for all t ∈ [−s, s]}.

Lemma 7.6. For each neighbourhood U of 1 in G with U ⊆ U2, NX(s, U) is a
neighbourhood of X in L(G) and the collection

{NX(s, U) |U is a neighbourhood of 1 in G and U ⊆ U2}
is a neighbourhood basis of X in L(G).

Proof. We �rst show that NX(s, U) is a neighbourhood of X in L(G). So we have
to show that µ(X) ⊆ NX(s, U).

Let Y ∈ µ(X). By Lemma 7.2, this means that

[−s, s] ⊆ domain(X) ∩ (−2, 2) ⊆ domain(Y),

so [−s, s]∗ ⊆ domain(Y). Now �x t ∈ [−s, s]∗ and U ⊆ U2 a neighbourhood
of 1 in G. Then, again by Lemma 7.2, we have Y(t),X(t) ∈ µ(X(st(t))). This
implies X(t)−1Y(t) ∈ µ ⊆ U∗. Therefore Y(t) = X(t)X(t)−1Y(t) ∈ X(t)U∗. So
Y ∈ N∗X(s, U). Thus µ(X) ⊆ NX(s, U)∗.

Next we show that the collection in the lemma is a neighbourhood basis. We do
this by showing that

⋂
NX(s, U) ⊆ µ(X), where the intersection runs through all

neighbourhoods U ⊆ U2 of 1 in G.
Let Y ∈

⋂
NX(s, U). Suppose domain(X)∩(−2, 2) = (−r, r). Choose n > 0 such

that 1
n (−r, r) ⊆ [−s, s]. Then, since Y ∈ NX(s,U2n), we have domain(Y) ⊇ (−r, r),

because Y(t) = Y( tn )n for t ∈ (−r, r) de�nes an internal LPS of G∗. This means
that domain(X ∩ (−2, 2) ⊆ domain(Y). (1)

Now �x t ∈ (−r, r) and t′ ∈ µ(t). Let U be a neighbourhood of X(t). Recall that
the partial map pn : G ⇀ G is de�ned by pn : a 7→ an, if an is de�ned, and that the
domain of this map is open. Since X( tn ) ∈ domain(pn), then we can choose an open

neighbourhood V of X( tn ) such that V ⊆ domain(pn) and pn(V ) ⊆ U . By local
compactness, we can choose a compact neighbourhood W of 1 in G with W ⊆ U2,
{X( tn )} ×W ⊆ Ω and X( tn )W ⊆ V . By supposition Y ∈ NX(s,W ), which implies

that Y( t
′

n ) ∈ X( t
′

n )W ∗. Now, suppose a ∈W ∗. Then X( t
′

n ) ·a = X( tn ) · (X( t
′−t
n ) ·a),

and we know that X( t
′−t
n ) · a ∼ a. So

X
(
t′

n

)
· a ∼ X

(
t

n

)
· a ∈ X

(
t

n

)
W ⊆ V.

Since V is open, we see that X( t
′

n ) · a ∈ V ∗. This implies Y( t
′

n ) ∈ X( t
′

n )W ∗ ⊆ V ∗.

By our choice of V , we have Y( t
′

n ) ∈ domain(pn)∗. Furthermore, we see that

Y(t′) = Y( t
′

n )n ∈ U∗. Therefore, Y(t′) ∈ µ(X(t)). (2)
By Lemma 7.2, (1) and (2) imply Y ∈ µ(X). �

For the proof of the next theorem we need to borrow a lemma of Reisz.

Lemma 7.7. (Reisz [6, p. 47]) Let X be a normed linear space, Y be a closed
proper subspace of X and α be a real number with 0 < α < 1. Then there exists an
x ∈ X with |x| = 1 such that |x− y| > α for all y ∈ Y .

Corollary 7.8. If the closed ball is compact, then X is �nite dimensional.
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Theorem 7.9. L(G) is locally compact, �nite dimensional real topological vector
space.

Proof. We know by Lemma 7.3 that L(G) is locally compact. Then, by the above
corollary, we only need to show that L(G) is a topological vector space. We �rst
prove that scalar multiplication and addition are continuous in the topology we
previously de�ned. After that we prove that L(G) is a vector space.

(Scalar multiplication is continuous): We show that if r ∈ R\{0}, X ∈ L(G),
r′ ∈ µ(r) and X′ ∈ µ(X), then r′X′ ∈ µ(rX). By Lemma 7.2 we have
that X′ ∈ µ(X) implies domain(X) ∩ (−2, 2) ⊆ domain(X′). We can
then easily see that domain(rX) ∩ (−2, 2) ⊆ domain(r′X′). Also, suppose
t ∈ domain(rX) ∩ (−2, 2) and t′ ∈ µ(t). Then

(r′X′)(t′) = X′(r′t′) ∈ µ(X(rt)) = µ((rX)(t)).

Therefore, by Lemma 7.2, we have r′X′ ∈ µ(rX).
(Addition is continuous): We show that + is continuous at (O,O), that for any

subbasic set BC,U of L(G) containing O (and thus U containing 1), there is
a subbasic set BC,W of L(G) containing O such that BC,W +BC,W ⊆ BC,U .
Assume V ⊆ U is a compact neighbourhood of 1. Let Z ⊆ µ be an internally
open set. Then, by Lemma 5.2, we know that for every a, b ∈ Z and for
every σ such that for all i ∈ {1, . . . , σ}, ai and bi are de�ned and ai, bi ∈ Z,
we have (ab)σ is de�ned and (ab)σ ∈ V ∗. Hence, by transfer, there is an
open set W such that for all a, b ∈ W and all n with ai, bi de�ned and
ai, bi ∈W for all i ∈ {1, . . . , n}, we have 9ab)n de�ned and (ab)n ∈ V . Now
suppose X,Y ∈ BC,W . Let t ∈ C and r be such that r

σ ∼ t. Then

(X + Y)(t) ∼
[
X
(

1

σ

)
Y
(

1

σ

)]r
.

Let a := X( 1
σ ), b := Y( 1

σ ). By assumption, for all i ∈ {1, . . . , r}, ai, bi
are de�ned and ai, bi ∈ W ∗. Thus, (ab)r ∈ V ∗, from which we infer that
(X + Y)(t) ∈ V ⊆ U . Therefore X + Y ∈ BC,U . So BC,W +BC,W ⊆ BC,U .

To prove that X 7→ X + Y is continuous at O, we need to prove that
if W ⊆ L(G) is a neighbourhood of Y, then there is a neighbourhood V
of O in L(G) with image under the aforementioned map inside W . We
now �x s ∈ domain(Y) ∩ (−2, 2) such that Y([−s, s]) ⊆ U2. Fix a compact
neighbourhood U of 1 in G with U ⊆ U2 and NY(s, U) ⊆W . Now suppose
X ∈ µ(O) ⊆ L(G)∗. By Lemma 5.2, for all i ≤ r (where r is such that rσ ∼ s)
we have (X( 1

σ )Y( 1
σ ))i is de�ned and in�nitely close to Y( iσ ). Therefore, the

internal set of all members X of L(G)∗ such that whenever i ≤ r, we have
(X( 1

σ )Y( 1
σ ))i is de�ned and(

X
(

1

σ

)
Y
(

1

σ

))i
∈ Y

(
i

σ

)
U∗,

contains all X ∈ µ(O). We know that µ(O) is not an internal set, so
there is a neighbourhood V of O in L(G) such that for all X ∈ V we have
(X( 1

σ )Y( 1
σ ))i is de�ned and(

X
(

1

σ

)
Y
(

1

σ

))i
∈ Y

(
i

σ

)
U∗,
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whenever i ≤ r. This implies that for X ∈ V , we have
t ∈ domain(X + Y) and (X + Y)(t) ∈ Y(t)U,

for all t ∈ [−s, s]. Therefore X + Y ∈ NY(s, U) ⊆W for all X ∈ V .
We can prove that X 7→ X − Y is continuous at Y in exactly the same

way.
(L(G) is a vector space): Only one of the vector space axioms is not trivial to verify,

namely that r · (X+Y) = r ·X+ r ·Y. We show that it holds �rst fot r ∈ Z,
then for r ∈ Q at which point we conclude that it holds for all r ∈ R,
because of the continuity of the operations of scalar multiplication and
addition.

Assume r ∈ Z. Let a := X( 1
σ ), b := Y( 1

σ ). Then we have that

S(r · X + r · Y) = (arbr)Go(σ) and S(r · (X + Y)) = ((ab)r)Go(σ).

But G(σ)/Go(σ) is abelian, so (arbr)Go(σ) = ((ab)r)Go(σ), and hence
S(r · X + r · Y) = S(r · (X + Y)). Since S is an injection, we conclude that
r · X + r · Y = r · (X + Y).

Let r ∈ Z\{0}. By the above we know that r · ( 1
rX+ 1

rY) = X+Y. This
is equivalent to 1

rX + 1
rY = 1

r (X + Y). So the axiom holds for r ∈ Z and

r ∈ 1
Z\{0} . Therefore it holds for r ∈ Q.

�

Corollary 7.10. G is locally euclidean.

Proof. K is a neighbourhood of 1 by Theorem 6.12, so we can choose W ⊆ K
� an open neighbourhood of 1 in G. By the above, L(G) is a �nite dimensional
topological vector space over R, so we have an isomorphism L(G) ∼= Rn of real
vector spaces for some n, and this isomorphism is also a homeomorphism. Hence,
by Lemma 7.3, we can choose an open neighbourhood U of O with U ⊆ K and
E(U) ⊆ W such that U is homeomorphic to an open subset of Rn. Then, since E
is a homeomorphism by Corollary 7.5, E(U) is an open neighbourhood of 1 in G
homeomorphic to an open subset of Rn. So G is locally euclidean. �
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8. LH5 for NSS local groups

We are now almost ready to prove the LH5 for NSS local groups. To �nish
this part of the proof, we will need the local version of the Adjoint Representation
Theorem.

In this section we, again, assume G is NSS and that our special neighbourhood
of choice U is such that U ⊆ U6.

De�nition 8.1. We de�ne the adjoint representation map for g ∈ U6 to be
Adg : L(G)→ L(G), de�ned by

Adg : X 7→ gXg−1.

Here if X ∈ X and r ∈ domain(X) ∩ R+ is such that X((−r, r)) ⊆ U6, then
gXg−1 : (−r, r)→ G is de�ned by gXg−1 : t 7→ gX(t)g−1.

Lemma 8.2. The above de�nition produces a well-de�ned map. That is, for ev-
ery X ∈ X, gXg−1 is an LPS of G, and for every X1, X2 ∈ X, we have that
[gX1g

−1] = [gX2g
−1].

Proof. Let X ∈ X and gXg−1 be as de�ned above. It is clear that gXg−1 is
continuous, as X, ρ, and ι are continuous. Now let domain(gXg−1) = (−r, r) and
s, t, s+ t ∈ (−r, r). Then, since g, g−1, X(t), X(s) ∈ U6, we have

(gXg−1(t+ s) = g(X(t+ s))g−1

= g(X(t)X(s))g−1

= (gX(t)g−1)(gX(s)g−1)

= (gXg−1)(t)(gXg−1)(s)

Therefore, gXg−1 is an LPS of G.
Now suppose X1, X2,∈ X. We also put domain(gX1g

−1) = (−r1, r1) and
domain(gX2g

−1) = (−r2, r2). Since [X1] = [X2], there exists r3 such that we
get X1|(−r3,r3) = X2|(−r3,r3). Let r = min{r1, r2, r3}. By the de�nition of gX1g

−1

and gX2g
−1, it is clear that gX1g

−1|(−r,r) = gX2g
−1|(−r,r). This means that

[gX1g
−1] = [gX2g

−1]. �

Lemma 8.3. Suppose σ > N, a ∈ G(σ) and g ∈ U6. Then

(1) gag−1 ∈ G(σ);
(2) Adg([Xa]) = [Xgag−1 ].

Proof. Let τ := ord(a). Then, σ ∈ O(τ).
To show (1) we use the usual trick - we show by internal induction that for

i ∈ {1, . . . , τ} (gag−1) is de�ned and equal to gaig−1. It is clearly true for i = 1,
so suppose it is true for i < τ . By Lemma 2.36, to prove that (gag−1)i+1 is de�ned
it is enough to show that ((gag−1)k, (gag−1)l) ∈ Ω∗ for all k, l ∈ {1, . . . , i} with
k + l = i + 1. But by induction (gag−1)k = gakg−1 and (gag−1)l = galg−1 and
since k, l < τ , then g, ak, al ∈ U∗6 . So we have (gakg−1, galg−1) ∈ Ω∗. Therefore
(gag−1)i+1 is de�ned. Furthermore,

(gag−1)i+1 = (gag−1)i(gag−1)

= (gaig−1)(gag−1) (by IH)

= gai+1g−1 (since g, ai, a, g−1 ∈ U∗6 ).
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Therefore for i ∈ {1, . . . , τ} (gag−1) is de�ned and equal to gaig−1. This implies
that if i ∈ o(σ), then (gag−1)i is de�ned and (gag−1)i = gaig−1 ∈ µ since a ∈ G(σ).
This proves (1).

To prove (2) we �x r ∈ R+ such that there is i ≤ τ with i
σ ∼ r, Xa((−r, r)) ⊆ U6,

and gXa((−r, r))g−1 ⊆ U . Then for t ∈ (−r, r) and i such that i
σ ∼ t we have

(Adg([Xa])(t)) = gXa(t)g−1

= g(st(ai))g−1

= st(gaig−1)

= st((gag−1)i)

= Xgag−1(t).

Hence Adg([Xa])|(−r,r) = [Xgag−1 ]|(−r,r) and so Adg([Xa]) = [Xgag−1 ].
�

Corollary 8.4. For g ∈ U6, Adg : L(G) → L(G) is a vector space automorphism
with inverse Adg−1 .

Remark 8.5. We denote by Aut(L(G)) the group of isomorphisms of L(G). We
now know that dimR(L(G)) = n for some n > 0, so we can choose an R-linear
isomorphism L(G) ∼= Rn. It induces a group isomorphism

Aut(L(G)) ∼= GLn(R) ⊆ Rn
2

,

and we take the topology on Aut(L(G)) that makes this group isomorphism a
homeomorphism. (Note that this topology does not depend on our choice of R-
linear isomorphism L(G) ∼= Rn.)

Now we can characterise the structure of Aut(L(G))∗. For T ∈ Aut(L(G))∗,
T ∈ Aut(L(G))∗ns if T (X) ∈ L(G)∗ns for all X ∈ L(G). For T, T ′ ∈ Aut(L(G))∗ns, we
see that T ∼ T ′ if and only if T (X) ∼ T ′(X) for all X ∈ L(G).

Theorem 8.6. (Local Adjoint Representation Theorem) We have a morphism
Ad : (U6)G → Aut(L(G)) of local groups given by Ad : g 7→ Adg.

Proof. First note taht if g, h, gh ∈ U6 and [Xa] ∈ L(G), then

Adgh([Xa]) = [X(gh)a(gh)−1 ]

= [Xg(hah−1)g−1 ]

= Adg(Adh([Xa])).

This implies that Ad(gh) = Ad(g) ◦ Ad(h). Therefore, taking also into account
Corollary 8.4, the map Ad satis�es the three conditions in De�nition 2.18. Re-
mains to show that Ad is continuous.

We �rst show that Ad is continuous at 1. Let a ∈ µ, X ∈ L(G). We will show
that Ada(X) ∼ X by showing the two equivalent conditions in Lemma 7.2.

Suppose (−r, r) ⊆ domain(X). We show that (−r, r) ⊆ domain(Ada(X)).
To do this we need that if s, t, s + t ∈ (−r, r), then (aX(s)a−1, aX(t)a−1) ∈ Ω∗

and (aX(s)a−1)(aX(t)a−1) = aX(s + t)a−1. But we know that (X(s),X(t)) ∈ Ω,
so (aX(s)a−1, aX(t)a−1) ∈ Ω∗, because a ∈ µ. Furthermore, we can see that
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(aX(s)a−1)(aX(t)a−1) = aX(s + t)a−1 from the usual calculations involving in-
�nitesimals and nearstandard elements, since (X(s),X(t)) ∈ Ω and a ∈ µ. So
(−r, r) ⊆ domain(Ada(X)) and hence

domain(X) ∩ (−2, 2) ⊆ domain(X) ⊆ domain(Ada(X)).

Now suppose t ∈ domain(X) ∩ (−2, 2) and t′ ∈ µ(t). Then

Ada(X)(t′) = aX(t′)a−1 ∼ X(t′) ∼ X(t).

Therefore we have Ada(X) ∼ X and since X was arbitrary, by Remark 8.5,
Ad(a) ∼ idL(G). So Ad is continuous at 1.

To show that Ad is continuous at g ∈ U6, take g
′ ∈ µ(g). Then we already know

that Adg−1g′ ∼ idL(G), which implies, by the �rst part of the proof, that

Adg′ = Adg ◦Adg−1g′ ∼ Adg ◦ idL(G) = Adg.

So Ad is continuous everywhere. �

Next, we develop several ways of obtaining local Lie groups.

De�nition 8.7. A local group G is abelian if there is a neighbourhood U of 1 in
G such that U ⊆ U2 and ab = ba for all a, b ∈ U .

Theorem 8.8. Suppose G is abelian. Then G is locally isomorphic to a Lie group.

Proof. Since G is abelian, we can choose out special neighbourhood U to be such
that U ⊆ U6 and its elements commute with each other. We now want to show
that if an, bn, and (ab)n are de�ned with ai, bi ∈ U for all i ∈ {1, . . . , n}, then
(ab)n = anbn. We do this by induction, the case n = 1 being trivial.

Suppose an, bn and (ab)n are de�ned, ai, bi ∈ U for all i ∈ {1, . . . , n} and also
(ab)i = aibi for i ∈ {1, . . . , n− 1}. Then

(ab)n = (ab)n−1ab = (an−1bn−1)ab = an−1bn−1ab = anbn,

and we are done. By transfer, we have the nonstandard variant of our claim: if
aη, bη and (ab)η are de�ned with ai, bi ∈ U∗ for all i ∈ {1, . . . , η}, then (ab)η = aηbη.

Now we choose a symmetric open neighbourhood V of O in L(G) with V ⊆ K,
X + Y ∈ K for all X,Y ∈ V, and E(V) ⊆ U (the last part of the choice is possible,
since E is a homeomorphism). Then, if X,Y ∈ V ⊆ K and a := X( 1

σ ), b := Y( 1
σ ),

we have aσ, bσ, (ab)σ de�ned with ai, bi ∈ U∗ for all i ∈ {1, . . . , σ}. Hence we have
(X + Y)(1) = st((ab)σ)

= st(aσbσ)

= X(1)Y(1).

We know that E(V) is a symmetric open neighbourhood of 1 in G. Therefore, by
the above, the equivalence class of E|V is a local isomorphism from L(G) to G.
Since L(G) is a Lie group, we are done. �

For the next lemma we will need the following theorem of John von Neumann.

Theorem 8.9. (von Neumann, [7, p. 82]) If H is a hausdor� topological group
which admits an injective continuous homomorphism into GLn(R) for some n,
then H is a Lie group.
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Lemma 8.10. Suppose f : G→ GLn(R) is an injective morphism of local groups.
Then G is a local group.

Proof. Let G′ := f(G) ⊆ GLn(R). Let H be the subgroup of GLn(R) generated
by G′. Let F ′ be the �lter of neighbourhoods of 1 in G and F ′′ be the image of F ′
under f . Finally, let F be the �lter in H, generated by F ′′.

It is easy to verify that F becomes a neighbourhood �lter in any topology on H
that makes H a topological group. Thus, in any such topology, the inclusion map
H ↪→ GLn(R) is continuous. By von Neumann's theorem then, H is a Lie group.
However, f becomes a homeomorphism when f(G) is given the induced topology
from H. So G is homeomorphic to f(G) and thus G is a local Lie group. �

We �nally need the following theorem of Kuranishi [8].

Theorem 8.11. Let G be a locally compact local group and let H be a normal
sublocal group of G. Consider the local coset space (G/H)W as in Lemma 2.25.
Suppose

(1) H is an abelian local Lie group;
(2) (G/H)W is a local Lie group;
(3) there is a set M ⊆W containing 1 and W ′ ⊆W , an open neighbourhood of

1 in G, such that for every (zH)∩W ∈ π(W ′), there is exactly one a ∈M
such that a ∈ (zH) ∩W ; moreover, the map π(W ′) → M that assigns to
each element of π(W ′) the corresponding a in M is continuous.

Then WG is a local Lie group.

Proof of the LH5 for NSS local groups.

We are now ready to provide a proof of the LH5 for NSS local groups. We use
the following notation

• G′ := U6G, then the adjoint representation map is Ad : G′ → Aut(L(G));
• H := ker(Ad);
• G′′ := (G′/H)W is some local coset space.

We will prove that

(1) H is abelian with a restriction that is a local Lie group. After this point
we abuse notation slightly and write H for the Lie restriction, which is an
equivalent sublocal group of G′;

(2) G′′ is a local Lie group;
(3) there is a set M ⊆W satisfying condition (3) of Kuranishi's theorem.

These three results then, by Kuranishi's theorem, imply that WG is a Lie group,
which is exactly what LH5 requires.

(1) Since Ad : G′ → Aut(L(G)) is a morphism of local groups, then H is
a normal sublocal group of G′. Then H is a locally compact NSS local
group and, by Lemma 6.12, we know that H must have an open (in H)
neighbourhood V of 1 ruled by LPSs of H, which are also LPSs of G. To
show that H is abelian it is enough to prove that gh = hg for all g, h ∈ V .
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Let U be a special neighbourhood forH and g, h ∈ V . By our choice of V ,
we have h = X(1) for some X ∈ L(H) with I ⊆ domain(X) and X(I) ⊆ U .
Then it is clear that domain(gXg−1) ⊇ I. But since g ∈ H = ker(Ad), we
have

gXg−1 = Adg(X) = (Ad(g))(X) = (idL(H))(X) = X.
Therefore

ghg−1 = gX(1)g−1 = (gXg−1)(1) = X(1) = h,

and we are done.
Finally, by Theorem 8.8, we have that a restriction of H is a local Lie

group.
(2) For this part we simply note that the adjoint representation map induces

an injective morphism G′′ → Aut(L(G)). Then G′′ is a local Lie group by
Lemma 8.10.

(3) Since G′′ is a local Lie group, we can introduce canonical coordinates of
the second kind. More precisely, we can �nd an open neighbourhood U ′
of 1 in G′′ and a basis X′1, . . . ,X′r of L(G′′) such that the closure of U ′
is a special neighbourhood of G′′, and every element of U ′ is of the form
X′1(s1) · · ·X′r(sr) for a unique tuple (s1, . . . , sr) ∈ [−β′, β′]r. Now we choose
a special neighbourhood U of G′ such that π(U) ⊆ U ′. Let Z ⊆ U be an
open neighbourhood of 1 ruled by LPSs of G′. Fix a small s0 ∈ (0, β′) such
that X′1(s0), . . . ,X′r(s0) ∈ π(Z). Choose xi ∈ Z such that π(xi) = X′i(s0).
Let Xi ∈ L(G′) be such that Xi(s0) = xi.

Let β < s0 be so that Xi(s) ∈ U2r if |s| ≤ β and X1(s1) · · ·Xr(sr) ∈W
if |si| ≤ β for all i ∈ {1, . . . , r}. A uniqueness of root argument yields that
π(Xi(s)) = X′i(s) for |s| ≤ β. Set

M := {X1(s1) · · ·Xr(sr) | |si| ≤ β for all i = 1, . . . , r}
and let W ′ ⊆ W be an open neighbourhood of 1 in G contained in the
image of the map [−β, β]r → G de�ned by

(s1, . . . , sr) 7→ X1(s1) · · ·Xr(sr).
These choices for M and W ′ satisfy condition (3) of Kuranishi's theorem.

�
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9. Locally Euclidean local groups are NSS

In order to �nish the proof of the LH5 we need to show that all locally euclidean
local groups are NSS. We do this in two steps - from locally euclidean to NSCS,
and from NSCS to NSS. We start by borrowing a theorem from Montgomery and
Zippin [7, p. 105], the proof of which does not bene�t from our use of nonstandard
analysis.

Theorem 9.1. Every compact connected nontrivial hausdor� topological group has
a nontrivial 1-parameter subgroup (OPS).

Lemma 9.2. Let G be a topological group and X : R→ G an OPS of G.

(1) If H is a closed subgroup of G, then either X(R) ⊆ H or there is a neigh-
bourhood D of 0 in R such that X(D) ∩H = {1}.

(2) If X is nontrivial, then there is a neighbourhood D of 0 in R on which X
is injective.

Proof.

(1) Suppose there is no such neighbourhood D. Then we can �nd a sequence
(an) with limn→∞an = 0 and X(an) ∈ H for all n ∈ N. Then, since H is
a subgroup and X is an OPS, we have that if

A := {m.an ∈ R |m ∈ Z, n ∈ N},

then X(A) ⊆ H. But A is dense in R and X is continuous. Therefore
X(R) ⊆ H.

(2) If there is no such neighbourhood D, then the zeros of X get arbitrarily
close as one gets closer to X(0). Since X(R) is a subgroup in G, then X is
the trivial OPS. �

Lemma 9.3. Suppose V is a neighbourhood of 1 in G. Then V contains a compact
subgroup H of G and a neighbourhood W of 1 in G such that every subgroup of G
contained in W is contained in H.

Proof. Let W ⊆ µ be an in�nitesimal internal neighbourhood of 1 in G∗. We let

S := {a1 · · · aν |For all i ∈ {1, . . . , ν}, ai ∈ Ei
for some internal subgroup Ei of G

∗}.

By Lemma 5.1, all the products in the de�nition of S are de�ned. Also, by the same
lemma, S is an internal subgroup of G∗ with S ⊆ µ. So every internal subgroup of
G∗ contained in W is contained in S. Furthermore, if H is the internal closure of
S in G∗, then H is an internally compact internal subgroup of G∗ containing all of
the subgroups of W and H ⊆ V ∗. The desired result follows by transfer. �

De�nition 9.4. We call a topological space feebly �nite-dimensional if, for
some n, it does not contain a homeomorphic copy of [0, 1]n. Clearly locally euclidean
local groups are feebly �nite-dimensional.

Lemma 9.5. If G is feebly �nite-dimensional, then G is NSCS.

Proof. Suppose, for a contradiction, that G is feebly �nite-dimensional, but not
NSCS. We show that for every compact symmetric neighbourhood U of 1 in G
contained in U2 and for arbitrarily large n, there is a compact subgroup of G
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contained in U which contains a homeomorphic copy of [0, 1]n. Assume this holds
for a given n and U .

Now Lemma 9.3 implies that there is a compact symmetric neighbourhood V of
1 in G, containing 1, and a compact subgroup H ⊆ U that contains every subgroup
of G contained in V . Since G is not NSCS, then V contains a nontrivial connected
compact subgroup of G, and so we have a nontrivial OPS X of H. By shrinking
V if necessary, we can suppose X(R) 6⊆ V . By our assumption we have a compact
subgroup G(V ) ⊆ V of G and a homeomorphism Y : [0, 1]n → Y ([0, 1]n) ⊆ G(V ).
We can assume, because we can replace X with r · X for a suitable r ∈ R, that
X([0, 1]) ⊆ V , X is injective on [0, 1], and X([0, 1]) ∩ G(V ) = {1}. Since H is a
group, we can de�ne Z : [0, 1]× [0, 1]n → H by

Z : (s, t) 7→ X(s) · Y (t),

which is a continuous map, as the continuous product of two other continuous maps.
Suppose Z(s, t) = Z(s′, t′) with s ≥ s′. Then we have

X(s− s′) = Y (t′)Y (t)−1 ∈ X([0, 1]) ∩G(V ) = {1}.
Since X is injective on [0, 1], we have s = s′, and since Y is injective, we have

t = t′. It follows that Z is injective, and thus a homeomorphism onto its image. �

We now need to show that NSCS groups are NSS. We do this using two lemmas.

Lemma 9.6. Suppose H is a normal sublocal group of G which is totally dis-
connected, in the sense that there are no nontrivial connected subsets of H. Let
π : G→ G/H be the canonical projection. Then the map

L(π) : L(G)→ L(G/H) de�ned by L(π) : X 7→ π ◦ X,
is surjective.

Proof. We put G′ := (G/H)W , whereW is as in Lemma 2.25, and we let Y ∈ L(G′).
We want to �nd X ∈ L(G) such that π ◦ X = Y.

If Y is trivial, then we let X be trivial and we are done. So assume 1 ∈ domain(Y)
and Y(1) 6= 1G′ . Fix ν > N and let h := Y( 1

ν ) ∈ µ(1G′). We pick a compact
symmetric neighbourhood of 1′G with Y(1) /∈ V and then pick a compact symmetric
neighbourhood of 1G with U ⊆W and π(U) ⊆ V .

We know that π is an open map, so we have µ(1G′) ⊆ π(µ(1G)) and we can
choose a ∈ µ(1G) with π(a) = h. Now let σ := ordU (a).

If ν ≤ σ, then π(aν) ∈ π(U)∗ ⊆ V ∗, contradicting our choice, because we have
π(aν) = hν = 1G′ . Therefore ν > σ.

If i ∈ o(σ), then π(st(ai)) = st(hi) = 1G′ . Let GU (a) = {st(ai) | i ∈ o(σ)}. Now,
π(st(ai)) = 1G′ implies that st(ai) ∈ H, and so by Lemma 3.5 GU (a) is a connected
subgroup of G contained in H. Since H is totally disconnected, this implies that
GU (a) = {1G}, i.e. ai ∈ µ(1G) for all i ∈ o(σ), thus a ∈ G(σ). Moreover, a /∈ Go(σ),
because a /∈ Go(ordU (a)). So [Xa] 6= O.

Now suppose σ ∈ o(ν) and let t ∈ domain(π ◦ [Xa]). Then if i
ν ∼ t, then

π([Xa](t)) = π(st(ai)) = st(hi) = 1G′ ,

since i ∈ o(σ). Therefore [Xa] ∈ L(H). But H is totally disconnected, so L(H) is
trivial and hence [Xa] = O, a contradiction.

Thus we have σ = (r+ε)ν for some r ∈ R+ and ε ∈ µ(1) ⊆ R∗. Thus π◦[Xa] = rY
and X := 1

r [Xa] is the desired lift. �
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Lemma 9.7. Suppose G is a pure topological group such that there are no nontrivial
OPSs X : R→ G. Then G has a neighbourhood base at 1 of open subgroups of G.
In particular, G is totally disconnected.

Proof. We will show that for any neighbourhood V of 1 in G, there is a subgroup
H of G in V that is also an open neighbourhood of 1 in G. Thus, we can always
take a neighbourhood smaller than H and do the same, ultimately arriving at a
neighbourhood basis for 1 consisting of open subgroups of G.

Let V be a neighbourhood of 1 in G. By Lemma 9.3 we have a neighbourhood
W ⊆ V of 1 in G and a compact subgroup H ⊆ V of G containing all subgroups
contained in W .

By assumption, we have that all nondegenerate in�nitesimal elements of G∗ are
pure. But since G has no OPSs, then there are no pure elements. So all a ∈ µ
are degenerate. So all a ∈ µ (internally) generate internal subgroups of G∗ entirely
contained in µ. However, W is a neighbourhood, so µ ⊆ W ∗. This means that
µ ⊆ H∗. Moreover, since we can multiply any element of G∗ by an element of µ,
this means that µ(b) ⊆ H∗ for any h ∈ H. Thus H is an open neighbourhood of 1
in G. �

We are now ready to complete the proof of the LH5 with the last needed result.
Note that all locally euclidean local groups are clearly locally connected. Then the
following theorem completes the second step of this chapter.

Theorem 9.8. If G is locally connected and NSCS, then G is NSS.

Proof. We begin with several nested choices. Since G is NSCS we can choose a
compact symmetric neighbourhood V of 1 in G such that V contains no nontrivial
connected subgroups. By Lemma 9.3 we can choose an open neighbourhoodW ⊆ V
of 1 in G and a compact subgroup H1 ⊆ V such that every subgroup of G contained
in W is contained in H1. By shrinking the above sets we can always make it so
that W ⊆ U6.

Our previous proof shows that all degenerate a ∈ µ are such that a ∈ H∗1 . By
Corollary 3.10, we have that G is pure, and so if a ∈ µ is nondegenerate, then it
is pure. For such an a, if a ∈ H∗1 , then aν ∈ H∗1 ⊆ V ∗ for all ν, contradicting
our choice of a neighbourhood V with no connected subgroups. Therefore, for
nondegenerate a ∈ µ, a /∈ H1.

Since H1 ⊆ V , H1 admits no nontrivial OPSs, and hence by Lemma 9.7 H1

is totally disconnected. Choose an open (in H1) subgroup H of H1 contained in
H1 ∩ W . Write H = H1 ∩ W1 with W1 an open neighbourhood of 1 in G and
W1 ⊆W . Since H is an open neighbourhood of H1, it is also closed in H1 and thus
H is a compact subset of G. This implies that the set

U1 := {a ∈W1 | aHa−1 ⊆W1}
is open. Fix a ∈ U1. Since aHa

−1 is a subgroup of G contained in W1 ⊆ W , then
we have aHa−1 ⊆ H1. Thus aHa

−1 ⊆ H1 ∩W1 = H, implying that H, considered
as a sublocal group of G, is normal. Putting U = U1 ∩ U−1

1 we can take U as the
associated normalising neighbourhood for H.

Note that H ⊆ U6 and H6 ⊆ U . The facts that G is a regular topological space
and H is compact allow is to choose symmetric open neighbourhoods W2,W3 of 1
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in G such that H ⊆ W3 ⊆ W 3 ⊆ W2 ⊆ U6 with W 6
2 ⊆ U . Let G′ := (G/H)W2 . If

a ∈ µ is degenerate, then we have that a ∈ H∗1 ∩W ∗1 = H∗, so π(a) = 1G′ . If a ∈ µ
is nondegenerate, let τ := ordW 3

(a). Then aτ ∈ ((W )3)∗, but aτ+1 ∈ W ∗2 \(W 3)∗.

Choose an open neighbourhood U ′ of 1 in G such that U ′H ⊆ W3. Suppose
π(aτ+1) = π(x) for some x ∈ (U ′)∗. Then aτ+1 = xh for some h ∈ H∗, and thus
aτ+1 ∈ W ∗3 , a contradiction. So π(a)τ+1 /∈ π((U ′)∗). But also, for i ∈ o(τ), we
have π(a)i ∈ µ(1G′). Thus π(a) is pure in G′ and we have shown that G/H has no
degenerate in�nitesimals other than 1G′ . That is, we have shown that G′ is NSS.

Now, since G and G′ are pure, L(π) : L(G) → L(G′) is a continuous R-linear
map. Since H is totally disconnected, L(H) is trivial, and so X = O. Since L(G′)
is �nite-dimensional, we can conclude that the map L(π) is an isomorphism of real
topological vector spaces.

We now choose a special neighbourhood U ′ of G′ and let E′ : K′ → K ′ be the
bijective local exponential map for G′. Take a connected neighbourhood U ⊆W2 of
1 in G with π(U) ⊆ K ′. If x ∈ U , then there is a unique Y ∈ K′ with π(x) = E(Y).
Since L(π) is a bijection, there is a unique X ∈ L(G) with π ◦ X = Y. Thus we
can write x = X(1) · xH , where xH ∈ H. It is easy to see that the map assigning
a Y ∈ L(G′) to each x ∈ U is continuous. From this and the fact that L(π) is a
homeomorphism, we can see that the map

δ : U → H de�ned by δ : x 7→ xH

is continuous. Since U is connected, H is totally disconnected and δ(1) = 1, it
follows that δ(U) = 1. Now by the injectivity of L(π) and E′, we have that π|U is
injective, implying that G cannot hace any subgroups other than {1} contained in
U . We thus conclude that G is NSS. �
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