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Abstract. In this survey we present the machinery of nonstandard
analysis. We introduce the axiomatic approach and develop the classi-
cal construction of the nonstandard extension through ultrafilters. The
main content of the survey is the nonstandard characterisation of topo-
logical concepts, culminating with a treatment of compactifications.

1. A little history

Calculus, as originally conceived by Gottfried Wilhelm Leibniz, involved
infinitesimals. For reasons of mathematical rigour, however, this approach
to analysis has been substituted for one using limits that is due largely to
Cauchy and Weierstrass. Almost 300 years after the invention of calculus
a rigourous way to deal with infinitesimals emerges in Abraham Robinson’s
nonstandard analysis. Although it was initially developed through a model
theoretic approach in the early 60s [5], others, such as Wilhelmus Luxem-
burg [4], showed that the same results could be achieved using ultrafilters.
This made Robinson’s work more accessible to mathematicians who lacked
training in formal logic. (The ultrafilter construction that is presented here
in 2.2 is a particular case of this idea.)

One of the most popular among researchers applying the nonstandard
methods is the axiomatic approach. The three axioms – Extension, Trans-
fer, and Saturation – arise from the close historical connection to model
theory and mathematical logic. The ultrapower construction can be viewed
as either a proof of the consistency of the axioms or as an independent ap-
proach to building the theory. We will present the axioms with the basic
concepts in 2.1, then we give an overview of the construction of a nonstan-
dard extension of a mathematical universe V . We finish the section with
an extended look at a concrete construction of one of nonstandard analysis’
flagship systems – that of the hyperreals.

In 3 we consider a nonstandard extensions of topological spaces and the
properties of these spaces that translate neatly. We present the classic results
by Robinson [5] on openness, closedness, and compactness before reworking
the separation axioms for topological spaces into claims about nonstandard
extensions. The section and the survey are capped by a look at the nonstan-
dard treatment of compactifications of a space.
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2. Introduction to nonstandard analysis

We start with a mathematical universe V containing all relevant math-
ematical objects - N, R, various groups G, various topological spaces X,
cartesian products of the above, their powersets, etc.

We then want to extend to a nonstandard universe V ∗.

2.1. The axiomatic approach. To state the three axioms we need some
machinery. The first piece is a formal language in which to evaluate state-
ments. Taking a lengthy detour into formal logic is unnecessary – we are
only concerned with the following class of well-formed sentences:

Definition 2.1. (The Language L(V )) The formal statements we will be
concerned with are the bounded quantifier formulae of the first order
language L. These are the sentences of L with

• logical symbols among: =,∈,¬,∧,∨, ∀,∃,→,↔, (, ),
• countably many variables: x, y, x1, y1, . . .,
• countably many constants from V , and
• no free variables (i.e. unbounded quantifiers).

We denote a bounded quantifier formula Φ of L, containing the constants
A1, A2, . . . ∈ V , by Φ(A1, A2, . . .).

We can now state the first two axioms:

Axiom 1. (Extension) For any A ∈ V , we have its nonstandard extension
A∗ ⊇ A.

We thus have a mapping ∗ : V → V ∗ such that A∗ = ∗(A) ⊇ A, where we
identify a copy of V inside V ∗. There is a much more robust correspondence
between the universe and its nonstandard extension:

Axiom 2. (Transfer) A bounded quantifier formula Φ(A1, A2, . . .) is true in
L(V ) if and only if Φ(A∗1, A

∗
2, . . .) is true in L(V ∗), where Φ(A∗1, A

∗
2, . . .) is

obtained from Φ(A1, A2, . . .) by replacing every occurrence of Ai with A∗i , its
nonstandard counterpart.

For the last axiom we need to define some key properties of a set A ∈ V ∗:

Definition 2.2.
• The objects in the image of the ∗-mapping are called standard. In
other words, A ∈ V ∗ is standard if A = A∗ for some A ∈ V .
• If A ∈ V , then A∗ is called the nonstandard extension of A.
• If A ∈ V , then the set Aσ = {a∗ | a ∈ A} is called the standard
copy of A.
• An object in V ∗ is called internal if it is an element of a standard set
of V ∗; otherwise it is called external. We denote the set of internal
objects of V ∗ by V ∗int.

Now let κ be an infinite cardinal. The last axiom depends on a choice of
κ.
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Axiom 3. (Saturation) V ∗ is κ-saturated in the sense that⋂
γ∈Γ

Aγ 6= ∅

for any family of internal sets {Aγ}γ∈Γ in V ∗ with the finite intersection
property and index set Γ with card Γ ≤ κ.

The last axiom makes one fact clear – there are actually many nonstandard
extensions of a universe V , although they can be shown to be isomorphic
under some extra set-theoretical assumptions at least in the case when they
have the same degree of saturation κ. The choice of κ, however, is open
and depends on the standard theory and the specific goals. In particular,
if (X,T ) is a topological space, we apply a κ-saturated nonstandard model
to a universe V containing X and the reals R, and a degree of saturation
κ ≥ cardB, where B is a basis for T .

At this point the emergence of a nonstandard extension of any system
does not seem necessary – we have mentioned no concrete structure until
now, only what properties such a structure would have to satisfy. The next
subsection provides such a concrete structure.

2.2. The ultrafilter construction. The idea is the following. Given a set
X and a set I, we want to define a notion of ‘closeness’ on XI , and then
take the quotient over that relation. We will say that f ∈ XI agrees with
g ∈ XI on a set A ⊆ I if f(i) = g(i) for all i ∈ A. Two elements of XI

will be considered ‘close’ if they agree on a ‘big enough’ subset of I. Several
intuitive consequences of that idea become immediate:

(1) If a and b do not agree on any subset of I they shouldn’t be considered
‘close’.

(2) If a is ‘close’ to b, because they agree on a set ρ ⊆ I, then if c agrees
with b on a larger set ρ ⊆ τ ⊆ I, then c should also be considered
‘close’ to b.

(3) If a is ‘close’ to b and b is ‘close’ to c, then a should be ‘close’ to
c (after all we want ‘closeness’ to be an equivalence relation so we
would be able to quotient it out later). This means that if a and b
agree on ρ ⊆ I and b and c agree on τ ⊆ I, then it is sufficient that
a and c agree on ρ ∩ τ ⊆ I for them to be considered ‘close’.

(4) For every a and b in XI they should either be considered ‘close’ or
not.

We have a topological tool that gives us exactly that.

Definition 2.3. Given a set I, a filter on I is a set F ⊆ P(I) such that:
(1) ∅ /∈ F .
(2) A ∈ F , A ⊆ B =⇒ B ∈ F .
(3) A,B ∈ F =⇒ A ∩B ∈ F .
An ultrafilter is a filter that cannot be enlarged, i.e. a filter that satisfies

the further condition:
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(4) ∀A ⊆ P(I) either A ∈ F or I\A ∈ F .

Now we can make precise the ultrapower construction.

Definition 2.4. Given sets X and I and an ultrafilter F of I, the ultra-
power of X with respect to F is XF = XI/∼F , where for f, g ∈ XI

f ∼F g if and only if {i ∈ I|f(i) = g(i)} ∈ F .

We can now identify X as a subset of XF by identifying X with

{f ∈ XI |f(i) = f(j)∀i, j ∈ I},
where x ∈ X is identified with fx ∈ XI if fx(i) = x for all i ∈ I. And since
with this identification fx ∼F fy if and only if x = y, then we can consider
X ⊆ XF . Moreover, a function f : X → Y naturally extends to a function
f : XF → Y F by f([(i)]F ) := [f(i)]F . Therefore XF serves as a nonstandard
extension of X in the sense defined above.

The transfer principle in this setting is known as Łoś’s Theorem and
is due to Jerzy Łoś. It states that any first-order formula is true in the
ultraproduct if and only if the set of indices i, such that the formula is true
in the copy of X in the ultraproduct corresponding to the index i, is in F .
Its proof is a classic induction by complexity of formulae.

What the largest cardinal κ such that X∗ is κ-saturated depends both
on the cardinality of I and on the particular ultrafilter F we choose in the
ultrapower construction. However, since we can always choose a larger I
and a ‘finer’ ultrafilter, it is usually the case that we do not belabour the
point and we assume that our nonstandard extension is saturated for a large
enough cardinal κ as is required by our arguments.

Theorem 2.5. (Boolean properties) The extension mapping ∗ : V → V ∗ is
injective and its restriction on sets satisfies

(A ∪B)∗ = A∗ ∪B∗

(A ∩B)∗ = A∗ ∩ b∗

(A\B)∗ = A∗\B∗,
for any sets A,B ∈ V .

Proof. To show injectivity, note that if A∗ = B∗, then the first order formula
Φ(A∗, B∗) = [A∗ = B∗] is true, so by Transfer we have that the formula
Φ(A,B) = [A = B] is true. The Boolean properties follow directly from the
fact that they are all expressible as first order sentences in L(V ). �

2.3. The hyperreals R∗. We can now explicitly construct the hyperreals,
making precise the intuition that both Liebniz and Newton had about the
properties of infinitesimals. The key fact that allows infinitesimal quantities
in the hyperreal extension R∗ is the fact that R∗ is taken to be at least ℵ0-
saturated. Therefore, when we take the family of nested internal intervals
{(0, 1

n)∗ ∈ R∗|n ∈ N}: saturation tells us that (since clearly every finite inter-
section of these sets in nonempty) there is an element (which we sometimes
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will call ε) that is in the intersection of all of them, and is hence smaller than
any representative from R.

But we can construct this extension explicitly. There are many ways to
do this, of course. We show the (arguably) simplest one:

Take I = ω. We now want to pick an ultrafilter F on ω such that RF is
ℵ0-saturated.

Proposition 2.6. If there is a finite set {a1, a2, . . . , an} ∈ F , then F is a
principal ultrafilter, i.e. F = {S ⊆ ω|a ∈ S} for some a ∈ ω, abbreviated
F =↑ a.

Proof. We proceed by induction on n.
Base case. If {a1} ∈ F , then F is clearly principal.
Inductive hypothesis. If {a1, a2, . . . , an} ∈ F , then F is a principal ultra-

filter, for all n < k.
Inductive step. Suppose {a1, a2, . . . , ak} ∈ F . Consider {a1, a2, . . . , ak−1}.

Either {a1, a2, . . . , ak−1} ∈ F or {a1, a2, . . . , ak−1} /∈ F . The first case im-
plies that F is a principal ultrafilter by IH. The second case implies (by
property (4) of ultrafilters) that ω\{a1, . . . , ak−1} ∈ F . But then, by prop-
erty (3) of ultrafilters {ak} = (ω\{a1, . . . , ak−1}) ∩ ({a1, a2, . . . , ak}) ∈ F
and so F is a principal filter. �

We want to avoid F being a principal ultrafilter. This is because in the
case where F =↑ a for some a ∈ ω, when we construct the ultraproduct RF
as above the equivalence classes of the relation ∼F would correspond to the
values of f(a) in R, and so RF will be isomorphic to R. R, however, is as we
know not ℵ0-saturated, which is what we are aiming for.

So we want for all finite sets S, S not to be in F . This means (by property
(4) of ultrafilters) that our ultrafilter F has to be an extension of the Fréchet
filter

C := {A ⊆ ω | ω\A is finite},
the set of all cofinite sets in ω. We have to show that such an ultrafilter
exists. We do that by showing that C is a filter and that any filter can be
extended to an ultrafilter.

Proposition 2.7. C is a filter.

Proof. We check the three requirements in the filter definition:
(1) ∅ is a finite set, so ∅ /∈ C.
(2) Suppose A ∈ C. So A = ω\S for some finite S. If B ⊇ A, we have

B = (ω\S) ∪ T = ω\(S ∩ T ) for some T ⊆ ω. Since S is finite, then
S ∩ T is also finite, so B ∈ C.

(3) Suppose A = ω\S ∈ C and B = ω\T ∈ C. Then

A ∩B = (ω\S) ∩ (ω\T ) = ω\(S ∪ T ).

Since both S and T are finite, then S∪T is finite. So A∩B ∈ C. �
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Lemma 2.8. (The Ultrafilter Lemma) If K is a filter, then there exists
F ⊇ K – an ultrafilter.

Proof. Let K be a filter on a set I.
Let Ω = {W ⊆ P(I)|W is a filter on I}.
Now, considering the subset relation as an ordering, we can see that that

gives us Ω as a partially ordered set.
If N ⊆ Ω is a non-empty chain, then we check that

⋃
N is a filter as well

(and so is in Ω):
(1) ∅ /∈ W for all W ∈ N . So ∅ /∈

⋃
N .

(2) Suppose A ∈
⋃
N . Then A ∈ Wk for some Wk ∈ N . If B ⊇ A, then

B ∈ Wk (by Wk’s being a filter). So B ∈
⋃
N .

(3) Suppose A,B ∈
⋃
N . Then, by N ’s being a chain, A,B ∈ Wk for

some Wk ∈ N . Then A ∩B ∈ Wk ⊆
⋃
N .

So by Zorn’s Lemma, there is a maximal element in Ω for every W ∈ Ω.
So there is a maximal element F of Ωsuch that K ⊆ F . In this context this
means that F is an ultrafilter extending K. �

The previous two results show that there is an ultrafilter F that contains
all cofinite sets. We can now construct the ultraproduct RF . Choosing F to
be nonprincipal is enough to ensure that we have at least ℵ0-saturation. We
shall thus not endeavour to make the choice of ultrafilter any more precise,
for this would be enough for the present purposes. We denote the set RF by
R∗ from now on and we will be concerned with the properties shared by all
ultrapowers of R with respect to a nonprincipal ultrafilter.

We can give a concrete example of saturation. Take [f ] ∈ R∗ for f ∈ Rω
such that f(n) = 1

n . It is clear that −x < [f ] < x for all x ∈ R, because for
any such x we have x ≥ f(n) for only finitely many n ∈ ω. So we have an
infinitesimal element of R∗. Call this element ε.

Definition 2.9. We call numbers e in R∗, such that −x < e < x for all
x ∈ R, infinitesimal. We call numbers f in R∗ with infinitesimal multi-
plicative inverse infinite. We further call all non-infinite numbers finite.

Consider the ring R̃∗ of all finite numbers in R∗. It is clear that e.x
is infinitesimal for all e – infinitesimal and x – finite. Therefore the set
(ε) = {e -infinitesimal} is an ideal. Moreover, it is a maximal ideal. So we
can now take the quotient R̃∗/(ε). It is obvious that R̃∗/(ε) ∼= R.

Definition 2.10. We denote by st(.) : R̃∗ → R the standard part func-
tion – the composition of the natural map R̃∗ → R̃∗/(ε) with the isomor-
phism alluded to above R̃∗/(ε) → R. The st(.) map is thus an additive and
multiplicative homomorphism.

We can now do some simple analysis in R by simply doing algebra in R̃∗.

Example 2.11. (The derivative of x2.) We can calculate the derivative of
the function x 7→ x2 by considering the infinitesimal change of x2 when x
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changes infinitesimally and taking the standard part:

st

(
(x+ e)2 − x2

e

)
= st

(
x2 + 2xe+ e2 − x2

e

)
= st

(
2xe+ e2

e

)
= st(2x+ e) = 2x

Another useful idea is to identify Z∗ as a subset of R∗. We take the floor
function

(b·c) : R→ Z defined by (b·c) : x 7→ max{n ∈ Z | n ≤ x}
We know this map is onto Z. We can take its nonstandard extension in R∗
and identify im(b·c∗) = Z∗. This way we actually have some information as
to what kind of set Z∗ actually is.

Since R∗ inherits its order from R, then it is totally ordered. It is clear
that N = {n ∈ Z|n ≥ 0}. Therefore N∗ = {n ∈ Z∗|n ≥ 0}.

If we apply the transfer principle to the process of induction on N we get
the following analogue for N∗:

Theorem 2.12. (Internal Induction) For any internal subset A of N∗ if
(1) 1 is an element of A, and
(2) for every n ∈ A, n+ 1 ∈ A,

then A = N∗.

Theorem 2.13. (Overflow Principle) Assume A ⊆ N∗ is internal and that
N ⊆ A. Then there is a ν ∈ N∗\N such that ν ∈ A.

Proof. Assume for a contradiction that A = N ⊆ N∗ is internal. Then,
clearly, for all n ∈ A, n + 1 ∈ A. But by Theorem 2.12 this implies that
N = A = N∗. However, we are assuming sufficient saturation for this to not
be true (even ℵ0-saturation is enough here). �

3. Nonstandard analysis in topology

Let now (X,T ) be a topological space. To apply nonstandard methods,
we require the universe V to contain both the space X and the reals R, and
we take V ∗ – a κ-saturated nonstandard model with κ > cardT . In the
cases where we consider two topological spaces (X,T ), (X ′, T ′), we assume
X ∪X ′ ∪ R ⊆ V and

κ > max(cardT, cardT ′).
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3.1. Classical results.

Definition 3.1. (Monads) Let X∗ be the nonstandard extension of X. Then:
• For any α ∈ X∗ define the monad µ(α) of α by

µ(α) =
⋂
{G∗ | α ∈ G∗, G ∈ T}.

• For any A ⊆ X∗ define

µ(A) =
⋃
{G∗ | A ⊆ G,G ∈ T}.

The following properties of the monad follow directly from the definition.

Lemma 3.2. If A,B ⊆ X∗, α, β ∈ X∗, then:
(1) A ⊆ µ(A).
(2) A ⊆ B implies µ(A) ⊆ µ(B).
(3) µ(µ(A)) = µ(A).
(4) α ∈ A implies µ(α) ⊆ µ(A).
(5) α ∈ µ(β) if and only if µ(α) ⊆ µ(β).
(6) α ∈ µ(β) and β ∈ µ(α) if and only if µ(α) = µ(β).

Theorem 3.3. (Balloon and Nuclei Principles) Let x ∈ X and µ(x) be the
monad of x in (X,T ).

• Balloon Principle: If µ(x) ⊂ B for some internal set B ⊆ X∗, then
there exists G ∈ T such that µ(x) ⊂ G∗ ⊆ B (ballooning of µ(x) into
G∗).
• Nuclei Principle: There exists an internal set A ⊆ X∗ such that
x ∈ A ⊂ µ(x). The set A is called a nuclei of µ(x).

Proof. For the Balloon Principle, suppose towards a contradiction that we
have G∗\B 6= ∅ for all G ∈ T, x ∈ G. Observe that the family of sets
{G∗\B}G∈T,x∈G has the finite intersection property, since

(G∗1\B) ∩ (G∗2\B) = (G1 ∩G2)∗\B.

It follows from Saturation then that

µ(x)\B =
⋂

x∈G∈T
(G∗\B) 6= ∅,

which contradicts out assumption.
For the Nuclei Principle, define the family {SG}x∈G∈T . where

SG = {H ∈ T | x ∈ H ∈ G},

and observe that it has the finite intersection property since G ∈ SG, thus,
SG 6= ∅, and, on the other hand, SG1∩SG2 = SG1∩G2 . It follows by Saturation
that there exists A in the intersection⋂

x∈G∈T
S∗G.
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But note that
S∗G = {H ∈ T ∗ | x ∈ H ⊆ G∗}.

Thus A is internal (as an element of T ∗) and A ⊂ µ(x), as required. �

Theorem 3.4. (A. Robinson [5])
(1) Let x ∈ H ⊆ X. Then x is an interior point of H in (X,T ) if and

only if µ(x) ⊂ H∗. Consequently, H is open in (X,T ) if and only if
µ(x) ⊂ H∗ for all x ∈ H.

(2) A set F ⊆ X is closed in (X,T ) if and only if F ∗ ∩ µ(x) 6= ∅ implies
x ∈ F for any x ∈ X.

(3) Let A ⊆ X and clX(A) be the closure of A in (X,T ). Then

clX(A) = {x ∈ X | A∗ ∩ µ(x) 6= ∅.

Proof.
(1) (⇒): If x is an interior point of H, then µ(x) ⊂ H∗ by the definition

of the monad.
(⇐): Suppose that x is not an interior point of H, i.e. that G\H 6= ∅

for all G such that x ∈ G ∈ T . Observe that the family of sets
{G\H}x∈G∈T has the finite intersection property. Therefore the
family of internal (even standard) sets {G∗\H∗}x∈G∈T has the
finite intersection property, since (G\H)∗ = G∗\H∗. If follows
that the intersection µ(x)\H∗ is non-empty by Saturation ◦× .

(2) Suppose that x ∈ X\F . We have µ(x) ∈ X∗\F ∗, by the above part,
since X\F is open by assumption, and X∗\F ∗ = (X\F )∗. Therefore
µ(x) ∩ F ∗ = ∅ ◦× .

(3) (⊆): Let x ∈ clX(A), i.e. x ∈ F for all F such that A ⊂ F ⊆ X,
X\F ∈ T . Suppose that A∗ ∩ µ(x) = ∅. Then, by the Balloon
Principle (applied for B = X∗\A∗), there exists G ∈ T, x ∈ G,
such that A∗ ∩ G∗ = ∅. Thus we have A∗ ⊆ (X\G)∗, implying
A ⊆ X\G, by the Boolean Properties. Hence it follows that
x ∈ X\G, by our assumption (since X\G is a closed set) ◦× .

(⊇): Let x ∈ X and A∗ ∩ µ(x) 6= ∅. We have to show that x ∈ F
for all F such that A ⊂ F ⊆ X and X\F ∈ T . Suppose that
x 6∈ F for some F as above. Then x ∈ X\F . On the other
hand, A ⊂ F implies A∗ ⊂ F ∗, by the Boolean Properties.
Hence, A∗∩(X∗\F ∗) = ∅, which implies A∗∩µ(x) 6= ∅ (because
A∗ ∩ µ(x) ⊆ A∗ ∩ (X∗\F ∗)) ◦× .

�

Definition 3.5. (Nearstandard Points and Standard Part) Let µ(x) be the
monad of x ∈ (X,T ).

(1) If A ⊆ X, then the points in the union

Ã =
⋃
x∈A

µ(x)
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are called the nearstandard points of A∗. In particular, the points
in X̃ are called the nearstandard points of X∗.

(2) Assume, in addition, that (X,T ) is a regular Hausdorff space. Then
the mapping stX : X̃ → X, defined by stX(χ) = x, χ ∈ µ(x), is called
the standard part mapping.

Lemma 3.6.
(1) Let A,B ⊆ X∗. Then µ(A)∩µ(B) = ∅ if and only if there exist open

disjoint sets G and H such that A ⊆ G∗ and B ⊆ H∗.
(2) Let α, β ⊆ X∗. Then µ(α) ∩ µ(β) = ∅ if and only if there exist open

disjoint sets G and H such that α ∈ G∗ and β ∈ H∗.

Proof. It is enough to prove the first part, since setting A = {α}, B = {β}
implies the second part.

Let µ(A) ∩ µ(B) = ∅ and suppose that G ∩H 6= ∅ for all open G and H
such that A ⊆ G∗ and B ⊆ H∗. By Saturation

µ(A) ∩ µ(B) =
⋂
{(G ∩H)∗ | G,H ∈ T,A ⊆ G∗, B ⊆ H∗} 6= ∅.

◦× . The converse is immediate. �

Theorem 3.7. (Characterisation) Let A ⊆ X. Then the following condi-
tions are equivalent:

(1) A is compact in (X,T ).
(2) A∗ ⊆

⋃
x∈A µ(x).

(3)
⋃
x∈A µ(x) =

⋃
α∈A∗ µ(α).

(4)
⋃
x∈A µ(x) = µ(A).

3.2. Separation properties. We can translate the separation properties
of topological spaces into the language of NSA. For clarity we state their
definitions as well:

Let (X,T ) be a topological space. Then:
(1) A space (X,T ) is T0 if x 6= y ⇒ there is U ∈ T with either x ∈ U, y 6∈

U or y ∈ U, x 6∈ U .
(2) A space (X,T ) is T1 if {x} is closed for all x ∈ X.
(3) A space (X,T ) is T2 (or Hausdorff) if x 6= y ⇒ there are Ux, Uy ∈ T

with x ∈ Ux, x 6∈ Uy and y ∈ Uy, y 6∈ Ux.
(4) A space (X,T ) is regular if for any closed F ⊆ X and x ∈ X such

that x 6∈ F , there are Ux, UF ∈ T with x ∈ Ux, x 6∈ UF and F ⊆
UF , F ∩ Ux = ∅.

(5) A space (X,T ) is normal if for any two disjoint closed E,F ⊆ X there
are UE , UF ∈ T with E ⊆ UE , E ∩UF = ∅ and F ⊆ UF , F ∩UE = ∅.

Theorem 3.8. The topological space (X,T ) is:
(1) T0 if and only if x = y ⇔ µ(x) = µ(y) for all x, y ∈ X.
(2) T1 if and only if x = y ⇔ either µ(x) ⊆ µ(y) or µ(y) ⊆ µ(x) for all

x, y ∈ X.
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(3) T2 or Hausdorff if and only if x 6= y ⇒ µ(x) ∩ µ(y) = ∅ for all
x, y ∈ X.

(4) regular if and only if α 6∈ µ(x) ⇒ µ(α) ∩ µ(x) = ∅ for any α ∈ X∗
and x ∈ X.

(5) normal if and only if E ∩ F = ∅ ⇒ µ(E) ∩ µ(F ) = ∅ for any two
closed sets E,F ⊆ X.

Proof.
(1) (⇒): x = y ⇒ µ(x) = µ(y) is clear. Suppose x 6= y and U ∈ T with

x ∈ U, y 6∈ U . Then y ∈
⋂
U∈T,x∈U U , so µ(y) 6= µ(x).

(⇐): Suppose x 6= y and α ∈ µ(x)\µ(y). So ∃U ∈ T with x ∈ U and
α 6∈ U∗. But then x 6∈ U , since otherwise α ∈ µ(y) ⊆ U∗.

(2) (⇒): x = y ⇒ µ(x) ⊆ µ(y) or µ(y) ⊆ µ(x) – clear.
Suppose T1 and µ(x) ⊆ µ(y). If x 6= y, then G = X\{x} is open
and x 6∈ G, y ∈ G. This means x 6∈ µ(y). ◦×

(⇐): Suppose not T1 – ∃x 6= y with y ∈ cl{x}. But then x ∈ µ(y),
so µ(x) ⊆ µ(y) and so x = y. ◦×

(3) (⇒): Suppose T2 and x 6= y. Then clearly µ(x) ∩ µ(y) = ∅.
(⇐): Suppose x 6= y. Then µ(x) ∩ µ(y) = ∅. Then

x 6∈
⋂

G∈T,y∈G
G∗, so x 6∈ G1 3 y,G ∈ T

y 6∈
⋂

G∈T,y∈G
G∗, so y 6∈ G1 3 x,G ∈ T.

(4) (⇒): Suppose regular, α ∈ X∗, x ∈ X with α 6∈ µ(x). Then ∃G ∈ T
with x ∈ G, α 6∈ G∗. By regularity, ∃U ∈ T with x ∈ U and
clX U ⊆ G. So µ(x) ⊆ U∗ and µ(α) ⊆ (X − clX U)∗ since

α ∈ X∗\G∗ = (X\G)∗ ⊆ (X − clX U)∗.

So µ(α) ∩ µ(x) = ∅.
(⇐): Suppose (X,T ) is not regular. We find α ∈ X∗, x ∈ X with

α 6∈ µ(x) but µ(α) ∩ µ(x) 6= ∅.
By non-regularity, there are x ∈ X and G ∈ T with x ∈ G and
clX H ∩Gc 6= ∅ for all H ∈ T with x ∈ H. But then let

α ∈
⋂
{(clX H)∗ | H ∈ T, x ∈ H}\G∗.

Since α ∈ (clX H)∗ = clX∗ H∗, then ∀O,H ∈ T with α ∈ O∗
and x ∈ H, we have O∗ ∩H∗ 6= ∅. Also α 6∈ µ(x), since α 6∈ G∗.
But then

µ(α) ∩ µ(x) =
⋂
{O∗ ∩H∗ | O,H ∈ T, α ∈ O∗, x ∈ H} 6= ∅.

(5) (⇒): If (X,T ) is normal, then the statement is clear.
(⇐): Suppose (X,T ) is not normal, Then ∃E,F – closed, such that

∀U1, U2 ∈ T with E ⊆ U1, F ⊆ U2, we have U1 ∩ U2 6= ∅. So

µ(E) ∩ µ(F ) =
⋂
{U∗1 ∩ U∗2 | U1, U2 ∈ T,E ⊆ U1, F ⊆ U2} 6= ∅.
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3.3. Compactifications – a taster. Let (X,T ) be a topological space.
Then the collection of sets T σ := {G∗ | G ∈ T} forms a base for a topology
on X∗. We denote this topology by T s and the corresponding topological
space by (X∗, T s). We call T s the standard topology on X∗ and the space
(X∗, T s) – the nonstandard compactification of (X,T ).

Theorem 3.9. Let (X,T ) be a topological space and (X∗, T s) its nonstan-
dard compactification (as defined above). Then:

(1) Every internal subset A of X∗ is compact in (X∗, T s).
(2) (X∗, T s) is a compact topological space and (X,T ) is a dense subspace

of it.

We have a number of satisfying results connecting properties of the non-
standard compactification of a space and the space itself:

(1) (X∗, T s) is normal iff (X,T ) is normal.
(2) (X∗, T s) is regular iff every open set in (X,T ) is closed.
(3) The previous statement implies that if D is the discrete topology on

N, then (N∗, Ds) is not a T0 space.
(4) Therefore, (X∗, T s) is a T0 space iff X is finite.
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