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Abstract. In this survey we demonstrate the construction of a hy-
perbolic structure on several knot/link complements. We mainly fol-
low a manuscript edition of William P. Thurston’s famous unpublished
textbook on the geometry and topology of three-manifolds. For each
knot/link complement, a cell-complex is found, giving the space as ideal
polyhedra with face identifications.

1. A little history

A graduate student at the University of Southampton in England, Robert
Riley in 1974 showed that the complement of the figure-eight knot has a
hyperbolic structure [3]. He did this “indirectly” – he proved that the funda-
mental group of the figure-eight knot complement is isomorphic to a subgroup
of PSL2C (the projective special linear group) and then used the theory of
Haken manifolds to show that the figure-eight knot complement is homeo-
morphic to H3, the hyperbolic 3-space, mod a discrete group of isometries
[5]. Riley later showed that several other knot complements admit a hyper-
bolic structure and conjectured that indeed all knot complements apart from
torus knots and satellite knots admit a hyperbolic structure.

Meeting with Riley in Princeton in 1976, William P. Thurston became
interested in the subject of knot complements and hyperbolic geometry. In
Thurston’s grand scheme, it is the topology of a manifold that limits and
frequently determines its possible geometries. He came up with an explicit
way of constructing hyperbolic structures on knot complements; his ideas
lead the discussion in the rest of this survey.

Relying in part on his experience with knot complements, in 1978 Thurston
completed his “hyperbolisation theorem” for Haken manifolds, for which he
won the Fields medal in 1982. The full geometrisation conjecture was fa-
mously proved by Grigori Perelman in 2003 using Ricci flow with surgery;
Perelman subsequently declined both a Fields Medal and the Millennium
Prize for his contribution.

In what follows, we construct a cell complex M such that for a particular
point v ∈ M , 1) M\{v} is homeomorphic to S3\E (where E is the figure-
eight knot) and 2) M\{v} is a hyperbolic manifold, i.e. every point has
a hyperbolic neighbourhood. Throughout the survey, the images used are
either taken from George K. Francis’ stunning book [1], or drawn by me.
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2. Preliminaries

2.1. Hyperbolic Geometry. Proving the parallel postulate – that through
every given point exists a unique line parallel to a given line – from the
other axioms of Euclid was a millennia-long endeavour that ended with the
discovery of non-Euclidean geometry and sparked interest in independency
proofs throughout mathematics. The two possible alternatives to the parallel
postulate give rise to the two non-Euclidean geometries – elliptic geometry,
where there is no line passing through the point and parallel to a given line;
and hyperbolic geometry, where there are many such lines. The underlying
spaces for these geometries are naturally Riemannian manifolds of constant
sectional curvature +1 for elliptic, 0 for Euclidean, and −1 for hyperbolic
geometry.

Certain surfaces of revolution in R3 have constant curvature −1 and so
give an idea of the local picture of the hyperbolic plane. The simplest of
these is the pseudosphere (Figure 1), the surface of revolution generated by
a tractrix. A tractrix is the track of a point, which starts at (0, 1) and is
dragged by a point walking along the x-axis from (0, 0) via a chain of unit
length. The pseudosphere is not complete, howerer – it has an edge, beyond
which it cannot be extended. Hilbert proved the remarkable theorem that
no complete surface with curvature −1 can exist in R3.

Figure 1. The pseudosphere

There are several useful models of hyperbolic geometry:

Definition 2.1. The Poincaré disk model (Figure 2) takes the interior of the
n-disk Dn as a map of hyperbolic space. A hyperbolic line is any Euclidean
circle (or line) orthogonal to ∂Dn; a hyperbolic plane is a Euclidean sphere
or plane orthogonal to ∂Dn; etc. Hyperbolic arc length

√
ds2 is given by

ds2 =

(
1

1− r2

)2

dx2,
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where
√
dx2 is Euclidean arc length and r is distance from the origin. The

boundary Sn−1∞ of the disk is called the sphere at infinity.

Figure 2. “Angels and Devils” – one of M.C. Escher’s fa-
mous drawings using the Poincaré disk model

Definition 2.2. The Poincaré half-space model (Figure 3) takes the upper
half Euclidean space {(x1, . . . , xn) ∈ Rn | xn > 0} as a map of hyperbolic
space. Here a line is any vertical line (line in the xn direction) or arc of
circle that intersects the plane xn = 0 at right angles. The hyperbolic metric
is

ds2 =

(
1

xn

)2

dx2.

Figure 3. The half-space model for n = 3
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A well-known fact about the above two models is that they are conformal
– they preserve angles. That means that the angles we measure in the Eu-
clidean space representation are the same as the actual angles in hyperbolic
space.

As both the above are maps of hyperbolic space, we can formally require
a hyperbolic manifold to have Riemannian neighbourhoods isometric to one
of the above models.

Definition 2.3. Hyperbolic n-manifolds are the Riemannian manifolds with
isometric charts to either the Poincaré n-disk or the Poincare n-half-space.

2.2. Knot Theory.

Definition 2.4. A knot is an embedding of S1 into S3. Two knots are
considered the same if one can distort one knot into the other. More precisely,
if K and L are two knots with embedding maps f and g, respectively, then
K ∼ L if and only if there is a continuous map

F : S3 × [0, 1]→ S3

such that F0 is the identity map, Ft is a homeomorphism for each t, and
F1 ◦ f = g.

Definition 2.5. A torus knot (Figure 4) is a knot that can be represented
as a closed simple curve on the surface of a 2-torus.

Figure 4. The (3, 8) torus knot

Definition 2.6. A satellite knot (Figure 5) is a knot that contains an in-
compressible, non boundary-parallel torus in its complement.

Equivalently, K is a satellite knot if there is a nontrivial knot K ′ lying
inside the solid torus V (nontrivial here is in the sense that K ′ is not allowed
to sit inside of a 3-ball in V and is not allowed to be isotopic to the core curve
of V ) and a nontrivial embedding f : V → S3 such that f(V ) = K.
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Figure 5. A satellite knot on the right with its companion
knot (the embedding f) on the left

Definition 2.7. A hyperbolic knot is a knot that has a complement that
admits a hyperbolic structure.

Following from the hyperbolisation theorem of Thurston’s mentioned in
Chapter 1, we have the confirmation of Riley’s conjecture that almost all
knots are hyperbolic:

Theorem (Classification of Knots). All knots are either torus knots, satellite
knots, or hyperbolic knots, and these categories are disjoint.

3. From Gluing Polyhedra to Hyperbolic Structures

For the remainder of the survey, unless otherwise noted, we will identify
Hn with the Poincaré n-disk Dn. Note then that the natural Rn inclusions
D1 ⊆ D2 ⊆ · · · ⊆ Dn induce the inclusions H1 ⊆ H2 ⊆ · · · ⊆ Hn in Hn.

Definition 3.1. We build ideal polyhedra in Hn using some basic geometry
in hyperbolic space.

(1) A k-dimensional hyperplane in Hn is the image of Dk ⊆ Dn after an
isometry Dn → Dn.

(2) A half-space is the closure in Dn of one component of the complement
of an (n− 1)-dimensional hyperplane.

(3) A polyhedron in Hn is a compact subset of Hn that is the intersection
of finitely many half-spaces. The dimension of a polyhedron is the
smallest dimension of a hyperplane containing it. We will call a
polyhedron standard, if its dimension is n in Hn.

(4) A face of a standard polyhedron P is the intersection P ∩ π, where
π is an (n− 1)-dimensional hyperplane, such that P is disjoint from
one component of Hn\π and P ∩ π 6= ∅.

(5) A facet of a standard polyhedron P is a face of dimension n−1. The
vertices are the faces of dimension zero.

(6) An ideal polyhedron is the intersection of finitely many half-spaces
in Hn whose closure in Hn ∩Sn−1∞ intersects Sn−1∞ in a finite number
of points, and which has no vertices in Hn.
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Now suppose M is obtained by identifying the facets of hyperbolic poly-
hedra P1, . . . , Pm. Let P =

⊔
Pi and q : P →M be the quotient map. Note

that q|P\∂P is a homeomorphism, so P\∂P inherits a hyperbolic structure.
We want M to be a hyperbolic manifold.

Theorem 3.2. [[4]] Suppose that for each x ∈ M there is a neighbourhood
Ux of x such that

(1) there exists an open mapping ϕx : Ux → Bεx(0) ⊆ Dn for some εx;
(2) ϕx is a homeomorphism onto its image;
(3) ϕx(x) = 0; and
(4) ϕx restricts to an isometry on each component of Ux ∩ q(P\∂P ).

Then M inherits a hyperbolic structure.

Proof. We can choose the neighbourhoods Ux so that the closure of each
component of Ux ∩ q(P\∂P ) contains x. Then ϕx will be the charts for M .
We have to check that if X is a component of Ux ∩ Uy, then the transition
map

ϕyϕ
−1
x : ϕx(X)→ ϕy(X)

is the restriction of a hyperbolic isometry. By assumption this is true for
each component of ϕx(X ∩ q(P\∂P )). But if x is in the image of an interior
of a polyhedron, then ϕx(X ∩ q(P\∂P )) is the whole ϕx(X). So what is left
is to show that these isometries agree over all of ϕx(X) when x and y are on
the image of faces of the polyhedra.

Since any two points of ϕx(X ∩ q(P\∂P )) are joined by a path in ϕx(X)
which avoids the image of the polyhedron faces of dimension less than n−1,
it is enough to show that ϕyϕ−1x is an isometry of all points z that lie in
ϕx(X ∩ q(∂P )) but not in a face of dimension less than n− 1.

Suppose z ∈ ϕx(X ∩ q(∂P )) and z1, z2 ∈ q−1ϕ−1x (z). Let x1, x2 be the
unique points of q−1(x) lying in the same component of q−1(Ux) as z1, z2,
respectively. Let y1, y2 be the unique points of q−1(y) lying in the same
component of q−1(Uy) as z1, z2, respectively. Let F1, F2 be the facets con-
taining z1, z2, respectively, and let k : F1 → F2 be the identification isometry
between them. Note that x1, y1 and x2, y2 lie on (possibly the boundary of)
F1 and F2, respectively.

The chart ϕx determines for each xi ∈ q−1(x) an isometry

hxi : Bεx(xi)[⊆ Pi]→ Bεx(0)[⊆ Dn],

such that hxi |P\∂P = ϕx ◦ q.
Now, since Fi are facets, we have two ways of extending k to an isometry

of Hn. Choose the one that makes the following diagram commute:
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Hn Hn

Dn

k

hx1 hx2

Hence, running down the left-hand side of the following diagram is the
same as running down the right-hand side (where the maps are defined):

Dn

Hn Hn

Dn

k

hy1 hy2

h−1x1 h−1x2

This ensures that ϕyϕ−1x is a well-defined isometry in a neighbourhood of
z.

Finally, we check the requirements for M to be a topological manifold.
We can refine {Ux | x ∈M} to a countable cover, so M is second countable.
Hausdorffness is clear from the construction. �

We can now build hyperbolic structures of spaces by just finding ideal poly-
hedra decompositions, where each point has a full hyperbolic neighbourhood.
We do this for the figure-eight knot and Whitehead link in turn.

4. The Complement of the Figure-eight Knot

We begin by constructing a cell complex K, homeomorphic to the com-
plement of E – the figure-eight knot – in S3. Take K1 as the following
1-complex (embedded in S3)
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Now attach four 2-cells – cell N along (3 · 1−1 · 6 · 2−1 · 2), cell W along
(3·1−1 ·1·5−1 ·2), cell E along (6·2−1 ·5·1·1−1), and cell S along (1·4·2·2−1 ·5)
– to get K2.

Now, embedding K2 in S3 separates the space. This can be seen on the
above images – only one side of each 2-cell is reachable from the viewing
point without crossing any cell. Thus S3\K2 is a union of two disjoint 3-
balls. One 3-cell will be attached to the ‘front’ faces of the four 2-cells (the
faces with the letters visible on the picture), one 3-cell will be attached to
the ‘back’ faces of the 2-cells (represented by the primed letters). Below are
the attaching maps with the corresponding 2- and 1-cells.
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Now note that with the above attachments, each 3-cell can be realised
as a tetrahedron with faces N,W,E, S and N ′,W ′, E′, S′, respectively. The
identification arising from the attaching maps identifies the faces of the two
tetrahedra in the natural way (N is identified with N ′, etc.), reversing orien-
tation. Thus, S3\{∞} is realised as two tetrahedra with face identifications.

Deleting the figure-eight knot from this space is just removing the 3, 4, 5
and 6 1-cells. This does not conflate any edge of the two tetrahedra – notice
that on the identifications above, every edge of the tetrahedra contains ex-
actly one of the 1 and 2 1-cells. If we denote 1 by a white arrow and 2 by a
black arrow, we get the following resulting structure.

Thus deleting the knot from S3\{∞} we end up with the two tetrahedra
with identifications and deleted vertices. We can identify the two tetrahedra
with two ideal tetrahedra in H3 via homeomorphisms. Now, to use Theorem
3.2 to get a hyperbolic manifold, we need each point to have a hyperbolic
neighbourhood when the facets of the tetrahedra are identified. This is clear
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for the interiors and the facets. We only need to show that points on the
1-dimensional faces of the tetrahedra have hyperbolic neighbourhoods.

Proposition 4.1 ([2]). The sum of the dihedral angles between any three
facets of an ideal tetrahedron in H3 is π.

Proof. Working in the Poincaré half-space model, there is an isometry taking
any ideal tetrahedron to the tetrahedron having three facets as Euclidean
planes. But since the half-space model is conformal, it is clear that the sum
of the dihedral angles in π. �

Definition 4.2. An ideal n-simplex is the ideal polyhedron determined by
n+ 1 points on Sn−1∞ . An ideal n-simplex is regular if, for any permutation
of its vertices, there is a hyperbolic isometry which realises this permutation.

Choosing the tetrahedra regular, the above proposition says that all di-
hedral angles are π/3. Finally, the ‘black arrow’ edge occurs a total of 6
times in the disjoint tetrahedra – summing the dihedral angles gives the
needed 2π. Similarly for the ‘white arrow’ edge. Therefore all points in our
construction have hyperbolic neighbourhoods and hence the two tetrahedra
with identifications as above realise S3\E as a hyperbolic manifold.

5. The Complement of the Whitehead link

As before, we aim to construct a cell complex K, homeomorphic to the
complement of W – the Whitehead link – in S3. Take K1 as the following
1-complex:

We attach four 2-cells as shown:
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Embedding K2 in S3 does not separate the space, so we only need one
3-cell. Deleting the 1-cells corresponding to the strands of the link, we have
the following attachment map for the 3-cell, giving an octahedron with face
identifications:

Deleting the vertices, we can identify the octahedron with a regular ideal
octahedron in H3. Analogously to the case of the tetrahedron, the dihedral
angles between the facets of the octahedron are all π/2. Each of the coloured
arrows occurs four times in the octahedron, hence all points on the edges of
the figure have hyperbolic neighbourhoods. By Theorem 3.2, this gives a
hyperbolic structure for S3\W .
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