
ar
X

iv
:1

50
2.

07
98

9v
1 

 [
st

at
.C

O
] 

 2
7 

Fe
b 

20
15

A Survey of Statistical Methods and Computing for

Big Data

Chun Wang, Ming-Hui Chen, Elizabeth Schifano, Jing Wu, and Jun Yan

March 2, 2015

Abstract

Big data are data on a massive scale in terms of volume, intensity, and complexity

that exceed the capacity of standard software tools. They present opportunities as

well as challenges to statisticians. The role of computational statisticians in scientific

discovery from big data analyses has been under-recognized even by peer statisticians.

This article reviews recent methodological and software developments in statistics

that address the big data challenges. Methodologies are grouped into three classes:

subsampling-based, divide and conquer, and sequential updating for stream data.

Software review focuses on the open source R and R packages, covering recent tools

that help break the barriers of computer memory and computing power. Some of the

tools are illustrated in a case study with a logistic regression for the chance of airline

delay.

Keywords: bootstrap, divide and conquer, external memory algorithm, high performance
computing, online update, sampling, software

1

http://arxiv.org/abs/1502.07989v1


1 Introduction

A 2011 McKinsey report predicted shortage of talent necessary for organizations to take

advantage of big data (Manyika et al., 2011). Data now stream from daily life thanks to

technological advances, and big data has indeed become a big deal (e.g., Shaw, 2014). In

the President’s Corner of the June 2013 issue of AMStat News, the three presidents (elect,

current, and past) of the American Statistical Association (ASA) wrote an article titled

“The ASA and Big Data” (Schenker et al., 2013). This article echos the June 2012 col-

umn of Rodriguez (2012) on the recent media focus on big data, and discusses on what

the statistics profession needs to do in response to the fact that statistics and statisti-

cians are missing from big data discussions. In the followup July 2013 column, president

Marie Davidian further raised the issues of statistics not being recognized as data science

and mainstream academic statisticians being left behind by the rise of big data (Davidian,

2013). A white paper prepared by a working group of the ASA called for more ambitious

efforts from statisticians to work together with researchers in other fields on national re-

search priorities in order to achieve better science more quickly (Rudin et al., 2014). The

same concern was expressed in a 2014 president’s address of the Institute of Mathemat-

ical Statistics (IMS) (Yu, 2014). President Bin Yu of the IMS called for statisticians to

own Data Science by working on real problems such as those from genomics, neuroscience,

astronomy, nanoscience, computational social science, personalized medicine/healthcare,

finance, and government; relevant methodology/theory will follow naturally.

Big data in the media or the business world may mean differently than what are familiar

to academic statisticians (Jordan & Lin, 2014). Big data are data on a massive scale in

terms of volume, intensity, and complexity that exceed the ability of standard software

tools to manage and analyze (e.g., Snijders et al., 2012). The origin of the term “big data”

as it is understood today has been traced back in a recent study (Diebold, 2012) to lunch-

table conversations at Silicon Graphics in the mid-1990s, in which John Mashey figured

prominently (Mashey, 1998). Big data are generated by countless online interactions among

people, transactions between people and systems, and sensor-enabled machinery. Internet

search engines (e.g., Google and YouTube) and social network tools (e.g., Facebook and

Twitter) generate billions of activity data per day. Rather than Gigabytes and Terabytes,

2



nowadays, the data produced are estimated by zettabytes, and are growing 40% every day

(Fan & Bifet, 2013). In the big data analytics world, a 3V definition by Laney (2001)

is widely accepted: volume (amount of data), velocity (speed of data in and out), and

variety (range of data types and sources). High variety brings nontraditional or even

unstructured data types, such as social network sentiments and internet map usage, which

calls for new, creative ways to understand the structure of data and even to ask intelligent

research questions (e.g., Jordan & Lin, 2014). High volume and high velocity may bring

noise accumulation, spurious correlation and incidental homogeneity, creating issues in

computational feasibility and algorithmic stability (Fan et al., 2013).

Notwithstanding that new statistical thinking and methods are needed for the high

variety aspect of big data, our focus is on fitting standard statistical models to big data

whose size exceeds the capacity of a single computer from its high volume and high ve-

locity. There are two computational barriers for big data analysis: 1) the data can be

too big to hold in a computer’s memory; and 2) the computing task can take too long

to wait for the results. These barriers can be approached either with newly developed

statistical methodologies and/or computational methodologies. Despite the impression

that statisticians are left behind in media discussions or governmental summits on big

data, some statisticians have made important contributions and are pushing the frontier.

Sound statistical procedures that are scalable computationally to massive datasets have

been proposed (Jordan, 2013). Examples are subsampling-based approaches (Kleiner et al.,

2014; Liang et al., 2013; Ma et al., 2013), divide and conquer approaches (Lin & Xi, 2011;

Chen & Xie, 2014), and sequential updating approaches (Schifano et al., 2014). From a

computational perspective, much effort has been put into the most active, open source sta-

tistical environment, R (R Core Team, 2014a). Statistician R developers are relentless in

their drive to extend the reach of R into big data (Rickert, 2013). Recent UseR! conferences

had many presentations that directly addressed big data, including a 2014 keynote lecture

by John Chambers, the inventor of the S language (Chambers, 2014). Most cutting edge

methods are first and easily implemented in R. Given the open source nature of R and the

active recent development, our focus on software for big data will be on R and R packages.

Revolution R Enterprise (RRE) is a commercialized version of R, but it offers free academic

3



use, so it is also included in our case study and benchmarked. Other commercial software

such as SAS, SPSS, and MATLAB will be briefly touched upon for completeness.

The rest of the article is organized as follows. Recent methodological developments in

statistics on big data are summarized in Section 2. Resources from open source software R

for analyzing big data with classical models are reviewed in Section 3. Commercial software

products are presented in Section 4. A case study on a logistic model for the chance of

airline delay is presented in Section 5. A discussion concludes in Section 6.

2 Statistical Methods

The recent methodologies for big data can be loosely grouped into three categories: resampling-

based, divide and conquer, and sequential updating. To put the different methods in a

context, consider a dataset with n independent and identically distributed observations,

where n is too big for standard statistical routines such as logistic regression.

2.1 Subsampling-Based Methods

2.1.1 Bags of Little Bootstrap

Kleiner et al. (2014) proposed the bags of little bootstrap (BLB) approach that provides

both point estimates and quality measures such as variance or confidence intervals. It is a

combination of subsampling (Politis et al., 1999), the m-out-of-n bootstrap (Bickel et al.,

1997), and the bootstrap (Efron, 1979) to achieve computational efficiency. BLB consists

of the following steps. First, draw s subsamples of size m from the original data of size n.

For each of the s subsets, draw r bootstrap samples of size n instead of m, and obtain the

point estimates and their quality measures (e.g., confidence interval) from the r bootstrap

sample. Then, the s bootstrap point estimates and quality measures are combined (e.g., by

average) to yield the overall point estimates and quality measures. In summary, BLB has

two nested procedures: the inner procedure applies the bootstrap to a subsample, and the

outer procedure combines these multiple bootstrap estimates. The subsample size m was

suggested to be nγ with γ ∈ [0.5, 1] (Kleiner et al., 2014), a much smaller number than n.

Although the inner bootstrap procedure conceptually generates multiple resampled data of

4



size n, what is really needed in the storage and computation is a sample of size m with a

weight vector. In contrast to subsampling and the m-out-of-n bootstrap, there is no need

for an analytic correction (e.g.,
√

m/n) to rescale the confidence intervals from the final

result. The BLB procedure facilitates distributed computing by letting each subsample of

size m be processed by a separate processor. Kleiner et al. (2014) proved the consistency of

BLB and provided high order correctness. Their simulation study showed good accuracy,

convergence rate and the remarkable computational efficiency.

2.1.2 Mean Log-likelihood

Liang et al. (2013) proposed a resampling-based stochastic approximation approach with

an application to big geostatistical data. The method uses Monte Carlo averages calculated

from subsamples to approximate the quantities needed for the full data. Motivated from

minimizing the Kullback–Leibler (KL) divergence, they approximate the KL divergence

by averages calculated from subsamples. This leads to a maximum mean log-likelihood

estimation method. The solution to the mean score equation is obtained from a stochastic

approximation procedure, where at each iteration, the current estimate is updated based

on a subsample of size m drawn from the full data. As m is much smaller than n, the

method is scalable to big data. Liang et al. (2013) established the consistency and asymp-

totic normality of the resulting estimator under mild conditions. In a simulation study, the

convergence rate of the method was almost independent of n, the sample size of the full

data. Liang & Kim (2013) extended the mean log-likelihood into a bootstrap Metropolis–

Hastings algorithm in Markov chain Monte Carlo (MCMC). The likelihood ratio of the

proposal and current estimate in the Metropolis–Hastings ratio is replaced with that ap-

proximated from the mean log-likelihood based on k bootstrap samples of size m. The

algorithm can be implemented exploiting the embarrassingly parallel structure and avoids

repeated scans of the full dataset in iterations.

2.1.3 Leveraging

Ma & Sun (2014) proposed to use leveraging to facilitate scientific discoveries from big data

using limited computing resources. In a leveraging method, one samples a small proportion

5



of the data with certain weights (subsample) from the full sample, and then performs

intended computations for the full sample using the small subsample as a surrogate. The key

to success of the leveraging methods is to construct the weights, the nonuniform sampling

probabilities, so that influential data points are sampled with high probabilities (Ma et al.,

2013). Leveraging methods are different from the traditional subsampling or m-out-of-

n bootstrap in that 1) they are used to achieve feasible computation even if the simple

analytic results are available; 2) they enable visualization of the data when visualization

of the full sample is impossible; and 3) they usually use unequal sampling probabilities for

subsampling data. This approach is quite unique in allowing pervasive access to extract

information from big data without resorting to high performance computing.

2.2 Divide and Conquer

A divide and conquer algorithm has three steps: 1) partitions a big dataset into K blocks;

2) processes each block separately (possibly in parallel); and 3) aggregates the solutions

from each block to form a final solution to the full data. For a linear regression model, the

least squares estimator for the regression coefficient β for the full data can be expressed

as a weighted average of the least squares estimator for each block with weight being the

inverse of the estimated variance matrix. The success of this method for linear regression

depends on the linearity of the estimating equations in β and that the estimating equation

for the full data is a simple summation of that for all the blocks. For general nonlinear

estimating equations, Lin & Xi (2011) proposed a linear approximation of the estimating

equations with the Taylor expansion at the solution in each block, and, hence, reduce the

nonlinear estimating equation to the linear case so that the solutions to all the blocks

are combined by a weighted average. The weight of each block is the slope matrix of the

estimating function at the solution in that block, which is the Fisher information or inverse

of the variance matrix if the equations are score equations. Lin & Xi (2011) showed that,

under certain technical conditions including K = O(nγ) for some γ ∈ (0, 1), the aggregated

estimator has the same limit as the estimator from the full data.

Chen & Xie (2014) consider a divide and conquer approach for generalized linear models

(GLM) where both the number of observations n and the number of covariates p are large

6



by incorporating variable selection via penalized regression into subset processing step.

More specifically, for p bounded or increasing to infinity slowly, (pn not faster than o(enk),

while model size may increase at a rate of o(nk)), they propose to first randomly split

the data of size n into K blocks (size nk = O(n/K)). In step 2, penalized regression is

applied to each block separately with a sparsity-inducing penalty function satisfying certain

regularity conditions. This approach can lead to differential variable selection among the

blocks, as different blocks of data may result in penalized estimates with different non-

zero regression coefficients. Thus, in step 3, the results from the K blocks are combined

by majority vote to create a combined estimator. The implicit assumption is that real

effects should be found persistently and therefore should be present even under perturbation

by subsampling (e.g. Meinshausen & Buhlmann, 2010). The derivation of the combined

estimator in step 3 stems from ideas for combining confidence distributions in meta-analysis

(Singh et al., 2005; Xie et al., 2011), where one can think of the K blocks asK independent

and separate analyses to be combined in a meta-analysis. The authors show under certain

regularity conditions that their combined estimator in step 3 is model selection consistent,

asymptotically equivalent to the penalized estimator that would result from using all of the

data simultaneously, and achieves the oracle property when it is attainable for the penalized

estimator from each block (see e.g., Fan & Lv, 2011). They additionally establish an upper

bound for the expected number of incorrectly selected variables and a lower bound for the

expected number of correctly selected variables.

2.3 Sequential Updating for Stream Data

In some applications, the data come in streams or large chunks, and a sequentially updated

analysis is desirable without storage requirements. Schifano et al. (2014) expand upon

the work of Lin & Xi (2011) in several important ways. First, they introduce divide-and-

conquer-type variance estimates of regression parameters in the linear model and estimating

equation settings. These estimates of variability allow for users to make inferences about

the true regression parameters based upon the previously developed divide-and-conquer

point estimates of the regression parameters. Second, they develop iterative estimating

algorithms and statistical inferences for linear models and estimating equations that up-

7



date as new data arrive. Thus, while the divide-and-conquer setting is quite amenable

to parallel processing for each subset, the online-updating approach for data streams is

inherently sequential in nature. Their algorithms were designed to be computationally ef-

ficient and minimally storage-intensive, as they assume no access/storage of the historical

data. Third, the authors address the issue of possible rank deficiencies when dealing with

blocks of data, and the uniqueness properties of the combined and cumulative estimators

when using a generalized inverse. The authors also provide methods for assessing goodness

of fit in the linear model setting, as standard residual-based diagnostics cannot be per-

formed with the cumulative data without access to historical data. Instead, they propose

outlier tests relying on predictive residuals, which are based on the predictive values com-

puted from the cumulative estimate of the regression coefficients attained at the previous

accumulation point. Additionally, they introduce a new online-updated estimator of the

regression coefficients and corresponding estimator of the standard error in the estimating

equation setting that takes advantage of information from the previous data. They show

theoretically that this new estimator, the cumulative updated estimating equation (CUEE)

estimator, is asymptotically consistent, and show empirically that the CUEE estimator is

less biased in their finite sample simulations than the cumulatively estimated version of the

estimator of Lin & Xi (2011).

3 Open Source R and R Packages

Handling big data is one of the topics of high performance computing. As the most popular

open source statistical software, R and its adds-on packages provide a wide range of high

performance computing; see Comprehensive R Archive Network (CRAN) task view on

“High-Performance and Parallel Computing with R” (Eddelbuettel, 2014). The focus of

this section is on how to break the computer memory barrier and the computing power

barrier in the context of big data.

8



3.1 Breaking the Memory Barrier

The size of big data is relative to the available computing resources. The theoretical limit

of random access memory (RAM) is determined by the width of memory addresses: 4

gigabyte (GB) (232 bytes) for a 32-bit computer and 16.8 million terabyte (264 bytes) for

a 64-bit computer. In practice, however, the latter is limited by the physical space of a

computer case, the operating system, and specific software. Individual objects in R have

limits in size too; an R user can hardly work with any object of size close to that limit.

Emerson & Kane (2012) suggested that a data set would be considered large if it exceeds

20% of RAM on a given machine and massive if it exceeds 50%, in which case, even the

simplest calculation would consume all the remaining RAM.

Memory boundary can be broken with an external memory algorithms (EMA) (e.g.,

Vitter, 2001), which conceptually works by storing the data on a disk storage (which has

a much greater limit than RAM), and processing one chunk of it at a time in RAM (e.g.,

Lumley, 2013). The results from each chunk will be saved or updated and the process

continues until the entire dataset is exhausted; then, if needed as in an iterative algorithm,

the process is reset from the beginning of the data. To implement an EMA for each

statistical function, one need to address 1) data management and 2) numerical calculation.

3.1.1 Data Management

Earlier solutions to oversize data resorted to relational databases. This method depends on

an external database management system (DBMS) such as MySQL, PostgreSQL, SQLite,

H2, ODBC, Oracle, and others. Interfaces to R are provided through many R packages such

as sqldf (Grothendieck, 2014), RDBI (Hollensbe, 2009), RSQLite (Wickham et al., 2014),

and others. The database approach requires a DBMS to be installed and maintained, and

knowledge of structured query language (SQL); an exception for simpler applications is

package filehash (Peng, 2006), which comes with a simple key-value database implemen-

tation itself. The numerical functionality of SQL is quite limited, and calculations for

most statistical analyses require copying subsets of the data into objects in R facilitated

by the interfaces. Extracting chunks from an external DBMS is computationally much less

efficient than the more recent approaches discussed below (Kane et al., 2013).

9



Two R packages, bigmemory (Kane et al., 2013) and ff (Adler et al., 2014) provide data

structures for massive data while retaining a look and feel of R objects. Package bigmemory

defines a data structure big.matrix for numeric matrices which uses memory-mapped files

to allow matrices to exceed the RAM size on computers with 64-bit operating systems. The

underling technology is memory mapping on modern operating systems that associates a

segment of virtual memory in a one-to-one correspondence with contents of a file. These files

are accessed at a much faster speed than in the database approaches because operations are

handled at the operating-system level. The big.matrix structure has several advantages

such as support of shared memory for efficiency in parallel computing, reference behavior

that avoids unnecessary temporary copies of massive objects, and column-major format

that is compatible with legacy linear algebra packages (e.g., BLAS, LAPACK) (Kane et al.,

2013). The package provides utility to read in a csv file to form a big.matrix object, but

it only allows one type of data, numeric; it is a numeric matrix after all.

Package ff provides data structures that are stored in binary flat files but behave (al-

most) as if they were in RAM by transparently mapping only a section (pagesize) of meta

data in main memory. Unlike bigmemory, it supports R’s standard atomic data types (e.g.,

double or logical) as well as nonstandard, storage efficient atomic types (e.g., the 2-bit un-

signed quad type allows efficient storage of genomic data as a factor with levels A, T, G,

and, C). It also provides class ffdf which is like data.frame in R, and import/export filters

for csv files. A binary flat file can be shared by multiple ff objects in the same or multiple

R processes for parallel access. Utility functions allow interactive process of selections of

big data.

3.1.2 Numerical Calculation

The data management systems in packages bigmemory or ff do not mean that one can

apply existing R functions yet. Even a simple statistical analysis such as linear model or

survival analysis will need to be implemented for the new data structures. Chunks of big

data will be processed in RAM one at a time, and often, the process needs to be iterated

over the whole data. A special case is the linear model fitting, where one pass of the data

is sufficient and no resetting from the beginning is needed. Consider a regression model

10



E[Y ] = Xβ with n×1 response Y , n×p model matrix X and p×1 coefficient β. The base

R implementation lm.fit takes O(np + p2) memory, which can be reduced dramatically

by processing in chunks. The first option is to compute X ′X and X ′y in increment, and

get the least squares estimate of β, β̂ = (X ′X)−1X ′Y . This method is adopted in package

speedglm (Enea, 2014). A slower but more accurate option is to compute the incremental

QR decomposition (Miller, 1992) of X = QR to get R and Q′Y , and then solve β from

Rβ = Q′Y . This option is implemented in package biglm (Lumley, 2013). Function biglm

uses only p2 memory of p variables and the fitted object can be updated with more data

using update. The package also provides an incremental computation of sandwich variance

estimator by accumulating a (p+ 1)2 × (p+ 1)2 matrix of products of X and Y without a

second pass of the data.

In general, a numerical calculation needs an iterative algorithm in computation and,

hence, multiple passes of the data are necessary. For example, a GLM fitting is often

obtained through the iterated reweighted least squares (IRLS) algorithm. The bigglm

function in package biglm implements the generic IRLS algorithm that can be applied to

any specific data management system such as DBMS, bigmemory, or ff, provided that a

function data(reset = FALSE) supplies the next chunk of data or zero-row data if there is

no more, and data(reset = TRUE) resets to the beginning of the data for the next iteration.

Specific implementation of the data function for object of class big.matrix and ffdf are

provided in package biganalytics (Emerson & Kane, 2013a) and ffbase (Jonge et al., 2014),

respectively.

For any statistical analysis on big data making use of the data management system,

one would need to implement the necessary numerical calculations like what package biglm

does for GLM. The family of bigmemory provides a collection of functions for big.matrix

objects: biganalytics for basic analytic and statistical functions, bigtabulate for tabulation

operations (Emerson & Kane, 2013b), and bigalgebra for matrix operation with the BLAS

and LAPACK libraries (Kane et al., 2014). Some additional functions for big.matrix

objects are available from other contributed packages, such as bigpca for principal com-

ponent analysis and single-value decomposition (Cooper, 2014), and bigrf for random for-

est (Lim et al., 2014). For ff objects, package ffbase provides basic statistical functions

11



(Jonge et al., 2014). Additional functions for ff objects are provided in other packages,

with examples including biglars for least angle regression and LASSO (Seligman et al.,

2011) and PopGenome for population genetic and genomic analysis (Pfeifer et al., 2014).

If some statistical analysis, such as generalized estimating equations or Cox proportional

hazards model, has not been implemented for big data, then one will need to modify the

existing algorithm to implement it. As pointed out by Kane et al. (2013, p.5), this would

open Pandora’s box of recoding which is not a long-term solution for scalable statistical

analyses; this calls for redesign of the next-generation statistical programming environment

which could provide seamless scalability through file-backed memory-mapping for big data,

help avoid the need for specialized tools for big data management, and allow statisticians

and developers to focus on new methods and algorithms.

3.2 Breaking the Computing Power Barrier

3.2.1 Speeding Up

As a high level interpreted language, for which most of instructions are executed directly,

R is infamously slow with loops. Some loops can be avoided by taking advantage of the

vectorized functions in R or by clever vectorizing with some effort. When vectorization is

not straightforward or loops are unavoidable, as in the case of MCMC, acceleration is much

desired, especially for big data. The least expensive tool in a programmer’s effort to speed

up R code is to compile them to byte code with the compiler package, which was developed

by Luke Tierney and is now part of base R. The byte code compiler translates the high-level

R into a very simple language that can be interpreted by a very fast byte code interpreter,

or virtual machine. Starting with R 2.14.0 in 2011, the base and recommended packages

were pre-compiled into byte-code by default. Users’ functions, expressions, scripts, and

packages can be compiled for an immediate boost in speed by a factor of 2 to 5.

Computing bottlenecks can be implemented in a compiled language such as C/C++

or FORTRAN and interfaced to R through R’s foreign language interfaces (R Core Team,

2014b, ch.5). Typical bottlenecks are loops, recursions, and complex data structures. Re-

cent developments have made the interfacing with C++ much easier than it used to be

(Eddelbuettel, 2013). Package inline (Sklyar et al., 2013) provides functions that wrap

12



C/C++ (or FORTRAN) code as strings in R and takes care of compiling, linking, and

loading by placing the resulting dynamically-loadable object code in the per-session tem-

porary directory used by R. For more general usage, package Rcpp (Eddelbuettel et al.,

2011) provides C++ classes for many basic R data types, which allow straightforward

passing of data in both directions. Package RcpEigen (Bates et al., 2014) provides access

to the high-performance linear algebra library Eigen for a wide variety of matrix meth-

ods, various decompositions and support of sparse matrices. Package RcppArmadillo

(Eddelbuettel & Sanderson, 2014) connects R with Armadillo, a powerful templated lin-

ear algebra library which provides a good balance between speed and ease of use. Package

RInside (Eddelbuettel & Francois, 2014) gives easy access of R objects from C++ by wrap-

ping the existing R embedding API in C++ classes. The Rcpp project has revolutionized

the integration of R with C++; it is now used by hundreds of R packages.

Diagnostic tools can help identify the bottlenecks in R code. Package microbenchmark

(Mersmann, 2014) provides very precise timings for small pieces of source code, making

it possible to compare operations that only take a tiny amount of time. For a collection

of code, run-time of each individual operation can be measured with realistic inputs; the

process is known as profiling. Function Rprof in R does the profiling, but the outputs

are not intuitive to understand for many users. Packages proftools (Tierney & Jarjour,

2013) and aprof (Visser, 2014) provide tools to analyze profiling outputs. Packages profr

(Wickham, 2014b), lineprof (Wickham, 2014c), and GUIProfiler (de Villar & Rubio, 2014)

provide visualization of profiling results.

3.2.2 Scaling Up

The R package system has long embraced integration of parallel computing of various

technologies to address the big data challenges. For embarrassingly parallelizable jobs

such as bootstrap or simulation, where there is no dependency or communication be-

tween parallel tasks, many options are available with computer clusters or multicores.

Schmidberger et al. (2009) reviewed the then state-of-the-art parallel computing with R,

highlighting two packages for cluster use: Rmpi (Yu, 2002) which provides an R interface

to the Message Passing Interface (MPI) in parallel computing; snow (Rossini et al., 2007)

13



which provides an abstract layer with the communication details hidden from the end users.

Since then, some packages have been developed and some discontinued. Packages snowFT

(Sevcikova & Rossini, 2012a) and snowfall (Knaus, 2013) extend snow with fault tolerance

and wrappers for easier development of parallel R programs. Package multicore (Urbanek,

2014) provides parallel processing of R code on machines with multiple cores or CPUs. Its

work and some of snow have been incorporated into the base R package parallel, which was

first included in R 2.14.0 in 2011. Package foreach (Revolution Analytics & Weston, 2014)

allows general iteration over elements in a collection without any explicit loop counter. Us-

ing foreach loop without side effects facilitates executing the loop in parallel with different

parallel mechanisms, including those provided by parallel, Rmpi, and snow. For massive

data that exceed the computer memory, a combination of foreach and bigmemory, with

shared-memory data structure referenced by multiple processes, provides a framework with

ease of development and efficiency of execution (both in speed and memory) as illustrated

by Kane et al. (2013). Package Rdsm provides facilities for distributed shared memory

parallelism at the R level, and combined with bigmemory, it enables parallel processing on

massive, out-of-core matrices.

The “Programming with Big Data in R” project (pbdR) enables high-level distributed

data parallelism in R with easy utilization of large clusters with thousands of cores (Ostrouchov et al.,

2012). Big data are interpreted quite literally to mean that a dataset requires parallel pro-

cessing either because it does not fit in the memory of a single machine or because its

processing time needs to be made tolerable. The project focuses on distributed memory

systems where data are distributed across processors and communications between proces-

sors are based on MPI. It consists of a collection of R packages in a hierarchy. Package

pbdMPI provides S4 classes to directly interface with MPI to support the Single Program

Multiple Data (SPMD) parallelism. Package pbdSLAP serves as a mechanism to utilize a

subset of functions of scalable dense linear algebra in ScaLAPACK (Blackford et al., 1997), a

subset of LAPACK routines redesigned with the SPMD style. Package pbdBASE contains a

set of wrappers of low level functions in ScaLAPACK, upon which package pbdMAT builds

to provide distributed dense matrix computing while preserving the friendly and familiar

R syntax for these computations. Demonstrations on how to use these and other packages

14



from the pbdR are available in package pbdDEMO.

A recent, widely adopted open source framework for massive data storage and dis-

tributed computing is Hadoop (The Apache Software Foundation, 2014b). Its heart is an

implementation of the MapReduce programming model first developed at Google (Dean & Ghemawat,

2008), which divides the data to distributed systems and computes for each group (the

map step), and then recombines the results (the reduce step). It provides fault tolerant

and scalable storage of massive datasets across machines in a cluster (White, 2011). The

model suits perfectly the embarrassingly parallelizable jobs and the distributed file sys-

tem helps break the memory boundary. McCallum & Weston (2011, ch.5–8) demonstrated

three ways to combine Hadoop and R. The first is to submit R scripts directly to a Hadoop

cluster, which gives the user the most control and the most power, but comes at the cost

of a Hadoop learning curve. The second is a pure R solution via package Rhipe, which

hides the communications to Hadoop from R users. The package (not on CRAN) is from

the RHIPE project, which stands for R and Hadoop Integrated Programming Environment

(Guha et al., 2012). With Rhipe, data analysts only need to write R code for the map

step and the reduce step (Guha et al., 2012), and get the power of Hadoop without leaving

R. The third approach targets specifically the Elastic MapReduce (EMR) at Amazon by

CRAN package segue (Long, 2012), which makes it easy to use EMR as a parallel backend

for lapply-style operations. A more recent approach is the open source RHadoop project,

which is being actively developed by Revolution Analytics (Revolution Analytics, 2014).

This project is a collection of R packages that allow users to manage and analyze data with

Hadoop: rhbase provides functions for database management for the HBase distributed

database, rhdfs provides functions for Hadoop distributed file system, rmr provides func-

tions to Hadoop MapReduce functionality, plymr provides higher level data processing for

structured data, and the most recent addition ravro provides reading and writing func-

tions for files in avro format, an efficient data serialization system developed at Apache

(The Apache Software Foundation, 2014a).

As multicores have become the standard setup for computers today, it is desirable to

automatically make use of the cores in implicit parallelism without any explicit requests

from the user. The experimental packages pnmath and pnmath0 by Luke Tierney replace

15



a number of internal vector operations in R with alternatives that can take advantage

of multicores (Tierney, 2009). For a serial algorithm such as MCMC, it is desirable to

parallelize the computation bottleneck if possible, but this generally involves learning new

computing tools and the debugging can be challenging. For instance, Yan et al. (2007)

used the parallel linear algebra package (PLAPACK) (van de Geijn, 1997) for the matrix

operations (especially the Cholesky decomposition) in a MCMC algorithm for Bayesian

spatiotemporal geostatistical models, but the scalability was only moderate.

When random numbers are involved as in the case of simulation, extra care is needed

to make sure the parallelized jobs run independent (and preferably reproducible) random-

number streams. Package rsprng (Li, 2010) provides an interface to the Scalable Parallel

Random Number Generators (SPRNG) (Mascagni & Srinivasan, 2000). Package rlecuyer

(Sevcikova & Rossini, 2012b) provides an interface to the random number generator with

multiple independent streams developed by L’Ecuyer et al. (2002), the ideas of which are

also implemented in the base package parallel: make independent streams by separating a

single stream with a sufficiently large number of steps apart. Package doRNG (Gaujoux,

2014) provides functions to perform reproducible parallel foreach loops, independent of

the parallel environment and associated foreach backend.

From a hardware perspective, many computers have mini clusters of graphics processing

units (GPUs) that can help with bottlenecks. GPUs are dedicated numerical processors

that were originally designed for rendering three dimensional computer graphics. A GPU

has hundreds of processor cores on a single chip and can be programmed to apply the same

numerical operations on large data array. Suchard et al. (2010) investigated the use of

GPUs in massively parallel massive mixture modeling, and showed better performance of

GPUs than multicore CPUs, especially for larger samples. To reap the advantage, however,

one needs to learn the related tools such as Compute Unified Device Architecture (CUDA),

Open Computing Language (OpenCL), and so on, which may be prohibitive. An R package

gputools (Buckner et al., 2013) provides interface to NVidia CUDA toolkit and others.

16



4 Commercial Software

RRE is the core product of Revolution Analytics (formerly Revolution Computing), a com-

pany that provides R tools, support, and training. RRE focuses on big data, large scale

multiprocessor (or high performance) computing, and multicore functionality. Massive

datasets are handled via EMA and parallel EMA (PEMA) when multiprocessors or mul-

ticores are available. The commercial package RevoScaleR (Revolution Analytics, 2013)

breaks the memory boundary by a special XDF data format that allows efficient storage and

retrieval of data. Functions in the package (e.g., rxGlm for GLM fitting) know to work on

a massive dataset one chunk at a time. The computing power boundary is also addressed

— functions in the package can exploit multicores or computer clusters. Packages from the

aforementioned open source project RHadoop developed by the company provide support

for Hadoop. Other components in RRE allow high speed connection for various types of

data sources and threading and inter-process communication for parallel and distributed

computing. The same code works on small and big data, and on workstations, servers, clus-

ters, Hadoop, or in the cloud. The single workstation version of RRE is free for academic

use currently, and is used in the case study in Section 5.

SAS, one of the most widely used commercial software for statistical analysis, provides

big data support through SAS High Performance Analytics. Massive datasets are ap-

proached by grid computing, in-database processing, in-memory analytics and connection

to Hadoop. The SAS High Performance Analytics Products include statistics, econometrics,

optimization, forecasting, data mining, and text mining, which, respectively, correspond to

SAS products STAS, ETS, OR, high-performance forecasting, enterprise miner, and text

miner (Cohen & Rodriguez, 2013).

IBM SPSS, the Statistical Product and Services Solution, provides big data analytics

through SPSS Modeler, SPSS Analytic Server, SPSS Collaboration and Deployment Ser-

vices, and SPSS Analytic Catalyst (IBM, 2014). SPSS Analytic Server is the foundation

and it focuses on high performance analytics for data stored in Hadoop-based distributed

systems. SPSS modeler is the high-performance data mining workbench, utilizing SPSS

Analytic Server to leverage big data in Hadoop environments. Analysts can define analy-

sis in a familiar and accessible workbench to conduct analysis modeling and scoring over

17



high volumes of varied data. SPSS Collaboration and Deployment Services helps man-

age analytical assets, automate processes and efficiently share results widely and securely.

SPSS Analytic Catalyst is the automation of analysis that makes analytics and data more

accessible to users.

MATLAB provides a number of tools to tackle the challenges of big data analytics (Inc.,

2014). Memory mapped variables map a file or a proportion of a file to a variable in

RAM; disk variables direct access to variables from files on disk; datastore allows access

to data that do not fit into RAM. Their combination addresses the memory boundary.

The computation power boundary is broken by intrinsic multicore math, GPU computing,

parallel computing, cloud computing, and Hadoop support.

5 A Case Study

The airline on-time performance data from the 2009 ASA Data Expo (http://stat-computing.org/dataexp

is used as a case study to demonstrate a logistic model fitting with a massive dataset

that exceeds the RAM of a single computer. The data is publicly available and has

been used for demonstration with big data by Kane et al. (2013) and others. It con-

sists of flight arrival and departure details for all commercial flights within the USA,

from October 1987 to April 2008. About 12 million flights were recorded with 29 vari-

ables. A compressed version of the pre-processed data set from the bigmemory project

(http://data.jstatsoft.org/v55/i14/Airline.tar.bz2) is approximately 1.7GB, and

it takes 12GB when uncompressed.

The response of the logistic regression is late arrival which was set to 1 if a flight was

late by more than 15 minutes and 0 otherwise. Two binary covariates were created from

the departure time: night (1 if departure occurred between 8pm and 5am) and weekend

(1 if departure occurred on weekends and 0 otherwise). Two continuous covariates were

included: departure hour (DepHour, range 0 to 24) and distance from origin to destination

(in 1000 miles). In the raw data, the departure time was an integer of the HHmm format.

It was converted to minutes first to prepare for DepHour. Three methods are considered

in the case study: 1) combination of bigglm with package bigmemory; 2) combination

of bigglm with package ff; and 3) the academic, single workstation version of RRE. The

18

http://stat-computing.org/dataexpo/2009/the-data.html
http://data.jstatsoft.org/v55/i14/Airline.tar.bz2


Table 1: Timing results (in seconds) for reading in the whole 12GB data, transforming to

create new variables, and fitting the logistic regression with three methods: bigmemory,

ff, and RRE.

Reading Transforming Fitting

bigmemory 968.6 105.5 1501.7

ff 1111.3 528.4 1988.0

RRE 851.7 107.5 189.4

default settings of ff were used. Before fitting the logistic regression, the 12GB raw data

needs to be read in from the csv format, and new variables needs to be generated. This

leads to a total of 120, 748, 239 observations with no missing data. The R scripts for the

three methods are in the supplementary materials for interested readers.

The R scripts were executed in batch mode on a 8-core machine running CenOS (a

free Linux distribution functionally compatible with Red Hat Enterprise Linux which is

officially supported by RRE), with Intel Core i7 2.93GHz CPU, and 16GB memory. Table 1

summarizes the timing results of reading in the whole 12GB data, transforming to create

new variables, and fitting the logistic regression with the three methods. The chunk sizes

were set to be 500,000 observations for all three methods. For RRE, this was set when

reading in the data to the XDF format; for the other two methods, this was set at the fitting

stage using function bigglm. Under the current settings, RRE has a clear advantage in

fitting with only 8% of the time used by the other two approaches. This is a result of

the joint force of its using all 8 cores implicitly and efficient storage and retrieval of the

data; the XDF version of the data is about 1/10 of the size of the external files saved by

bigmemory or ff. Using bigmemory and using ff in bigglm had very similar performance in

fitting the logistic regression, but the former took less time in reading, and significantly less

time (only about 1/5) in transforming variables of the latter. The bigmemory method was

quite close to the RRE method in the reading and the transforming tasks. The ff method

took longer in reading and transforming than the bigmemory method, possibly because it

used much less memory.

The results of the logistic regression are identical from all methods, and are summarized

19



Table 2: Logistic regression results for late arrival.

Estimate Std. Error (×104)

(Intercept) −2.985 9.470

DepHour 0.104 0.601

Distance 0.235 4.032

Night −0.448 8.173

Weekend −0.177 5.412

Table 3: Time results (in seconds) for parallel computing quantiles of departure delay for

each day of the week with 1 to 8 cores using foreach.

1 2 3 4 5 6 7 8

bigmemory 22.1 11.2 7.8 6.9 6.2 6.3 6.4 6.8

ff 21.4 11.0 7.1 6.7 5.8 5.9 6.1 6.8

in Table 2. Flights with later departure hour or longer distance are more likely to be delayed.

Night flights or weekend flights are less likely to be delayed. Given the huge sample size, all

coefficients were highly significant. It is possible, however, that p-values can still be useful.

A binary covariate with very low rate of event may still have an estimated coefficient with

a not-so-low p-value (Schifano et al., 2014), an effect only estimable with big data.

As an illustration of foreach for embarrassingly parallel computing, the example in

Kane et al. (2013) is expanded to include both bigmemory and ff. The task is to find

three quantiles (0.5, 0.9, and 0.99) of departure delays for each day of the week; that is,

7 independent jobs can run on 7 cores separately. To make the task bigger, each job was

set to run twice. The resulting 14 jobs were parallelized with foreach on the same Linux

machine using 1 to 8 cores for the sake of illustration. The R script is included in the

supplementary materials. The timing results are summarized in Table 3. There is little

difference between the two implementations. When there is no communication overhead,

with 14 jobs one would expect the run time to reduce to 1/2, 5/14, 4/14, 3/14, 3/14, 2/14,

and 2/14, respectively, with 2, 3, 4, 5, 6, 7 and 8 cores. The impact of communication cost

is obvious in Table 3. The time reduction is only closer to the expectation in the ideal case

20



when the number of cores is smaller.

6 Discussion

The scope of this review is limited to standard statistical analysis with big data that exceed

the memory and computing capacity of a single computer. Albeit under-appreciated by

the general public or even mainstream academic community, computational statisticians

have made respectable progress in extending standard statistical analysis to big data, with

the most notable achievements in the open source R community. Packages bigmemory

and ff make it possible in principle to implement any statistical analysis with their data

structure. Nonetheless, for anything that has not been already implemented (e.g., survival

analysis, GEE, mixed effects model, etc.), one would need to implement an EMA version

of the computation task, which may not be straightforward and may involve some steep

learning curves. Hadoop allows easy extension of algorithms that do not require multiple

passes of the data, but such analyses are mostly descriptive. An example is visualization,

an important tool in exploratory analysis. With big data, the bottleneck is the number of

pixels in the screen. The bin-summarize-smooth framework for visualization of large data

of Wickham (2014a) with package bigvis (Wickham, 2013) may be adapted to work with

Hadoop.

Big data present challenges much further beyond the territory of classic statistics, re-

quiring joint workforce with domain knowledge, computing skills, and statistical think-

ing (Yu, 2014). Statisticians have much to contribute to both the intellectual vitality

and the practical utility of big data, but will have to expand their comfort zone to en-

gage high-impact, real world problems which are often less structured or with ambiguity

(Jordan & Lin, 2014). Examples are to provide structure for poorly defined problems, or to

develop methods/models for new types of data such as image or network. As suggested by

Yu (2014), to play a critical role in the arena of big data or own data science, statisticians

need to work on real problems and relevant methodology and theory will follow naturally.

21



Acknowledgment

The authors thank Stephen Archut, Fang Chen, and Joseph Rickert for the big data analyt-

ics information on SPSS, SAS, and RRE. An earlier version of the manuscript was presented

at the “Statistical and Computational Theory and Methodology for Big Data Analysis”

workshop in February, 2014, at the Banff International Research Station in Banff, AB,

Canada. The discussions and comments from the workshop participants are gratefully

acknowledged.

Supplementary Materials

Four R scripts (and their outputs), along with a descriptive README file are provided for

the case study. The first three are the logistic regression with, respectively, combination of

bigmemory with bigglm (bigmemory.R), combination of ff with bigglm (ff.R), and RRE

(RevR.R); their output files have .Rout extensions. The first two run with R, while the

third one needs RRE. The fourth script is for the parallel computing with foreach combined

with bigmemory and ff, respectively.

References

Adler, D., Glser, C., Nenadic, O., Oehlschlgel, J. & Zucchini, W. (2014).

ff: Memory-efficient Storage of Large Data on Disk and Fast Access Functions. URL

http://CRAN.R-project.org/package=ff. R package version 2.2-13.

Bates, D., Francois, R. & Eddelbuettel, D. (2014). RcppEigen:

Rcpp Integration for the Eigen Templated Linear Algebra Library. URL

http://CRAN.R-project.org/package=Rcppeigen. R package version 0.3.2.2.0.

Bickel, P. J., Götze, F. & van Zwet, W. R. (1997). Resampling fewer than n

observations: Gains, losses, and remedies for losses. Statistica Sinica 7, 1–31.

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon,

I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K.,

22

http://CRAN.R-project.org/package=ff
http://CRAN.R-project.org/package=Rcppeigen


Walker, D. & Whaley, R. C. (1997). ScaLAPACK Users’ Guide. Philadelphia, PA:

Society for Industrial and Applied Mathematics.

Buckner, J., Seligman, M. & Wilson, J. (2013). gputools: A few GPU Enabled

Functions. URL http://CRAN.R-project.org/package=gputools. R package version

0.28.

Chambers, J. (2014). Interfaces, efficiency and big data. 2014 UseR! International R

User Conference.

Chen, X. & Xie, M.-g. (2014). A split-and-conquer approach for analysis of extraordi-

narily large data. Statistica Sinica Forthcoming.

Cohen, R. & Rodriguez, R. (2013). High performance statistical modeling. Technical

Report 401–2013, SAS Global Forum.

Cooper, N. (2014). bigpca: PCA, Transpose and Multicore Functionality for big.matrix

Objects. URL http://CRAN.R-project.org/package=bigpca. R package version 1.0.

Davidian, M. (2013). Aren’t we data science. Amstat News 433, 3–5.

de Villar, F. & Rubio, A. (2014). GUIProfiler: Profiler Graphical User Interface. URL

http://CRAN.R-project.org/package=GUIProfiler. R package version 0.1.2.

Dean, J. & Ghemawat, S. (2008). MapReduce: Simplified data processing on large

clusters. Commun. ACM 51(1), 107–113.

Diebold, F. X. (2012). A personal perspective on the origin(s) and development of “big

data”: The phenomenon, the term, and the discipline, second version. Pier working paper

archive, Penn Institute for Economic Research, Department of Economics, University of

Pennsylvania.

Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp. Springer.

Eddelbuettel, D. (2014). CRAN task view: High-performance and parallel computing

with R. Version 2014-09-23.

23

http://CRAN.R-project.org/package=gputools
http://CRAN.R-project.org/package=bigpca
http://CRAN.R-project.org/package=GUIProfiler


Eddelbuettel, D. & Francois, R. (2014). RInside: C++ Classes to Embed R in

C++ Applications. URL http://CRAN.R-project.org/package=RInside. R package

version 0.2.11.

Eddelbuettel, D., François, R., Allaire, J., Chambers, J., Bates, D. &

Ushey, K. (2011). Rcpp: Seamless R and C++ integration. Journal of Statistical

Software 40(8), 1–18.

Eddelbuettel, D. & Sanderson, C. (2014). RcppArmadillo: Accelerating R with

high-performance C++ linear algebra. Computational Statistics and Data Analysis 71,

1054–1063.

Efron, B. (1979). Bootstrap methods: Another look at the Jackknife. The annals of

Statistics 7(1), 1–26.

Emerson, J. W. & Kane, M. J. (2012). Don’t drown in the data. Significance 9(4),

38–39.

Emerson, J. W. & Kane, M. J. (2013a). biganalytics: A Li-

brary of Utilities for big.matrix Objects of Package bigmemory. URL

http://CRAN.R-project.org/package=biganalytics. R package version 1.1.1.

Emerson, J. W. & Kane, M. J. (2013b). bigtabulate: table-, tapply-

, and Split-like Functionality for Matrix and big.matrix Objects. URL

http://CRAN.R-project.org/package=bigtabulate. R package version 1.1.2.

Enea, M. (2014). speedglm: Fitting Linear and Generalized Linear Models to Large Data

Sets. URL http://CRAN.R-project.org/package=speedglm. R package version 0.2-

1.0.

Fan, J., Han, F. & Liu, H. (2013). Challenges of big data analysis. arXiv preprint

arXiv:1308.1479 .

Fan, J. & Lv, J. (2011). Non-concace penalized likelihood with NP-dimensionality. IEEE

Transactions on Information Theory 57, 5467–5484.

24

http://CRAN.R-project.org/package=RInside
http://CRAN.R-project.org/package=biganalytics
http://CRAN.R-project.org/package=bigtabulate
http://CRAN.R-project.org/package=speedglm


Fan, W. & Bifet, A. (2013). Mining big data: Current status, and forecast to the future.

ACM SIGKDD Explorations Newsletter 14(2), 1–5.

Gaujoux, R. (2014). doRNG: Generic Reproducible Parallel Backend for foreach Loops.

URL http://CRAN.R-project.org/package=doRNG. R package version 1.6.

Grothendieck, G. (2014). sqldf: Perform SQL Selects on R Data Frames. URL

http://CRAN.R-project.org/package=sqldf. R package version 0.4-7.1.

Guha, S., Hafen, R., Rounds, J., Xia, J., Li, J., Xi, B. & Cleveland, W. S.

(2012). Large complex data: Divide and Recombine (D&R) with RHIPE. Stat 1(1).

Hollensbe, E. (2009). RDBI: Low-level Database Access Re-imagined. URL

https://github.com/RDBI/rdbi.

IBM (2014). Apply SPSS analytics technology to big data.

Inc., T. M. (2014). Big data with MATLAB.

Jonge, E. d., Wijffels, J. & van der Laan, J. (2014). ffbase: Basic Statistical Func-

tions for Package ff. URL http://CRAN.R-project.org/package=ffbase. R package

version 0.11.3.

Jordan, J. M. & Lin, D. K. J. (2014). Statistics for big data: Are statisticians ready

for big data? International Chinese Statistical Association Bulletin 26, 59–66.

Jordan, M. I. (2013). On statistics, computation and scalability. Bernoulli 19(4), 1378–

1390.

Kane, M. J., Emerson, J. & Weston, S. (2013). Scalable strategies for computing

with massive data. Journal of Statistical Software 55(14), 1–19.

Kane, M. J., Lewis, B. & Emerson, J. W. (2014). bigalgebra:

BLAS Routines for Native R Matrices and big.matrix Objects. URL

http://CRAN.R-project.org/package=bigalgebra. R package version 0.8.4.

25

http://CRAN.R-project.org/package=doRNG
http://CRAN.R-project.org/package=sqldf
https://github.com/RDBI/rdbi
http://CRAN.R-project.org/package=ffbase
http://CRAN.R-project.org/package=bigalgebra


Kleiner, A., Talwalkar, A., Sarkar, P. & Jordan, M. I. (2014). A scalable

bootstrap for massive data. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 76(4), 795–816.

Knaus, J. (2013). snowfall: Easier Cluster Computing (Based on snow). URL

http://CRAN.R-project.org/package=snowfall. R package version 1.84-6.

Laney, D. (2001). 3D data management: Controlling data volume, velocity, and variety.

Research note, META Group.

L’Ecuyer, P., Simard, R., Chen, E. J. & Kelton, W. D. (2002). An object-oriented

random-number package with many long streams and substreams. Operations research

50(6), 1073–1075.

Li, N. (2010). R Interface to SPRNG (Scalable Parallel Random Number Generators).

URL http://CRAN.R-project.org/package=rsprng. R package version 1.0.

Liang, F., Cheng, Y., Song, Q., Park, J. & Yang, P. (2013). A resampling-based

stochastic approximation method for analysis of large geostatistical data. Journal of the

American Statistical Association 108(501), 325–339.

Liang, F. & Kim, J. (2013). A bootstrap Metropolis–Hastings algorithm for Bayesian

analysis of big data. Tech. rep., Department of Statistics, Texas A & M University.

Lim, A., Breiman, L. & Cutler, A. (2014). bigrf: Big Random

Forests: Classification and Regression Forests for Large Data Sets. URL

http://CRAN.R-project.org/package=bigrf. R package version 0.1-11.

Lin, N. & Xi, R. (2011). Aggregated estimating equation estimation. Statistics and Its

Interface 4, 73–83.

Long, J. (2012). An R Language Segue into Parallel Processing on Amazon’s Web Services.

URL https://code.google.com/p/segue/. R package version 0.05.

Lumley, T. (2013). biglm: Bounded Memory Linear and Generalized Linear Models. URL

http://CRAN.R-project.org/package=biglm. R package version 0.9-1.

26

http://CRAN.R-project.org/package=snowfall
http://CRAN.R-project.org/package=rsprng
http://CRAN.R-project.org/package=bigrf
https://code.google.com/p/segue/
http://CRAN.R-project.org/package=biglm


Ma, P., Mahoney, M. W. & Yu, B. (2013). A statistical perspective on algorithmic

leveraging. arXiv preprint arXiv:1306.5362 .

Ma, P. & Sun, X. (2014). Leveraging for big data regression. WIREs Computational

Statistics .

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. &

Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and

productivity. Tech. rep., McKinsey Global Institute.

Mascagni, M. & Srinivasan, A. (2000). Algorithm 806: SPRNG: A scalable library

for pseudorandom number generation. ACM Transactions on Mathematical Software

(TOMS) 26(3), 436–461.

Mashey, J. (1998). Big data and the next wave of InfraStress. Usenix.org.

McCallum, Q. E. & Weston, S. (2011). Parallel R: Data Analysis in the Distributed

World. O’Reilly Media.

Meinshausen, N. & Buhlmann, P. (2010). Stability selection. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 72, 417–473.

Mersmann, O. (2014). microbenchmark: Accurate Timing Functions. URL

http://CRAN.R-project.org/package=microbenchmark. R package version 1.4-2.

Miller, A. J. (1992). Algorithm AS 274: Least squares routines to supplement those of

gentleman. Applied Statistics , 458–478.

Ostrouchov, G., Chen, W.-C., Schmidt, D. & Patel, P. (2012). Programming

with big data in R. URL http://r-pbd.org/.

Peng, R. D. (2006). Interacting with data using the filehash package. R News 6(4),

19–24.

Pfeifer, B., Wittelsbuerger, U., Ramos-Onsins, S. E. & Lercher, M. J. (2014).

PopGenome: An efficient swiss army knife for population genomic analyses in R. Molec-

ular Biology and Evolution 31, 1929–1936.

27

http://CRAN.R-project.org/package=microbenchmark
http://r-pbd.org/


Politis, D. N., Romano, J. P. & Wolf, M. (1999). Subsampling .

R Core Team (2014a). R: A Language and Environment for Statistical Computing.

Vienna, Austria.

R Core Team (2014b). Writing R Extensions. Vienna, Austria.

Revolution Analytics (2013). RevoScaleR 7.0 User’s Guide. Mountain View, CA.

Revolution Analytics (2014). RHadoop. GitHub Project Wiki.

Revolution Analytics & Weston, S. (2014). foreach: foreach Looping Construct for

R. URL http://CRAN.R-project.org/package=foreach. R package version 1.4.2.

Rickert, J. (2013). Statisticians: An endangered species?

Rodriguez, R. (2012). Big data and better data. Amstat News 420, 3–4.

Rossini, A. J., Tierney, L. & Li, N. (2007). Simple parallel statistical computing in

R. Journal of Computational and Graphical Statistics 16(2), 399–420.

Rudin, C., Dunson, D., Irizarry, R., Ji, H., Laber, E., Leek, J., McCormick,

T., Rose, S., Schafer, C., van der Laan, M., Wasserman, L. & Xue, L. (2014).

Discovery with data: Leveraging statistics with computer science to transform science

and society. White paper, American Statistical Association.

Schenker, N., Davidian, M. & Rodriguez, R. (2013). The ASA and big data. Amstat

News 432, 3–4.

Schifano, E. D., Wu, J., Wang, C., Yan, J. & Chen, M.-H. (2014). Online updating

of statistical inference in the big data setting. Tech. Rep. 14-22, Department of Statistics,

University of Connecticut, Storrs, Connecticut.

Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L. &

Mansmann, U. (2009). State of the art in parallel computing with R. Journal of

Statistical Software 31(1), 1–27.

28

http://CRAN.R-project.org/package=foreach


Seligman, M., Fraley, C. & Hesterberg, T. (2011). biglars: Scalable Least-angle

Regression and Lasso. URL http://CRAN.R-project.org/package=biglars. R pack-

age version 1.0.2.

Sevcikova, H. & Rossini, A. J. (2012a). snowFT: Fault Tolerant Simple Network of

Workstations. URL http://CRAN.R-project.org/package=snowFT. R package version

1.3-0.

Sevcikova, H. & Rossini, T. (2012b). rlecuyer: R Interface to RNG with Multiple

Streams. URL http://CRAN.R-project.org/package=rlecuyer. R package version

0.3-3.

Shaw, J. (2014). Why big data is a big deal. Harvard Magazine.

Singh, K., Xie, M. & Strawderman, W. (2005). Combining information from inde-

pendent sources through confidence distributions. Annals of Statistics , 159–183.

Sklyar, O., Murdoch, D., Smith, M., Eddelbuettel, D. & Francois,

R. (2013). inline: Inline C, C++, Fortran Function Calls from R. URL

http://CRAN.R-project.org/package=inline. R package version 0.3.13.

Snijders, C., Matzat, U. & Reips, U.-D. (2012). Big data: Big gaps of knowledge in

the field of internet science. International Journal of Internet Science 7(1), 1–5.

Suchard, M. A., Wang, Q., Chan, C., Frelinger, J., Cron, A. & West, M.

(2010). Understanding GPU programming for statistical computation: Studies in mas-

sively parallel massive mixtures. Journal of Computational and Graphical Statistics

19(2).

The Apache Software Foundation (2014a). Apache avro. URL

https://avro.apache.org/.

The Apache Software Foundation (2014b). Apache hadoop. URL

http://hadoop.apache.org/.

29

http://CRAN.R-project.org/package=biglars
http://CRAN.R-project.org/package=snowFT
http://CRAN.R-project.org/package=rlecuyer
http://CRAN.R-project.org/package=inline
https://avro.apache.org/
http://hadoop.apache.org/


Tierney, L. (2009). Code analysis and parallelizing vector operations in R. Computational

Statistics 24(2), 217–223.

Tierney, L. & Jarjour, R. (2013). proftools: Profile Output Processing Tools for R.

URL http://CRAN.R-project.org/package=proftools. R package version 0.1-0.

Urbanek, S. (2014). multicore: A Stub Package to Ease Transition to ‘parallel’. URL

http://CRAN.R-project.org/package=multicore. R package version 0.2.

van de Geijn, R. A. (1997). Using PLAPACK. Cambridge, MA: The MIT Press.

Visser, M. D. (2014). aprof: Amdahl’s Profiler, Directed Optimization Made Easy. URL

http://CRAN.R-project.org/package=aprof. R package version 0.2.4.

Vitter, J. S. (2001). External memory algorithms and data structures: Dealing with

massive data. ACM Computing surveys (CsUR) 33(2), 209–271.

White, T. (2011). Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2nd ed.

Wickham, H. (2013). Tools for Visualisation of Big Data Sets. URL

https://github.com/hadley/bigvis. R package version 0.1.

Wickham, H. (2014a). Bin-summarise-smooth: A framework for visualising large data.

Wickham, H. (2014b). profr: An Alternative Display for Profiling Information. URL

http://CRAN.R-project.org/package=profr. R package version 0.3.1.

Wickham, H. (2014c). Visualise Line Profiling Results in R. URL

https://github.com/hadley/lineprof. R package version 0.1.

Wickham, H., James, D. A. & Falcon, S. (2014). RSQLite: SQLite Interface for R.

URL http://CRAN.R-project.org/package=RSQLite. R package version 1.0.0.

Xie, M., Singh, K. & Strawderman, W. (2011). Confidence distributions and a

unifying framework for meta-analysis. Journal of the American Statistical Association

106, 320–333.

30

http://CRAN.R-project.org/package=proftools
http://CRAN.R-project.org/package=multicore
http://CRAN.R-project.org/package=aprof
https://github.com/hadley/bigvis
http://CRAN.R-project.org/package=profr
https://github.com/hadley/lineprof
http://CRAN.R-project.org/package=RSQLite


Yan, J., Cowles, M. K., Wang, S. & Armstrong, M. P. (2007). Parallelizing

MCMC for Bayesian spatiotemporal geostatistical models. Statistics and Computing

17(4), 323–335.

Yu, B. (2014). Let us own data science. IMS Bulletin Online, V. 43 (7).

Yu, H. (2002). Rmpi: Parallel statistical computing in R. R News 2(2), 10–14.

31


	1 Introduction
	2 Statistical Methods
	2.1 Subsampling-Based Methods
	2.1.1 Bags of Little Bootstrap
	2.1.2 Mean Log-likelihood
	2.1.3 Leveraging

	2.2 Divide and Conquer
	2.3 Sequential Updating for Stream Data

	3 Open Source R and R Packages
	3.1 Breaking the Memory Barrier
	3.1.1 Data Management
	3.1.2 Numerical Calculation

	3.2 Breaking the Computing Power Barrier
	3.2.1 Speeding Up
	3.2.2 Scaling Up


	4 Commercial Software
	5 A Case Study
	6 Discussion

