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Abstract

One popular method for dealing with large-scale data sets is sampling. For example, by
using the empirical statistical leverage scores as an importance sampling distribution, the
method of algorithmic leveraging samples and rescales rows/columns of data matrices to
reduce the data size before performing computations on the subproblem. This method has
been successful in improving computational efficiency of algorithms for matrix problems
such as least-squares approximation, least absolute deviations approximation, and low-rank
matrix approximation. Existing work has focused on algorithmic issues such as worst-case
running times and numerical issues associated with providing high-quality implementations,
but none of it addresses statistical aspects of this method.

In this paper, we provide a simple yet effective framework to evaluate the statistical
properties of algorithmic leveraging in the context of estimating parameters in a linear
regression model with a fixed number of predictors. In particular, for several versions of
leverage-based sampling, we derive results for the bias and variance, both conditional and
unconditional on the observed data. We show that from the statistical perspective of bias
and variance, neither leverage-based sampling nor uniform sampling dominates the other.
This result is particularly striking, given the well-known result that, from the algorithmic
perspective of worst-case analysis, leverage-based sampling provides uniformly superior
worst-case algorithmic results, when compared with uniform sampling.

Based on these theoretical results, we propose and analyze two new leveraging algo-
rithms: one constructs a smaller least-squares problem with “shrinkage” leverage scores
(SLEV), and the other solves a smaller and unweighted (or biased) least-squares problem
(LEVUNW). A detailed empirical evaluation of existing leverage-based methods as well as
these two new methods is carried out on both synthetic and real data sets. The empirical
results indicate that our theory is a good predictor of practical performance of existing and
new leverage-based algorithms and that the new algorithms achieve improved performance.
For example, with the same computation reduction as in the original algorithmic leverag-
ing approach, our proposed SLEV typically leads to improved biases and variances both
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unconditionally and conditionally (on the observed data), and our proposed LEVUNW
typically yields improved unconditional biases and variances.

Keywords: randomized algorithm, leverage scores, subsampling, least squares, linear
regression

1. Introduction

One popular method for dealing with large-scale data sets is sampling. In this approach, one
first chooses a small portion of the full data, and then one uses this sample as a surrogate
to carry out computations of interest for the full data. For example, one might randomly
sample a small number of rows from an input matrix and use those rows to construct
a low-rank approximation to the original matrix, or one might randomly sample a small
number of constraints or variables in a regression problem and then perform a regression
computation on the subproblem thereby defined. For many problems, it is very easy to
construct “worst-case” input for which uniform random sampling will perform very poorly.
Motivated by this, there has been a great deal of work on developing algorithms for matrix-
based machine learning and data analysis problems that construct the random sample in a
nonuniform data-dependent fashion (Mahoney, 2011).

Of particular interest here is when that data-dependent sampling process selects rows
or columns from the input matrix according to a probability distribution that depends on
the empirical statistical leverage scores of that matrix. This recently-developed approach
of algorithmic leveraging has been applied to matrix-based problems that are of interest in
large-scale data analysis, e.g., least-squares approximation (Drineas et al., 2006, 2010), least
absolute deviations regression (Clarkson et al., 2013; Meng and Mahoney, 2013), and low-
rank matrix approximation (Mahoney and Drineas, 2009; Clarkson and Woodruff, 2013).
Typically, the leverage scores are computed approximately (Drineas et al., 2012; Clarkson
et al., 2013), or otherwise a random projection (Ailon and Chazelle, 2010; Clarkson et al.,
2013) is used to precondition by approximately uniformizing them (Drineas et al., 2010;
Avron et al., 2010; Meng et al., 2014). A detailed discussion of this approach can be found
in the recent review monograph on randomized algorithms for matrices and matrix-based
data problems (Mahoney, 2011).

This algorithmic leveraging paradigm has already yielded impressive algorithmic ben-
efits: by preconditioning with a high-quality numerical implementation of a Hadamard-
based random projection, the Blendenpik code of Avron et al. (2010) “beats Lapack’s1

direct dense least-squares solver by a large margin on essentially any dense tall matrix;”
the LSRN algorithm of Meng et al. (2014) preconditions with a high-quality numerical
implementation of a normal random projection in order to solve large over-constrained
least-squares problems on clusters with high communication cost, e.g., on Amazon Elas-
tic Cloud Compute clusters; the solution to the `1 regression or least absolute deviations
problem as well as to quantile regression problems can be approximated for problems with
billions of constraints (Clarkson et al., 2013; Yang et al., 2013); and CUR-based low-rank
matrix approximations (Mahoney and Drineas, 2009) have been used for structure extrac-
tion in DNA SNP matrices of size thousands of individuals by hundreds of thousands of

1. Lapack (short for Linear Algebra PACKage) is a high-quality and widely-used software library of nu-
merical routines for solving a wide range of numerical linear algebra problems.
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SNPs (Paschou et al., 2007, 2010). In spite of these impressive algorithmic results, none
of this recent work on leveraging or leverage-based sampling addresses statistical aspects
of this approach. This is in spite of the central role of statistical leverage, a traditional
concept from regression diagnostics (Hoaglin and Welsch, 1978; Chatterjee and Hadi, 1986;
Velleman and Welsch, 1981).

In this paper, we bridge that gap by providing the first statistical analysis of the algo-
rithmic leveraging paradigm. We do so in the context of parameter estimation in fitting
linear regression models for large-scale data—where, by “large-scale,” we mean that the data
define a high-dimensional problem in terms of sample size n, as opposed to the dimension
p of the parameter space. Although n � p is the classical regime in theoretical statistics,
it is a relatively new phenomenon that in practice we routinely see a sample size n in the
hundreds of thousands or millions or more. This is a size regime where sampling methods
such as algorithmic leveraging are indispensable to meet computational constraints.

Our main theoretical contribution is to provide an analytic framework for evaluating
the statistical properties of algorithmic leveraging. This involves performing a Taylor se-
ries analysis around the ordinary least-squares solution to approximate the subsampling
estimators as linear combinations of random sampling matrices. Within this framework,
we consider biases and variances, both conditioned as well as not conditioned on the data,
for several versions of the basic algorithmic leveraging procedure. We show that both
leverage-based sampling and uniform sampling are unbiased to leading order; and that
while leverage-based sampling improves the “size-scale” of the variance, relative to uniform
sampling, the presence of very small leverage scores can inflate the variance considerably. It
is well-known that, from the algorithmic perspective of worst-case analysis, leverage-based
sampling provides uniformly superior worst-case algorithmic results, when compared with
uniform sampling. However, our statistical analysis here reveals that from the statistical
perspective of bias and variance, neither leverage-based sampling nor uniform sampling
dominates the other.

Based on these theoretical results, we propose and analyze two new leveraging algorithms
designed to improve upon vanilla leveraging and uniform sampling algorithms in terms
of bias and variance. The first of these (denoted SLEV below) involves increasing the
probability of low-leverage samples, and thus it also has the effect of “shrinking” the effect
of large leverage scores. The second of these (denoted LEVUNW below) constructs an
unweighted version of the leverage-subsampled problem; and thus for a given data set it
involves solving a biased subproblem. In both cases, we obtain the algorithmic benefits of
leverage-based sampling, while achieving improved statistical performance.

Our main empirical contribution is to provide a detailed evaluation of the statistical
properties of these algorithmic leveraging estimators on both synthetic and real data sets.
These empirical results indicate that our theory is a good predictor of practical performance
for both existing algorithms and our two new leveraging algorithms as well as that our two
new algorithms lead to improved performance. In addition, we show that using shrinkage
leverage scores typically leads to improved conditional and unconditional biases and vari-
ances; and that solving a biased subproblem typically yields improved unconditional biases
and variances. By using a recently-developed algorithm of Drineas et al. (2012) to com-
pute fast approximations to the statistical leverage scores, we also demonstrate a regime for
large data where our shrinkage leveraging procedure is better algorithmically, in the sense
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of computing an answer more quickly than the usual black-box least-squares solver, as well
as statistically, in the sense of having smaller mean squared error than näıve uniform sam-
pling. Depending on whether one is interested in results unconditional on the data (which
is more traditional from a statistical perspective) or conditional on the data (which is more
natural from an algorithmic perspective), we recommend the use of SLEV or LEVUNW,
respectively, in the future.

The remainder of this article is organized as follows. We will start in Section 2 with a
brief review of linear models, the algorithmic leveraging approach, and related work. Then,
in Section 3, we will present our main theoretical results for bias and variance of leveraging
estimators. This will be followed in Sections 4 and 5 by a detailed empirical evaluation on a
wide range of synthetic and several real data sets. Then, in Section 6, we will conclude with
a brief discussion of our results in a broader context. Appendix A will describe our results
from the perspective of asymptotic relative efficiency and will consider several toy data sets
that illustrate various aspects of algorithmic leveraging; and Appendix B will provide the
proofs of our main theoretical results.

2. Background, Notation, and Related Work

In this section, we will provide a brief review of relevant background, including our notation
for linear models, an overview of the algorithmic leveraging approach, and a review of related
work in statistics and computer science.

2.1 Least-squares and Linear Models

We start with relevant background and notation. Given an n × p matrix X and an n-
dimensional vector y, the least-squares (LS) problem is to solve

argminβ∈Rp ||y −Xβ||2, (1)

where || · || represents the Euclidean norm on Rn. Of interest is both a vector exactly or
approximately optimizing Problem (1), as well as the value of the objective function at the
optimum. Using one of several related methods (Golub and Loan, 1996), this LS problem
can be solved exactly in O(np2) time (but, as we will discuss in Section 2.2, it can be solved
approximately in o(np2) time2). For example, LS can be solved using the singular value
decomposition (SVD): the so-called thin SVD of X can be written as X = UΛV T , where
U is an n× p orthogonal matrix whose columns contain the left singular vectors of X, V is
an p× p orthogonal matrix whose columns contain the right singular vectors of X, and the
p × p matrix Λ = Diag {λi}, where λi, i = 1, . . . , p, are the singular values of X. In this
case, β̂ols = V Λ−1UTy.

We consider the use of LS for parameter estimation in a Gaussian linear regression
model. Consider the model

y = Xβ0 + ε, (2)

2. Recall that, formally, f(n) = o(g(n)) as n → ∞ means that for every positive constant ε there exists
a constant N such that |f(n)| ≤ ε|g(n)|, for all n ≥ N . Informally, this means that f(n) grows more
slowly than g(n). Thus, if the running time of an algorithm is o(np2) time, then it is asymptotically
faster than any (arbitrarily small) constant times np2.
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where y is an n × 1 response vector, X is an n × p fixed predictor or design matrix, β0 is
a p × 1 coefficient vector, and the noise vector ε ∼ N(0, σ2I). In this case, the unknown
coefficient β0 can be estimated via maximum-likelihood estimation as

β̂ols = argminβ||y −Xβ||2 = (XTX)−1XTy, (3)

in which case the predicted response vector is ŷ = Hy, where H = X(XTX)−1XT is the
so-called Hat Matrix, which is of interest in classical regression diagnostics (Hoaglin and
Welsch, 1978; Chatterjee and Hadi, 1986; Velleman and Welsch, 1981). The ith diagonal
element of H, hii = xTi (XTX)−1xi, where xTi is the ith row of X, is the statistical leverage
of ith observation or sample. The statistical leverage scores have been used historically to
quantify the potential of which an observation is an influential observation (Hoaglin and
Welsch, 1978; Chatterjee and Hadi, 1986; Velleman and Welsch, 1981), and they will be
important for our main results below. Since H can alternatively be expressed as H = UUT ,
where U is any orthogonal basis for the column space of X, e.g., the Q matrix from a QR
decomposition or the matrix of left singular vectors from the thin SVD, the leverage of the
ith observation can also be expressed as

hii =

p∑
j=1

U2
ij = ||ui||2, (4)

where uTi is the ith row of U . Using Eqn. (4), the exact computation of hii, for i ∈ [n],
requires O(np2) time (Golub and Loan, 1996) (but, as we will discuss in Section 2.2, they
can be approximated in o(np2) time).

For an estimate β̂ of β, the MSE (mean squared error) associated with the prediction
error is defined to be

MSE(β̂) =
1

n
E
[
(Xβ0 −Xβ̂)T (Xβ0 −Xβ̂)

]
(5)

=
1

n
Tr
(
Var

[
Xβ̂

])
+

1

n
(E
[
Xβ̂

]
−Xβ0)

T (E
[
Xβ̂

]
−Xβ0))

=
1

n
Tr
(
Var

[
Xβ̂

])
+

1

n
[bias(Xβ̂)]T [bias(Xβ̂)]

where β0 is the true value of β. The MSE provides a benchmark to compare the different
subsampling estimators, and we will be interested in both the bias and variance components.

2.2 Algorithmic Leveraging for Least-squares Approximation

Here, we will review relevant work on random sampling algorithms for computing approxi-
mate solutions to the general overconstrained LS problem (Drineas et al., 2006; Mahoney,
2011; Drineas et al., 2012). These algorithms choose (in general, non-uniformly) a subsam-
ple of the data, e.g., a small number of rows of X and the corresponding elements of y, and
then they perform (typically weighted) LS on the subsample. Importantly, these algorithms
make no assumptions on the input data X and y, except that n� p.

A prototypical example of this approach is given by the following meta-algorithm (Drineas
et al., 2006; Mahoney, 2011; Drineas et al., 2012), which we call SubsampleLS, and which
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takes as input an n× p matrix X, where n� p, a vector y, and a probability distribution
{πi}ni=1, and which returns as output an approximate solution β̃ols, which is an estimate of
β̂ols of Eqn. (3).

• Randomly sample r > p constraints, i.e., rows of X and the corresponding elements
of y, using {πi}ni=1 as an importance sampling distribution.

• Rescale each sampled row/element by 1/(r
√
πi) to form a weighted LS subproblem.

• Solve the weighted LS subproblem, formally given in Eqn. (6) below, and then return
the solution β̃ols.

It is convenient to describe SubsampleLS in terms of a random “sampling matrix” STX and a
random diagonal “rescaling matrix” (or “reweighting matrix”) D, in the following manner.
If we draw r samples (rows or constraints or data points) with replacement, then define
an r × n sampling matrix, STX , where each of the r rows of STX has one non-zero element
indicating which row of X (and element of y) is chosen in a given random trial. That is, if
the kth data unit (or observation) in the original data set is chosen in the ith random trial,
then the ith row of STX equals ek; and thus STX is a random matrix that describes the process
of sampling with replacement. As an example of applying this sampling matrix, when the
sample size n = 6 and the subsample size r = 3, then premultiplying by

STX =

 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0


represents choosing the second, fourth, and fourth data points or samples. The resulting
subsample of r data points can be denoted as (X∗,y∗), where X∗r×p = STXX and y∗r×1 =

STXy. In this case, an r× r diagonal rescaling matrix D can be defined so that ith diagonal
element of D equals 1/

√
rπk if the kth data point is chosen in the ith random trial (meaning,

in particular, that every diagonal element of D equals
√
n/r for uniform sampling). With

this notation, SubsampleLS constructs and solves the weighted LS estimator :

argminβ∈Rp ||DSTXy −DSTXXβ||2. (6)

Since SubsampleLS samples constraints and not variables, the dimensionality of the
vector β̃ols that solves the (still overconstrained, but smaller) weighted LS subproblem
is the same as that of the vector β̂ols that solves the original LS problem. The former
may thus be taken as an approximation of the latter, where, of course, the quality of the
approximation depends critically on the choice of {πi}ni=1. There are several distributions
that have been considered previously (Drineas et al., 2006; Mahoney, 2011; Drineas et al.,
2012).

• Uniform Subsampling. Let πi = 1/n, for all i ∈ [n], i.e., draw the sample uniformly
at random.

• Leverage-based Subsampling. Let πi = hii/
∑n

i=1 hii = hii/p be the normalized
statistical leverage scores of Eqn. (4), i.e., draw the sample according to an importance
sampling distribution that is proportional to the statistical leverage scores of the data
matrix X.
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Although Uniform Subsampling (with or without replacement) is very simple to implement,
it is easy to construct examples where it will perform very poorly. In particular, it fails
dramatically when it is applied to real world data where non-uniform leverage scores are
prevalent (e.g., see below or see Drineas et al. 2006; Mahoney 2011). On the other hand, it
has been shown that, for a parameter γ ∈ (0, 1] to be tuned, if

πi ≥ γ
hii
p
, and r = O(p log(p)/(γε)), (7)

then the following relative-error bounds hold:

||y −Xβ̃ols||2 ≤ (1 + ε)||y −Xβ̂ols||2 and (8)

||β̂ols − β̃ols||2 ≤
√
ε
(
κ(X)

√
ξ−2 − 1

)
||β̂ols||2, (9)

where κ(X) is the condition number of X and where ξ = ||UUTy||2/||y||2 is a parameter
defining the amount of the mass of y inside the column space of X (Drineas et al., 2006;
Mahoney, 2011; Drineas et al., 2012).

Due to the crucial role of the statistical leverage scores in Eqn. (7), we refer to algorithms
of the form of SubsampleLS as the algorithmic leveraging approach to approximating LS
approximation. Several versions of the SubsampleLS algorithm are of particular interest to
us in this paper. We start with two versions that have been studied in the past.

• Uniform Sampling Estimator (UNIF) is the estimator resulting from uniform
subsampling and weighted LS estimation, i.e., where Eqn. (6) is solved, where both the
sampling and rescaling/reweighting are done with the uniform sampling probabilities.
(Note that when the weights are uniform, then the weighted LS estimator of Eqn. (6)
leads to the same solution as same as the unweighted LS estimator of Eqn. (11) below.)
This version corresponds to vanilla uniform sampling, and it’s solution will be denoted
by β̃UNIF .

• Basic Leveraging Estimator (LEV) is the estimator resulting from exact leverage-
based sampling and weighted LS estimation, i.e., where Eqn. (6) is solved, where both
the sampling and rescaling/reweighting are done with the leverage-based sampling
probabilities given in Eqn. (7). This is the basic algorithmic leveraging algorithm that
was originally proposed in (Drineas et al., 2006), where the exact empirical statistical
leverage scores of X were first used to construct the subsample and reweight the
subproblem, and it’s solution will be denoted by β̃LEV .

Motivated by our statistical analysis (to come later in the paper), we will introduce two
variants of SubsampleLS; since these are new to this paper, we also describe them here.

• Shrinkage Leveraging Estimator (SLEV) is the estimator resulting from a shrink-
age leverage-based sampling and weighted LS estimation. By shrinkage leverage-based
sampling, we mean that we will sample according to a distribution that is a convex
combination of a leverage score distribution and the uniform distribution, thereby
obtaining the benefits of each; and the rescaling/reweighting is done according to the
same distribution. That is, if πLev denotes a distribution defined by the normalized
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leverage scores and πUnif denotes the uniform distribution, then the sampling and
reweighting probabilities for SLEV are of the form

πi = απLevi + (1− α)πUnifi , (10)

where α ∈ (0, 1). Thus, with SLEV, Eqn. (6) is solved, where both the sampling
and rescaling/reweighting are done with the probabilities given in Eqn. (10). This
estimator will be denoted by β̃SLEV , and to our knowledge it has not been explicitly
considered previously.

• Unweighted Leveraging Estimator (LEVUNW) is the estimator resulting from
a leverage-based sampling and unweighted LS estimation. That is, after the samples
have been selected with leverage-based sampling probabilities, rather than solving
the weighted LS estimator of (6), we will compute the solution of the unweighted LS
estimator :

argminβ∈Rp ||STXy − STXXβ||2. (11)

Whereas the previous estimators all follow the basic framework of sampling and rescal-
ing/reweighting according to the same distribution (which is used in worst-case analy-
sis to control the properties of both eigenvalues and eigenvectors and provide unbiased
estimates of certain quantities within the analysis, see Drineas et al., 2006; Mahoney,
2011; Drineas et al., 2012), with LEVUNW they are essentially done according to
two different distributions—the reason being that not rescaling leads to the same so-
lution as rescaling with the uniform distribution. This estimator will be denoted by
β̃LEV UNW , and to our knowledge it has not been considered previously.

These methods can all be used to estimate the coefficient vector β, and we will analyze—
both theoretically and empirically—their statistical properties in terms of bias and variance.

2.3 Running Time Considerations

Although it is not our main focus, the running time for leverage-based sampling algorithms is
of interest. The running times of these algorithms depend on both the time to construct the
probability distribution, {πi}ni=1, and the time to solve the subsampled problem. For UNIF,
the former is trivial and the latter depends on the size of the subproblem. For estimators
that depend on the exact or approximate (recall the flexibility in Eqn. (7) provided by γ)
leverage scores, the running time is dominated by the exact or approximate computation of
those scores. A näıve algorithm involves using a QR decomposition or the thin SVD of X
to obtain the exact leverage scores. Unfortunately, this exact algorithm takes O(np2) time
and is thus no faster than solving the original LS problem exactly. Of greater interest is
the algorithm of Drineas et al. (2012) that computes relative-error approximations to all of
the leverage scores of X in o(np2) time.

In more detail, given as input an arbitrary n×p matrix X, with n� p, and an error pa-
rameter ε ∈ (0, 1), the main algorithm of Drineas et al. (2012) (described also in Section 5.2
below) computes numbers ˜̀

i, for all i = 1, . . . , n, that are relative-error approximations
to the leverage scores hii, in the sense that |hii − ˜̀

i| ≤ εhii, for all i = 1, . . . , n. This
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algorithm runs in roughly O(np log(p)/ε) time,3 which for appropriate parameter settings
is o(np2) time (Drineas et al., 2012). Given the numbers ˜̀

i, for all i = 1, . . . , n, we can let
πi = ˜̀

i/
∑n

i=1
˜̀
i, which then yields probabilities of the form of Eqn. (7) with (say) γ = 0.5

or γ = 0.9. Thus, we can use these πi in place of hii in BELV, SLEV, or LEVUNW, thus
providing a way to implement these procedures in o(np2) time.

The running time of the relative-error approximation algorithm of Drineas et al. (2012)
depends on the time needed to premultiply X by a randomized Hadamard transform (i.e.,
a “structured” random projection). Recently, high-quality numerical implementations of
such random projections have been provided; see, e.g., Blendenpik (Avron et al., 2010),
as well as LSRN (Meng et al., 2014), which extends these implementations to large-scale
parallel environments. These implementations demonstrate that, for matrices as small as
several thousand by several hundred, leverage-based algorithms such as LEV and SLEV can
be better in terms of running time than the computation of QR decompositions or the SVD
with, e.g., Lapack. See Avron et al. (2010); Meng et al. (2014) for details, and see Gittens
and Mahoney (2013) for the application of these methods to the fast computation of leverage
scores. Below, we will evaluate an implementation of a variant of the main algorithm
of Drineas et al. (2012) in the software environment R.

2.4 Additional Related Work

Our leverage-based methods for estimating β are related to resampling methods such as
the bootstrap (Efron, 1979), and many of these resampling methods enjoy desirable asymp-
totic properties (Shao and Tu, 1995). Resampling methods in linear models were studied
extensively in Wu (1986) and are related to the jackknife (Miller, 1974a,b; Jaeckel, 1972;
Efron and Gong, 1983). They usually produce resamples at a similar size to that of the full
data, whereas algorithmic leveraging is primarily interested in constructing subproblems
that are much smaller than the full data. In addition, the goal of resampling is tradition-
ally to perform statistical inference and not to improve the running time of an algorithm,
except in the very recent work (Kleiner et al., 2012). Additional related work in statistics
includes Hinkley (1977); Rubin (1981); Liu et al. (1998); Bickel et al. (1997); Politis et al.
(1999).

After the submission to JMLR, we were made aware, by the reviewers, of two related
pieces of work (Dhillon et al., 2013; Hsu et al., 2014). Dhillon et al. (2013) analyzed the
random rotation and uniform sampling, and then proposed several sampling procedures that
were justified in a statistical setting. For these sampling procedures, Dhillon et al. (2013)
derived some error bounds, which are in the same line of thinking as Drineas et al. (2006,
2010). Hsu et al. (2014) applied a uniform sampling analysis to matrix X after random
rotation and derived prediction error bound.

3. Bias and Variance Analysis of Subsampling Estimators

In this section, we develop analytic methods to study the biases and variances of the sub-
sampling estimators described in Section 2.2. Analyzing these subsampling methods is

3. In more detail, the asymptotic running time of the main algorithm of Drineas et al. (2012) is
O
(
np ln

(
pε−1

)
+ npε−2 lnn+ p3ε−2 (lnn)

(
ln

(
pε−1

)))
. To simplify this expression, suppose that p ≤

n ≤ ep and treat ε as a constant; then, the asymptotic running time is O
(
np lnn+ p3 (lnn) (ln p)

)
.
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challenging for at least the following two reasons: first, there are two layers of randomness
in the estimators, i.e., the randomness inherent in the linear regression model as well as ran-
dom subsampling of a particular sample from the linear model; and second, the estimators
depends on random subsampling through the inverse of random sampling matrix, which is
a nonlinear function. To ease the analysis, we will employ a Taylor series analysis to ap-
proximate the subsampling estimators as linear combinations of random sampling matrices,
and we will consider biases and variances both conditioned as well as not conditioned on
the data. Here is a brief outline of the main results of this section.

• We will start in Section 3.1 with bias and variance results for weighted LS estimators
for general sampling/reweighting probabilities. This will involve viewing the solution
of the subsampled LS problem as a function of the vector of sampling/reweighting
probabilities and performing a Taylor series expansion of the solution to the sub-
sampled LS problem around the expected value (where the expectation is taken with
respect to the random choices of the algorithm) of that vector.

• Then, in Section 3.2, we will specialize these results to leverage-based sampling and
uniform sampling, describing their complementary properties. We will see that, in
terms of bias and variance, neither LEV nor UNIF is uniformly better than the other.
In particular, LEV has variance whose size-scale is better than the size-scale of UNIF;
but UNIF does not have leverage scores in the denominator of its variance expressions,
as does LEV, and thus the variance of UNIF is not inflated on inputs that have very
small leverage scores.

• Finally, in Section 3.3, we will propose and analyze two new leveraging algorithms that
will address deficiencies of LEV and UNIF in two different ways. The first, SLEV,
constructs a smaller LS problem with “shrinkage” leverage scores that are constructed
as a convex combination of leverage score probabilities and uniform probabilities; and
the second, LEVUNW, uses leverage-based sampling probabilities to construct and
solve an unweighted or biased LS problem.

3.1 Traditional Weighted Sampling Estimators

We start with the bias and variance of the traditional weighted sampling estimator β̃W ,
given in Eqn. (12) below. Recall that this estimator actually refers to a parameterized
family of estimators, parameterized by the sampling/rescaling probabilities. The estimate
obtained by solving the weighted LS problem of (6) can be represented as

β̃W = (XTSXD
2STXX)−1XTSTXD

2SXy

= (XTWX)−1XTWy, (12)

where W = SXD
2STX is an n×n diagonal random matrix, i.e., all off-diagonal elements are

zeros, and where both SX and D are defined in terms of the sampling/rescaling probabilities.
(In particular, W describes the probability distribution with which to draw the sample
and with which to reweigh the subsample, where both are done according to the same
distribution. Thus, this section does not apply to LEVUNW; see Section 3.3.2 for the
extension to LEVUNW.) Although our results hold more generally, we are most interested
in UNIF, LEV, and SLEV, as described in Section 2.2.
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Clearly, the vector β̃W can be regarded as a function of the random weight vector
w = (w1, w2, . . . , wn)T , denoted as β̃W (w), where (w1, w2, . . . , wn) are diagonal entries of
W . Since we are performing random sampling with replacement, it is easy to see that
w = (w1, w2, . . . , wn)T has a scaled multinomial distribution,

Pr

[
w1 =

k1
rπ1

, w2 =
k2
rπ2

, . . . , wn =
kn
rπn

]
=

r!

k1!k2! . . . , kn!
πk11 π

k2
2 · · ·π

kn
n ,

and thus it can easily be shown that E [w] = 1. By setting w0, the vector around which we
will perform our Taylor series expansion, to be the all-ones vector, i.e., w0 = 1, then β̃(w)
can be expanded around the full sample ordinary LS estimate β̂ols, i.e., β̃W (1) = β̂ols. From
this, we can establish the following lemma, the proof of which may be found in Appendix B.

Lemma 1 Let β̃W be the output of the SubsampleLS Algorithm, obtained by solving the
weighted LS problem of (6). Then, a Taylor expansion of β̃W around the point w0 = 1
yields

β̃W = β̂ols + (XTX)−1XTDiag {ê} (w − 1) +RW , (13)

where ê = y − Xβ̂ols is the LS residual vector, and where RW is the Taylor expansion
remainder.

Remark. The significance of Lemma 1 is that, to leading order, the vector w that encodes
information about the sampling process and subproblem construction enters the estimator
of β̃W linearly. The additional error, RW depends strongly on the details of the sampling
process, and in particular will be very different for UNIF, LEV, and SLEV.

Remark. Our approximations hold when the Taylor series expansion is valid, i.e., when RW
is “small,” e.g., RW = op(||w − w0||), where op(·) means “little o” with high probability
over the randomness in the random vector w. Although we will evaluate the quality of
our approximations empirically in Sections 4 and 5, we currently do not have a precise
theoretical characterization of when this holds. Here, we simply make two observations.
First, this expression will fail to hold if rank is lost in the sampling process. This is because
in general there will be a bias due to failing to capture information in the dimensions that
are not represented in the sample (Recall that one may use the Moore-Penrose generalized
inverse for inverting rank-deficient matrices). Second, this expression will tend to hold
better as the subsample size r is increased. However, for a fixed value of r, the linear
approximation regime will be larger when the sample is constructed using information in
the leverage scores—since, among other things, using leverage scores in the sampling process
is designed to preserve the rank of the subsampled problem (Drineas et al., 2006; Mahoney,
2011; Drineas et al., 2012). A detailed discussion of this last point is available in Mahoney
(2011); and these observations will be confirmed empirically in Section 5.

Remark. Since, essentially, LEVUNW involves sampling and reweighting according to two
different distributions4, the analogous expression for LEVUNW will be somewhat different,
as will be discussed in Lemma 5 in Section 3.3.

4. In this case, the latter distribution is the uniform distribution, where recall that reweighting uniformly
leads to the same solution as not reweighting at all.
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Given Lemma 1, we can establish the following lemma, which provides expressions for
the conditional and unconditional expectations and variances for the weighted sampling
estimators. The first two expressions in the lemma are conditioned on the data vector y5;
and the last two expressions in the lemma provide similar results, except that they are not
conditioned on the data vector y. The proof of this lemma appears in Appendix B.

Lemma 2 The conditional expectation and conditional variance for the traditional algo-
rithmic leveraging procedure, i.e., when the subproblem solved is a weighted LS problem of
the form (6), are given by:

Ew

[
β̃W |y

]
= β̂ols + Ew [RW ] ; (14)

Varw

[
β̃W |y

]
=(XTX)−1XT

[
Diag {ê}Diag

{
1

rπ

}
Diag {ê}

]
X(XTX)−1

+ Varw [RW ] , (15)

where W specifies the probability distribution used in the sampling and rescaling steps. The
unconditional expectation and unconditional variance for the traditional algorithmic lever-
aging procedure are given by:

E
[
β̃W

]
=β0; (16)

Var
[
β̃W

]
=σ2(XTX)−1 +

σ2

r
(XTX)−1XTDiag

{
(1− hii)2

πi

}
X(XTX)−1

+ Var [RW ] . (17)

Remark. Eqn. (14) states that, when the Ew [RW ] term is negligible, i.e., when the
linear approximation is valid, then, conditioning on the observed data y, the estimate β̃W
is approximately unbiased, relative to the full sample ordinarily LS estimate β̂ols; and
Eqn. (16) states that the estimate β̃W is unbiased, relative to the “true” value β0 of the
parameter vector β. That is, given a particular data set (X,y), the conditional expectation
result of Eqn. (14) states that the leveraging estimators can approximate well β̂ols; and,
as a statistical inference procedure for arbitrary data sets, the unconditional expectation
result of Eqn. (16) states that the leveraging estimators can infer well β0.
Remark. Both the conditional variance of Eqn. (15) and the (second term of the) un-
conditional variance of Eqn. (17) are inversely proportional to the subsample size r; and
both contain a sandwich-type expression, the middle of which depends on how the leverage
scores interact with the sampling probabilities. Moreover, the first term of the uncondi-
tional variance, σ2(XTX)−1, equals the variance of the ordinary LS estimator; this implies,
e.g., that the unconditional variance of Eqn. (17) is larger than the variance of the ordinary
LS estimator, which is consistent with the Gauss-Markov theorem.

3.2 Leverage-based Sampling and Uniform Sampling Estimators

Here, we specialize Lemma 2 by stating two lemmas that provide the conditional and
unconditional expectation and variance for LEV and UNIF, and we will discuss the relative

5. Here and below, the subscript w on Ew and Varw refers to performing expectations and variances with
respect to (just) the random weight vector w and not the data.
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merits of each procedure. The proofs of these two lemmas are immediate, given the proof
of Lemma 2. Thus, we omit the proofs, and instead discuss properties of the expressions
that are of interest in our empirical evaluation.

Our main conclusion here is that Lemma 3 and Lemma 4 highlight that the statistical
properties of the algorithmic leveraging method can be quite different than the algorithmic
properties. Prior work has adopted an algorithmic perspective that has focused on providing
worst-case running time bounds for arbitrary input matrices. From this algorithmic per-
spective, leverage-based sampling (i.e., explicitly or implicitly biasing toward high-leverage
components, as is done in particular with the LEV procedure) provides uniformly superior
worst-case algorithmic results, when compared with UNIF (Drineas et al., 2006; Mahoney,
2011; Drineas et al., 2012). Our analysis here reveals that, from a statistical perspective
where one is interested in the bias and variance properties of the estimators, the situation
is considerably more subtle. In particular, a key conclusion from Lemmas 3 and 4 is that,
with respect to their variance or MSE, neither LEV nor UNIF is uniformly superior for all
input.

We start with the bias and variance of the leverage subsampling estimator β̃LEV .

Lemma 3 The conditional expectation and conditional variance for the LEV procedure are
given by:

Ew

[
β̃LEV |y

]
= β̂ols + Ew [RLEV ] ;

Varw

[
β̃LEV |y

]
=
p

r
(XTX)−1XT

[
Diag {ê}Diag

{
1

hii

}
Diag {ê}

]
X(XTX)−1

+ Varw [RLEV ] .

The unconditional expectation and unconditional variance for the LEV procedure are given
by:

E
[
β̃LEV

]
= β0;

Var
[
β̃LEV

]
= σ2(XTX)−1 +

pσ2

r
(XTX)−1XTDiag

{
(1− hii)2

hii

}
X(XTX)−1

+ Var [RLEV ] . (18)

Remark. Two points are worth making. First, the variance expressions for LEV depend
on the size (i.e., the number of columns and rows) of the n× p matrix X and the number
of samples r as p/r. This variance size-scale many be made to be very small if p� r � n.
Second, the sandwich-type expression depends on the leverage scores as 1/hii, implying
that the variances could be inflated to arbitrarily large values by very small leverage scores.
Both of these observations will be confirmed empirically in Section 4.

We next turn to the bias and variance of the uniform subsampling estimator β̃UNIF .
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Lemma 4 The conditional expectation and conditional variance for the UNIF procedure
are given by:

Ew

[
β̃UNIF |y

]
= β̂ols + Ew [RUNIF ]

Varw

[
β̃UNIF |y

]
=
n

r
(XTX)−1XT [Diag {ê}Diag {ê}]X(XTX)−1

+ Varw [RUNIF ] . (19)

The unconditional expectation and unconditional variance for the UNIF procedure are given
by:

E
[
β̃UNIF

]
= β0;

Var
[
β̃UNIF

]
= σ2(XTX)−1 +

n

r
σ2(XTX)−1XTDiag

{
(1− hii)2

}
X(XTX)−1

+ Var [RUNIF ] . (20)

Remark. Two points are worth making. First, the variance expressions for UNIF depend
on the size (i.e., the number of columns and rows) of the n× p matrix X and the number
of samples r as n/r. Since this variance size-scale is very large, e.g., compared to the p/r
from LEV, these variance expressions will be large unless r is nearly equal to n. Second,
the sandwich-type expression is not inflated by very small leverage scores.
Remark. Apart from a factor n/r, the conditional variance for UNIF, as given in Eqn. (19),
is the same as Hinkley’s weighted jackknife variance estimator (Hinkley, 1977).

3.3 Novel Leveraging Estimators

In view of Lemmas 3 and 4, we consider several ways to take advantage of the complementary
strengths of the LEV and UNIF procedures. Recall that we would like to sample with respect
to probabilities that are “near” those defined by the empirical statistical leverage scores.
We at least want to identify large leverage scores to preserve rank. This helps ensure that
the linear regime of the Taylor expansion is large, and it also helps ensure that the scale of
the variance is p/r and not n/r. But we would like to avoid rescaling by 1/hii when certain
leverage scores are extremely small, thereby avoiding inflated variance estimates.

3.3.1 The Shrinkage Leveraging (SLEV) Estimator

Consider first the SLEV procedure. As described in Section 2.2, this involves sampling and
reweighting with respect to a distribution that is a convex combination of the empirical
leverage score distribution and the uniform distribution. That is, let πLev denote a distri-
bution defined by the normalized leverage scores (i.e., πLevi = hii/p, or πLev is constructed
from the output of the algorithm of (Drineas et al., 2012) that computes relative-error ap-
proximations to the leverage scores), and let πUnif denote the uniform distribution (i.e.,

πUnifi = 1/n, for all i ∈ [n]); then the sampling probabilities for the SLEV procedure are of
the form

πi = απLevi + (1− α)πUnifi , (21)

where α ∈ (0, 1).

874



A Statistical Perspective on Algorithmic Leveraging

Since SLEV involves solving a weighted LS problem of the form of Eqn. (6), expressions
of the form provided by Lemma 2 hold immediately. In particular, SLEV enjoys approximate
unbiasedness, in the same sense that the LEV and UNIF procedures do. The particular
expressions for the higher order terms can be easily derived, but they are much messier
and less transparent than the bounds provided by Lemmas 3 and 4 for LEV and UNIF,
respectively. Thus, rather than presenting them, we simply point out several aspects of the
SLEV procedure that should be immediate, given our earlier theoretical discussion.

First, note that mini πi ≥ (1 − α)/n, with equality obtained when hii = 0. Thus,
assuming that 1 − α is not extremely small, e.g., 1 − α = 0.1, then none of the SLEV
sampling probabilities is too small, and thus the variance of the SLEV estimator does not
get inflated too much, as it could with the LEV estimator. Second, assuming that 1− α is
not too large, e.g., 1−α = 0.1, then Eqn. (7) is satisfied with γ = 1.1, and thus the amount
of oversampling that is required, relative to the LEV procedure, is not much, e.g., 10%. In
this case, the variance of the SLEV procedure has a scale of p/r, as opposed to n/r scale
of UNIF, assuming that r is increased by that 10%. Third, since Eqn. (21) is still required
to be a probability distribution, combining the leverage score distribution with the uniform
distribution has the effect of not only increasing the very small scores, but it also has the
effect of performing shrinkage on the very large scores. Finally, all of these observations also
hold if, rather that using the exact leverage score distribution (which recall takes O(np2)
time to compute), we instead use approximate leverage scores, as computed with the fast
algorithm of Drineas et al. (2012). For this reason, this approximate version of the SLEV
procedure is the most promising for very large-scale applications.

3.3.2 The Unweighted Leveraging (LEVUNW) Estimator

Consider next the LEVUNW procedure. As described in Section 2.2, this estimator is differ-
ent than the previous estimators, in that the sampling and reweighting are done according
to different distributions. (Since LEVUNW does not sample and reweight according to the
same probability distribution, our previous analysis does not apply.) Thus, we shall exam-
ine the bias and variance of the unweighted leveraging estimator β̃LEV UNW . To do so, we
first use a Taylor series expansion to get the following lemma, the proof of which may be
found in Appendix B.

Lemma 5 Let β̃LEV UNW be the output of the modified SubsampleLS Algorithm, obtained
by solving the unweighted LS problem of (11). Then, a Taylor expansion of β̃LEV UNW
around the point w0 = rπ yields

β̃LEV UNW = β̂wls + (XTW0X)−1XTDiag {êw} (w − rπ) +RLEV UNW , (22)

where β̂wls = (XTW0X)−1XW0y is the full sample weighted LS estimator, êw = y−Xβ̂wls
is the LS residual vector, W0 = Diag {rπ} = Diag {rhii/p}, and RLEV UNW is the Taylor
expansion remainder.

Remark. This lemma is analogous to Lemma 1. Since the sampling and reweighting are
performed according to different distributions, however, the point about which the Taylor
expansion is performed, as well as the prefactors of the linear term, are somewhat different.
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In particular, here we expand around the point w0 = rπ since E [w] = rπ when no
reweighting takes place.

Given this Taylor expansion lemma, we can now establish the following lemma for the
mean and variance of LEVUNW, both conditioned and unconditioned on the data y. The
proof of the following lemma may be found in Appendix B.

Lemma 6 The conditional expectation and conditional variance for the LEVUNW proce-
dure are given by:

Ew

[
β̃LEV UNW |y

]
= β̂wls + Ew [RLEV UNW ] ;

Varw

[
β̃LEV UNW |y

]
= (XTW0X)−1XTDiag {êw}W0Diag {êw}X(XTW0X)−1

+ Varw [RLEV UNW ] ,

where W0 = Diag {rπ}, and where β̂wls = (XTW0X)−1XW0y is the full sample weighted
LS estimator. The unconditional expectation and unconditional variance for the LEVUNW
procedure are given by:

E
[
β̃LEV UNW

]
= β0;

Var
[
β̃LEV UNW

]
= σ2(XTW0X)−1XTW 2

0X(XTW0X)−1

+ σ2(XTW0X)−1XTDiag {I − PX,W0}W0Diag {I − PX,W0}X
(XTW0X)−1 + Var [RLEV UNW ] (23)

where PX,W0 = X(XTW0X)−1XTW0.

Remark. The two expectation results in this lemma state: (i), when Ew [RLEV UNW ]
is negligible, then, conditioning on the observed data y, the estimator β̃LEV UNW is ap-
proximately unbiased, relative to the full sample weighted LS estimator β̂wls; and (ii) the
estimator β̃LEV UNW is unbiased, relative to the “true” value β0 of the parameter vector β.
That is, if we apply LEVUNW to a given data set N times, then the average of the N LEV-
UNW estimates are not centered at the LS estimate, but instead are centered roughly at the
weighted least squares estimate; while if we generate many data sets from the true model
and apply LEVUNW to these data sets, then the average of these estimates is centered
around true value β0.
Remark. As expected, when the leverage scores are all the same, the variance in Eqn. (23)
is the same as the variance of uniform random sampling. This is expected since, when
reweighting with respect to the uniform distribution, one does not change the problem being
solved, and thus the solutions to the weighted and unweighted LS problems are identical.
More generally, the variance is not inflated by very small leverage scores, as it is with LEV.
For example, the conditional variance expression is also a sandwich-type expression, the
center of which is W0 = Diag {rhii/n}, which is not inflated by very small leverage scores.

4. Main Empirical Evaluation

In this section, we describe the main part of our empirical analysis of the behavior of the
biases and variances of the subsampling estimators described in Section 2.2. Additional
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empirical results will be presented in Section 5. In these two sections, we will use both syn-
thetic data and real data to illustrate the extreme properties of the subsampling methods
in realistic settings. We will use the MSE as a benchmark to compare the different subsam-
pling estimators; but since we are interested in both the bias and variance properties of our
estimates, we will present results for both the bias and variance separately.

Here is a brief outline of the main results of this section.

• In Section 4.1, we will describe our synthetic data. These data are drawn from three
standard distributions, and they are designed to provide relatively-realistic synthetic
examples where leverage scores are fairly uniform, moderately nonuniform, or very
nonuniform.

• Then, in Section 4.2, we will summarize our results for the unconditional bias and
variance for LEV and UNIF, when applied to the synthetic data.

• Then, in Section 4.3, we will summarize our results for the unconditional bias and
variance of SLEV and LEVUNW. This will illustrate that both SLEV and LEVUNW
can overcome some of the problems associated with LEV and UNIF.

• Finally, in Section 4.4, we will present our results for the conditional bias and variance
of SLEV and LEVUNW (as well as LEV and UNIF). In particular, this will show that
LEVUNW can incur substantial bias, relative to the other methods, when conditioning
on a given data set.

4.1 Description of Synthetic Data

We consider synthetic data of 1000 runs generated from y = Xβ + ε, where ε ∼ N(0, 9In),
where several different values of n and p, leading to both “very rectangular” and “moderately
rectangular” matrices X, are considered. The design matrix X is generated from one of
three different classes of distributions introduced below. These three distributions were
chosen since the first has nearly uniform leverage scores, the second has mildly non-uniform
leverage scores, and the third has very non-uniform leverage scores.

• Nearly uniform leverage scores (GA). We generated an n × p matrix X from
multivariate normal N(1p,Σ), where the (i, j)th element of Σij = 2 × 0.5|i−j|, and
where we set β = (110, 0.11p−20,110)

T . (Referred to as GA data.)

• Moderately nonuniform leverage scores (T3). We generatedX from multivariate
t-distribution with 3 degree of freedom and covariance matrix Σ as before. (Referred
to as T3 data.)

• Very nonuniform leverage scores (T1). We generated X from multivariate t-
distribution with 1 degree of freedom and covariance matrix Σ as before. (Referred
to as T1 data.)

See Table 4.1 for a summary of the parameters for the synthetic data we considered and
for basic summary statistics for the leverage scores probabilities (i.e., the leverage scores
that have been normalized to sum to 1 by dividing by p) of these data matrices. The
results reported in Table 4.1 are for leverage score statistics for a single fixed data matrix
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Distn n p Min Median Max Mean Std.Dev. Max
Min

Max
Median

GA 1K 10 1.96e-4 9.24e-4 2.66e-3 1.00e-3 4.49e-4 13.5 2.88
GA 1K 50 4.79e-4 9.90e-4 1.74e-3 1.00e-3 1.95e-4 3.63 1.76
GA 1K 100 6.65e-4 9.94e-4 1.56e-3 1.00e-3 1.33e-4 2.35 1.57

GA 5K 10 1.45e-5 1.88e-4 6.16e-4 2.00e-4 8.97e-5 42.4 3.28
GA 5K 50 9.02e-5 1.98e-4 3.64e-4 2.00e-4 3.92e-5 4.03 1.84
GA 5K 250 1.39e-4 1.99e-4 2.68e-4 2.00e-4 1.73e-5 1.92 1.34
GA 5K 500 1.54e-4 2.00e-4 2.48e-4 2.00e-4 1.20e-5 1.61 1.24

T3 1K 10 2.64e-5 4.09e-4 5.63e-2 1.00e-3 2.77e-3 2.13e+3 138
T3 1K 50 6.57e-5 5.21e-4 1.95e-2 1.00e-3 1.71e-3 297 37.5
T3 1K 100 7.26e-5 6.39e-4 9.04e-3 1.00e-3 1.06e-3 125 14.1

T3 5K 10 5.23e-6 7.73e-5 5.85e-2 2.00e-4 9.66e-4 1.12e+4 757
T3 5K 50 9.60e-6 9.84e-5 1.52e-2 2.00e-4 4.64e-4 1.58e+3 154
T3 5K 250 1.20e-5 1.14e-4 3.56e-3 2.00e-4 2.77e-4 296 31.2
T3 5K 500 1.72e-5 1.29e-4 1.87e-3 2.00e-4 2.09e-4 108 14.5

T1 1K 10 4.91e-8 4.52e-6 9.69e-2 1.00e-3 8.40e-3 1.97e+6 2.14e+4
T1 1K 50 2.24e-6 6.18e-5 2.00e-2 1.00e-3 3.07e-3 8.93e+3 323
T1 1K 100 4.81e-6 1.66e-4 9.99e-3 1.00e-3 2.08e-3 2.08e+3 60.1

T1 5K 10 5.00e-9 6.18e-7 9.00e-2 2.00e-4 3.00e-3 1.80e+7 1.46e+5
T1 5K 50 4.10e-8 2.71e-6 2.00e-2 2.00e-4 1.39e-3 4.88e+5 7.37e+3
T1 5K 250 3.28e-7 1.50e-5 4.00e-3 2.00e-4 6.11e-4 1.22e+4 267
T1 5K 500 1.04e-6 2.79e-5 2.00e-3 2.00e-4 4.24e-4 1.91e+3 71.6

Table 1: Summary statistics for leverage-score probabilities (i.e., leverage scores divided by
p) for the synthetic data sets.

X generated in the above manner (for each of the 3 procedures and for each value of n and
p), but we have confirmed that similar results hold for other matrices X generated in the
same manner.

Several observations are worth making about the summaries presented in Table 4.1.
First, and as expected, the Gaussian data tend to have the most uniform leverage scores,
the T3 data are intermediate, and the T1 data have the most nonuniform leverage scores, as
measured by both the standard deviation of the scores as well as the ratio of maximum to
minimum leverage score. Second, the standard deviation of the leverage score distribution
is substantially less sensitive to non-uniformities in the leverage scores than is the ratio
of the maximum to minimum leverage score (or the maximum to the mean/median score,
although all four measures exhibit the same qualitative trends). Although we have not
pursued it, this suggests that these latter measures will be more informative as to when
leverage-based sampling might be necessary in a particular application. Third, in all these
cases, the variability trends are caused both by the large (in particular, the maximum)
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leverage scores increasing as well as the small (in particular, the minimum) leverage scores
decreasing. Fourth, within a given type of distribution (i.e., GA or T3 or T1), leverage scores
are more nonuniform when the matrix X is more rectangular, and this is true both when n
is held fixed and when p is held fixed.

4.2 Leveraging Versus Uniform Sampling on Synthetic Data

Here, we will describe the properties of LEV versus UNIF for synthetic data. See Figures 1,
2, and 3 for the results on data matrices with n = 1000 and p = 10, 50, and 100, respectively.
(The results for data matrices for n = 5000 and other values of n are similar.) In each case,
we generated a single matrix from that distribution (which we then fixed to generate the
y vectors) and β0 was set to be the all-ones vector; and then we ran the sampling process
multiple times, typically ca. 1000 times, in order to obtain reliable estimates for the biases
and variances. In each of the Figures 1, 2, and 3, the top panel is the variance, the bottom
panel is the squared bias; for both the bias and variance, we have plotted the results in
log-scale; and, in each figure, the first column is the GA model, the middle column is the
T3 model, and the right column is the T1 model.

The simulation results corroborate what we have learned from our theoretical analysis,
and there are several things worth noting. First, in general the squared bias is much
less than the variance, even for the T1 data, suggesting that the solution is unbiased in
the sense quantified in Lemmas 3 and 4. Second, LEV and UNIF perform very similarly
for GA, somewhat less similarly for T3, and quite differently for T1, consistent with the
results in Table 4.1 indicating that the leverage scores are very uniform for GA and very
nonuniform for T1. In addition, when they are different, LEV tends to perform better than
UNIF, i.e., have a lower MSE for a fixed sampling complexity. Third, as the subsample
size increases, the squared bias and variance tend to decrease monotonically. In particular,
the variance tends to decrease roughly as 1/r, where r is the size of the subsample, in
agreement with Lemmas 3 and 4. Moreover, the decrease for UNIF is much slower, in a
manner more consistent with the leading term of n/r in Eqn. (20), than is the decrease for
LEV, which by Eqn. (18) has leading term p/r. Fourth, for all three models, both the bias
and variance tend to increase when the matrix is less rectangular, e.g., as p increases 10 to
100 for n = 1000. All in all, LEV is comparable to or outperforms UNIF, especially when
the leverage scores are nonuniform.

4.3 Improvements from Shrinkage Leveraging and Unweighted Leveraging

Here, we will describe how our proposed SLEV and LEVUNW procedures can both lead
to improvements over LEV and UNIF. Recall that LEV can lead to large MSE by inflating
very small leverage scores. The SLEV procedure deals with this by considering a convex
combination of the uniform distribution and the leverage score distribution, thereby pro-
viding a lower bound on the leverage scores; and the LEVUNW procedure deals with this
by not rescaling the subproblem to be solved.

Consider Figures 4, 5, and 6, which present the variance and bias for synthetic data
matrices (for GA, T3, and T1 data) of size n× p, where n = 1000 and p = 10, 50, and 100,
respectively. In each case, LEV, SLEV for three different values of the convex combination
parameter α, and LEVUNW were considered. Several observations are worth making. First
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Figure 1: (Leveraging Versus Uniform Sampling subsection.) Comparison of variances and
squared biases of the LEV and UNIF estimators in three data sets (GA, T3, and
T1) for n = 1000 and p = 10. Left panels are GA data; Middle panels are T3
data; Right panels are T1 data. Upper panels are Logarithm of Variances; Lower
panels are Logarithm of Squared bias. Black lines are LEV; Dash lines are UNIF.

of all, for GA data (left panel in these figures), all the results tend to be quite similar; but
for T3 data (middle panel) and even more so for T1 data (right panel), differences appear.
Second, SLEV with α ' 0.1, i.e., when SLEV consists mostly of the uniform distribution, is
notably worse in a manner similarly as with UNIF. Moreover, there is a gradual decrease in
both bias and variance for our proposed SLEV as α is increased; and when α ' 0.9 SLEV is
slightly better than LEV. Finally, our proposed LEVUNW often has the smallest variance
over a wide range of subsample sizes for both T3 and T1, although the effect is not major.
All in all, these observations are consistent with our main theoretical results.

Next consider Figure 7. This figure examines the optimal convex combination choice
for α in SLEV, with α being the x-axis in all the plots. Different column panels in Figure 7
correspond to different subsample sizes r. Recall that there are two conflicting goals for
SLEV: adding (1 − α)/n to the small leverage scores will avoid substantially inflating the
variance of the resulting estimate by samples with extremely small leverage scores; and doing
so will lead to larger sample size r in order to obtain bounds of the form Eqns. (8) and (9).
Figure 7 plots the variance and bias for T1 data for a range of parameter values and for a
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Figure 2: (Leveraging Versus Uniform Sampling subsection.) Same as Figure 1, except that
n = 1000 and p = 50.

range of subsample sizes. In general, one sees that using SLEV to increase the probability
of choosing small leverage components with α around 0.8− 0.9 (and relatedly shrinking the
effect of large leverage components) has a beneficial effect on bias as well as variance. This
is particularly true in two cases: first, when the matrix is very rectangular, e.g., when the
p = 10, which is consistent with the leverage score statistics from Table 4.1; and second,
when the subsample size r is larger, as the results for r = 3p are much choppier (and for
r = 2p, they are still choppier). As a rule of thumb, these plots suggest that choosing
α = 0.9, and thus using πi = απLevi + (1− α)/n as the importance sampling probabilities,
strikes a balance between needing more samples and avoiding variance inflation.

Inspecting in Figure 7 the grey lines, dots, and dashes, which correspond to LEVUNW
for the various values of p, one can see that LEVUNW consistently has smaller variances
than SLEV for all values of α. We should emphasize, though, that these are unconditional
biases and variances. Since LEVUNW is approximately unbiased relative to the full sample
weighted LS estimate β̂wls, however, there is a large bias away from the full sample un-
weighted LS estimate β̂ols. This suggests that LEVUNW may be used when the primary
goal is to infer the true β0; but rather when the primary goal is to approximate the full
sample unweighted LS estimate, or when conditional biases and variances are of interest,
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Figure 3: (Leveraging Versus Uniform Sampling subsection.) Same as Figure 1, except that
n = 1000 and p = 100.

then SLEV may be more appropriate. We will discuss this in greater detail in Section 4.4
next.

4.4 Conditional Bias and Variance

Here, we will describe the properties of the conditional bias and variance under various
subsampling estimators. These will provide a more direct comparison between Eqns. (14)
and (15) from Lemma 2 and the corresponding results from Lemma 6. These will also
provide a more direct comparison with previous work that has adopted an algorithmic
perspective on algorithmic leveraging (Drineas et al., 2006; Mahoney, 2011; Drineas et al.,
2012).

Consider Figure 8, which presents our main empirical results for conditional biases and
variances. As before, matrices were generated from GA, T3 and T1; and we calculated
the empirical bias and variance of UNIF, LEV, SLEV with α = 0.9, and LEVUNW—in
all cases, conditional on the empirical data y. Several observations are worth making.
First, for GA the variances are all very similar; and the biases are also similar, with the
exception of LEVUNW. This is expected, since by the conditional expectation bounds from
Lemma 6, LEVUNW is approximately unbiased, relative to the full sample weighted LS
estimate β̂wls—and thus there should be a large bias away from the full sample unweighted
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Figure 4: (Improvements from SLEV and LEVUNW subsection.) Comparison of variances
and squared biases of the LEV, SLEV, and LEVUNW estimators in three data
sets (GA, T3, and T1) for n = 1000 and p = 10. Left panels are GA data; Middle
panels are T3 data; Right panels are T1 data. Grey lines are LEVUNW; black
lines are LEV; dotted lines are SLEV with α = 0.1; dot-dashed lines are SLEV
with α = 0.5; thick black lines are SLEV with α = 0.9.

LS estimate. Second, for T3 and even more prominently for T1, the variance of LEVUNW is
less than that for the other estimators. Third, when the leverage scores are very nonuniform,
as with T1, the relative merits of UNIF versus LEVUNW depend on the subsample size r.
In particular, the bias of LEVUNW is larger than that of UNIF even for very aggressive
downsampling; but it is substantially less than UNIF for moderate to large sample sizes.

Based on these and our other results, our default recommendation is to use SLEV (with
either exact or approximate leverage scores) with α ≈ 0.9: it is no more than slightly worse
than LEVUNW when considering unconditional biases and variances, and it can be much
better than LEVUNW when considering conditional biases and variances.

5. Additional Empirical Evaluation

In this section, we provide additional empirical results (of a more specialized nature than
those presented in Section 4). Here is a brief outline of the main results of this section.
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Figure 5: (Improvements from SLEV and LEVUNW subsection.) Same as Figure 4, except
that n = 1000 and p = 50.

• In Section 5.1, we will consider the synthetic data, and we will describe what happens
when the subsampled problem looses rank. This can happen if one is extremely ag-
gressive in downsampling with SLEV; but it is much more common with UNIF, even
if one samples many constraints. In both cases, the behavior of bias and variance is
very different than when rank is preserved.

• Then, in Section 5.2, we will summarize our results on synthetic data when the leverage
scores are computed approximately with the fast approximation algorithm of Drineas
et al. (2012). Among other things, we will describe the running time of this algorithm,
illustrating that it can solve larger problems compared to traditional deterministic
methods; and we will evaluate the unconditional bias and variance of SLEV when this
algorithm is used to approximate the leverage scores.

• Finally, in Section 5.3, we will consider real data, and we will present our results for
the conditional bias and variance for two data sets that are drawn from our previous
work in two genetics applications. One of these has very uniform leverage scores,
and the other has moderately nonuniform leverage scores; and our results from the
synthetic data hold also in these realistic applications.
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Figure 6: (Improvements from SLEV and LEVUNW subsection.) Same as Figure 4, except
that n = 1000 and p = 100.

5.1 Leveraging and Uniform Estimates for Singular Subproblems

Here, we will describe the properties of LEV versus UNIF for situations in which rank is lost
in the construction of the subproblem. That is, in some cases, the subsampled matrix, X∗,
may have column rank that is smaller than the rank of the original matrix X, and this leads
to a singular X∗TX∗ = XTWX. Of course, the LS solution of the subproblem can still
be solved, but there will be a “bias” due to the dimensions that are not represented in the
subsample. (We use the Moore-Penrose generalized inverse to compute the estimators when
rank is lost in the construction of the subproblem.) Before describing these results, recall
that algorithmic leveraging (in particular, LEV, but it holds for SLEV as well) guarantees
that this will not happen in the following sense: if roughly O(p log p) rows of X are sampled
using an importance sampling distribution that approximates the leverage scores in the
sense of Eqn. (7), then with very high probability the matrix X∗ does not lose rank (Drineas
et al., 2006; Mahoney, 2011; Drineas et al., 2012). Indeed, this observation is crucial from
the algorithmic perspective, i.e., in order to obtain relative-error bounds of the form of
Eqns. (8) and (9), and thus it was central to the development of algorithmic leveraging.
On the other hand, if one downsamples more aggressively, e.g., if one samples only, say,
p + 100 or p + 10 rows, or if one uses uniform sampling when the leverage scores are very
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Figure 7: (Improvements from SLEV and LEVUNW subsection.) Varying α in SLEV. Com-
parison of variances and squared biases of the SLEV estimator in data generated
from T1 with n = 1000 and variable p. Left panels are subsample size r = 3p;
Middle panels are r = 5p; Right panels are r = 10p. Circles connected by black
lines are p = 10; squares connected by dash lines are p = 50; triangles connected
by dotted lines are p = 100. Grey corresponds to the LEVUNW estimator.

nonuniform, then it is possible to lose rank. Here, we examine the statistical consequences
of this.

We have observed this phenomenon with the synthetic data for both UNIF as well as for
leverage-based sampling procedures; but the properties are somewhat different depending
on the sampling procedure. To illustrate both of these with a single synthetic example, we
first generated a 1000×10 matrix from multivariate t-distribution with 3 (or 2 or 1, denoted
T3, T2, and T1, respectively) degrees of freedom and covariance matrix Σij = 2×0.5|i−j|; we
then calculated the leverage scores of all rows; and finally we formed the matrix X was by
keeping the 50 rows with highest leverage scores and replicating 950 times the row with the
smallest leverage score. (This is a somewhat more realistic version of the toy Worst-case
Matrix that is described in Appendix A) We then applied LEV and UNIF to the data sets
with different subsample sizes, as we did for the results summarized in Section 4.2. Our
results are summarized in Figure 9 and 10.
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Figure 8: (Conditional Bias and Variance subsection.) Comparison of conditional variances
and squared biases of the LEV and UNIF estimators in three data sets (GA, T3,
and T1) for n = 1000 and p = 50. Left panels are GA data; Middle panels are
T3 data; Right panels are T1 data. Upper panels are Variances; Lower panels are
Squared Bias. Black lines for LEV estimate; dash lines for UNIF estimate; grey
lines for LEVUNW estimate; dotted lines for SLEV estimate with α = 0.9.

The top row of Figure 9 plots the fraction of singular XTWX, out of 500 trials, for
both LEV and UNIF; from left to right, results for T3, T2, and T1 are shown. Several
points are worth emphasizing. First, both LEV and UNIF loose rank if the downsampling
is sufficiently aggressive. Second, for LEV, as long as one chooses more than roughly 20
(or less for T2 and T1), i.e., the ratio r/p is at least roughly 2, then rank is not lost; but
for uniform sampling, one must sample a much larger fraction of the data. In particular,
when fewer than r = 100 samples are drawn, nearly all of the subproblems constructed
with the UNIF procedure are singular, and it is not until more than r = 300 that nearly
all of the subproblems are not singular. Although these particular numbers depend on the
particular data, one needs to draw many more samples with UNIF than with LEV in order
to preserve rank and this is a very general phenomenon. The middle row of Figure 9 shows
the boxplots of rank for the subproblem for LEV for those 500 tries; and the bottom row
shows the boxplots of the rank of the subproblem for UNIF for those 500 tries. Note the
unusual scale on the X-axis designed to highlight the lost rank data for both LEV as well
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Figure 9: Comparison of LEV and UNIF when rank is lost in the sampling process (n =
1000 and p = 10 here). Left panels are T3; Middle panels are T2; Right panels
are T1. Upper panels are proportion of singular XTWX, out of 500 trials, for
both LEV (solid lines) and UNIF (dashed lines); Middle panels are boxplots of
ranks of 500 LEV subsamples; Lower panels are boxplots of ranks of 500 UNIF
subsamples. Note the nonstandard scaling of the X axis.

as UNIF. These boxplots illustrate the sigmoidal distribution of ranks obtained by UNIF as
a function of the number of samples and the less severe beginning of the sigmoid for LEV;
and they also show that when subproblems are singular, then often many dimensions fail
to be captured. All in all, LEV outperforms UNIF, especially when the leverage scores are
nonuniform.

Figure 10 illustrates the variance and bias of the corresponding estimators. In particular,
the upper panels plot the logarithm of variances; the middle panels plot the same quantities,
except that it is zoomed-in on the X-axis; and the lower panels plot the logarithm of
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Figure 10: Comparison of LEV and UNIF when rank is lost in the sampling process (n =
1000 and p = 10 here). Left panel are T3; Middle panels are T2; Right panels
are T1. Upper panels are logarithm of variances of the estimates; Middle panels
are logarithm of variances, zoomed-in on the X-axis; Lower panels are logarithm
of squared bias of the estimates. Black line for LEV; Dash line for UNIF.

squared bias. As before, the left/middle/right panels present results for the T3/T2/T1 data,
respectively. The behavior here is very different that that shown in Figures 1, 2, and 3; and
several observations are worth making. First, for all three models and for both LEV and
UNIF, when the downsampling is very aggressive, e.g, r = p+5 or r = p+10, then the bias
is comparable to the variance. That is, since the sampling process has lost dimensions, the
linear approximation implicit in our Taylor expansion is violated. Second, both bias and
variance are worse for T1 than for T2 than for T3, which is consistent with Table 4.1, but the
effect is minor; and the bias and variance are generally much worse for UNIF than for LEV.
Third, as r increases, the variance for UNIF increases, hits a maximum and then decreases;
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and at the same time the bias for UNIF gradually decreases. Upon examining the original
data, the reason that there is very little variance initially is that most of the subsamples have
rank 1 or 2; then the variance increases as the dimensionality of the subsamples increases;
and then the variance decreases due to the 1/r scaling, as we saw in the plots in Section 4.2.
Fourth, as r increases, both the variance and bias of LEV decrease, as we saw in Section 4.2;
but in the aggressive downsampling regime, i.e., when r is very small, the variance of LEV
is particularly “choppy,” and is actually worse than that of UNIF, perhaps also due to rank
deficiency issues.

5.2 Approximate Leveraging via the Fast Leveraging Algorithm

Here, we employ the fast randomized algorithm from Drineas et al. (2012) to compute
approximations to the leverage scores of X, to be used in place of the exact leverage scores
in LEV, SLEV, and LEVUNW. To start, we provide a brief description of the algorithm
of Drineas et al. (2012), which takes as input an arbitrary n× p matrix X.

• Generate an r1 × n random matrix Π1 and a p× r2 random matrix Π2.

• Let R be the R matrix from a QR decomposition of Π1X.

• Compute and return the leverage scores of the matrix XR−1Π2.

For appropriate choices of r1 and r2, if one chooses Π1 to be a Hadamard-based random
projection matrix, then this algorithm runs in o(np2) time, and it returns 1± ε approxima-
tions to all the leverage scores of X (Drineas et al., 2012). In addition, with a high-quality
implementation of the Hadamard-based random projection, this algorithm runs faster than
traditional deterministic algorithms based on Lapack for matrices as small as several thou-
sand by several hundred (Avron et al., 2010; Gittens and Mahoney, 2013).

We have implemented in the software environment R two variants of this fast algorithm
of Drineas et al. (2012), and we have compared it with QR-based deterministic algorithms
also supported in R for computing the leverage scores exactly. In particular, the following
results were obtained on a PC with Intel Core i7 Processor and 6 Gbytes RAM running
Windows 7, on which we used the software package R, version 2.15.2. In the following, we
refer to the above algorithm as BFast (the Binary Fast algorithm) when (up to normal-
ization) each element of Π1 and Π2 is generated i.i.d. from {−1, 1} with equal sampling
probabilities; and we refer to the above algorithm as GFast (the Gaussian Fast algorithm)
when each element of Π1 is generated i.i.d. from a Gaussian distribution with mean zero and
variance 1/n and each element of Π2 is generated i.i.d. from a Gaussian distribution with
mean zero and variance 1/p. In particular, note that here we do not consider Hadamard-
based projections for Π1 or more sophisticated parallel and distributed implementations of
these algorithms (Avron et al., 2010; Meng et al., 2014; Gittens and Mahoney, 2013; Yang
et al., 2013).

To illustrate the behavior of this algorithm as a function of its parameters, we considered
synthetic data where the 20, 000×1, 000 design matrix X is generated from T1 distribution.
All the other parameters are set to be the same as before, except Σij = 0.1, for i 6= j,
and Σii = 2. We then applied BFast and GFast with varying r1 and r2 to the data. In
particular, we set r1 = p, 1.5p, 2p, 3p, 5p, where p = 1, 000, and we set r2 = κ log(n), for κ =
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Figure 11: (Fast Leveraging Algorithm subsection.) Effect of approximating leverage scores
using BFast and GFast for varying parameters. Upper panels: Varying parame-
ter r1 for fixed r2, where r2 = log(n) (black lines), r2 = 5 log(n) (dashed lines),
and r2 = 10 log(n) (dotted lines). Lower panels: Varying parameter r2 for fixed
r1, where r1 = p (black lines), r1 = 3p (dashed lines), and r1 = 5p (dotted lines).
Left two panels: Correlation between exact leverage scores and leverage scores
approximated using BFast and GFast, for varying r1 and r2. Right two panels:
CPU time for varying r1 and r2, using BFast and GFast.

1, 2, 3, 4, 5, 10, 20, where n = 20, 000. See Figure 11, which presents both a summary of the
correlation between the approximate and exact leverage scores as well as a summary of the
running time for computing the approximate leverage scores, as r1 and r2 are varied for both
BFast and GFast. We can see that the correlations between approximated and exact leverage
scores are not very sensitive to r1, whereas the running time increases roughly linearly for
increasing r1. In contrast, the correlations between approximated and exact leverage scores
increases rapidly for increasing r2, whereas the running time does not increase much when
r2 increases. These observations suggest that we may use a combination of small r1 and
large r2 to achieve high-quality approximation and short running time.

Next, we examine the running time of the approximation algorithms for computing the
leverage scores. Our results for running times are summarized in Figure 12. In that figure,
we plot the running time as sample size n and predictor size p are varied for BFast and
GFast. We can see that when the sample size is very small, the computation time of the
fast algorithms is slightly worse than that of the exact algorithm. (This phenomenon occurs
primarily due to the fact that the fast algorithm requires additional projection and matrix
multiplication steps, which dominate the running time for very small matrices.) On the
other hand, when the sample size is larger than ca. 20, 000, the computation time of the
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fast approximation algorithms becomes slightly less expensive than that of exact algorithm.
Much more significantly, when the sample size is larger than roughly 35, 000, the exact
algorithm requires more memory than our standard R environment can provide, and thus
it fails to run at all. In contrast, the fast algorithms can work with sample size up to
roughly 60, 000.

That is, the use of this randomized algorithm to approximate the leverage scores permits
us to work with data that are roughly 1.5 times larger in n or p, even when a simple
vanilla implementation is provided in the R environment. If one is interested in much
larger inputs, e.g., with n = 106 or more, then one should probably not work within
R and instead use Hadamard-based random projections for Π1 and/or the use of more
sophisticated methods, such as those described in Avron et al. (2010); Meng et al. (2014);
Gittens and Mahoney (2013); Yang et al. (2013); here we simply evaluate an implementation
of these methods in R. The reason that BFast and GFast can run for much larger input
is likely that the computational bottleneck for the exact algorithm is a QR decomposition,
while the computational bottleneck for the fast randomized algorithms is the matrix-matrix
multiplication step.

Finally, we evaluate the bias and variance of LEV, SLEV and LEVUNW estimates where
the leverage scores are calculated using exact algorithm, BFast, and GFast. In Figure 13,
we plot the variance and squared bias for T3 data sets. (We have observed similar but
slightly smoother results for the Gaussian data sets and similar but slightly choppier results
for the T1 data sets.) Observe that the variances of LEV estimates where the leverage
scores are calculated using exact algorithm, BFast, and GFast are almost identical; and
this observation is also true for SLEV and LEVUNW estimates. All in all, using the fast
approximation algorithm of Drineas et al. (2012) to compute approximations to the leverage
scores for use in LEV, SLEV, and LEVUNW leads to improved algorithmic performance,
while achieving nearly identical statistical results as LEV, SLEV, and LEVUNW when the
exact leverage scores are used.

5.3 Illustration of the Method on Real Data

Here, we provide an illustration of our methods on two real data sets drawn from two
problems in genetics with which we have prior experience (Dalpiaz et al., 2013; Mahoney
and Drineas, 2009). The first data set has relatively uniform leverage scores, while the
second data set has somewhat more nonuniform leverage scores. These two examples simply
illustrate that observations we made on the synthetic data also hold for more realistic data
that we have studied previously. For more information on the application of these ideas in
genetics, see previous work on PCA-correlated SNPs (Paschou et al., 2007, 2010).

5.3.1 Linear Model for Bias Correction in RNA-Seq Data

In order to illustrate how our methods perform on a real data set with nearly uniform
leverage scores, we consider an RNA-Seq data set containing n = 51, 751 read counts from
embryonic mouse stem cells (Cloonan et al., 2008). Recall that RNA-Seq is becoming the
major tool for transcriptome analysis; it produces digital signals by obtaining tens of millions
of short reads; and after being mapped to the genome, RNA-Seq data can be summarized by
a sequence of short-read counts. Recent work found that short-read counts have significant
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Figure 12: (Fast Leveraging Algorithm subsection.) CPU time for calculating exact leverage
scores and approximate leverage scores using the BFast and GFast versions of
the fast algorithm of (Drineas et al., 2012). Left panel is CPU time for varying
sample size n for fixed predictor size p = 500; Right panel is CPU time for
varying predictor size p for fixed sample size n = 2000. Black lines connect
the CPU time for calculating exact leverage scores; dash lines connect the CPU
time for using GFast to approximate the leverage scores; dotted lines connect
the CPU time for using BFast to approximate the leverage scores.

sequence bias (Li et al., 2010). Here, we consider a simplified linear model of Dalpiaz et al.
(2013) for correcting sequence bias in RNA-Seq. Let nij denote the counts of reads that are
mapped to the genome starting at the jth nucleotide of the ith gene, where i = 1, 2, . . . , 100
and j = 1, . . . , Li. We assume that the log transformed count of reads, yij = log(nij + 0.5),
depends on 40 nucleotides in the neighborhood, denoted as bij,−20, bij,−19, . . . , bij,18, bij,19
through the following linear model: yij = α +

∑19
k=−20

∑
h∈H βkhI(bij,k = h) + εij , where

H = {A,C,G}, where T is used as the baseline level, α is the grand mean, I(bij,k = h)
equals to 1 if the kth nucleotide of the surrounding sequence is h, and 0 otherwise, βkh is
the coefficient of the effect of nucleotide h occurring in the kth position, and εij ∼ N(0, σ2).
This linear model uses p = 121 parameters to model the sequence bias of read counts. For
n = 51, 751, model-fitting via LS is time-consuming.
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Figure 13: (Fast Leveraging Algorithm subsection.) Comparison of variances and squared
biases of the LEV, SLEV, and LEVUNW estimators in T3 data sets for n = 20000
and p = 5000 using BFast and GFast versions of the fast algorithm of (Drineas
et al., 2012). Left panels are LEV estimates; Middle panels are SLEV estimates;
Right panels are LEVUNW estimates. Black lines are exact algorithm; dash
lines are BFast; dotted lines are GFast.

Coefficient estimates were obtained using three subsampling algorithms for seven differ-
ent subsample sizes: 2p, 3p, 4p, 5p, 10p, 20p, 50p. We compare the estimates using the sample
bias and variances; and, for each subsample size, we repeat our sampling 100 times to get
100 estimates. (At each subsample size, we take one hundred subsamples and calculate all
the estimates; we then calculate the bias of the estimates with respect to the full sample
least squares estimate and their variance.) See Figure 14 for a summary of our results. In
the left panel of Figure 14, we plot the histogram of the leverage score sampling probabili-
ties. Observe that the distribution is quite uniform, suggesting that leverage-based sampling
methods will perform similarly to uniform sampling. To demonstrate this, the middle and
right panels of Figure 14 present the (conditional) empirical variances and biases of each
of the four estimates, for seven different subsample sizes. Observe that LEV, LEVUNW,
SLEV, and UNIF all have comparable sample variances. When the subsample size is very
small, all four methods have comparable sample bias; but when the subsample size is larger,
then LEVUNW has a slightly larger bias than the other three estimates.
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Figure 14: Empirical results for real data. Left panel is the histogram of the leverage
score sampling probabilities for the RNA-Seq data (the largest leverage score is
2.25× 10−5, and the mean is 1.93× 10−5, i.e., the largest is only slightly larger
than the mean); Middle panel is the empirical conditional variances of the LEV,
UNIF, LEVUNW, and SLEV estimates; Right panel is the empirical conditional
biases. Black lines for LEV; dash lines for UNIF; grey lines for LEVUNW;
dotted lines for SLEV with α = 0.9.

5.3.2 Linear Model for Predicting Gene Expressions of Cancer Patient

In order to illustrate how our methods perform on real data with moderately nonuniform
leverage scores, we consider a microarray data set that was presented in Nielsen et al.
(2002) (and also considered in Mahoney and Drineas 2009) for 46 cancer patients with
respect to n = 5, 520 genes. Here, we randomly select one patient’s gene expression as the
response y and use the remaining patients’ gene expressions as the predictors (so p = 45);
and we predict the selected patient’s gene expression using other patients gene expressions
through a linear model. We fit the linear model using subsampling algorithms with nine
different subsample sizes. See Figure 15 for a summary of our results. In the left panel
of Figure 15, we plot the histogram of the leverage score sampling probabilities. Observe
that the distribution is highly skewed and quite a number of probabilities are significantly
larger than the average probability. Thus, one might expect that leveraging estimates will
have an advantage over the uniform sampling estimate. To demonstrate this, the middle
and right panels of Figure 15 present the (conditional) empirical variances and biases of
each of the four estimates, for nine different subsample sizes. Observe that SLEV and LEV
have smaller sample variance than LEVUNW and that UNIF consistently has the largest
variance. Interestingly, since LEVUNW is approximately unbiased to the weighted least
squares estimate, here we observe that LEVUNW has by far the largest bias and that the
bias does not decrease as the subsample size increases. In addition, when the subsample
size is less than 2000, the biases of LEV, SLEV and UNIF are comparable; but when the
subsample size is greater than 2000, LEV and SLEV have slightly smaller bias than UNIF.
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Figure 15: Empirical results for real data. Left panel is the histogram of the leverage
score sampling probabilities for the microarray data (the largest leverage score
is 0.00124, and the mean is 0.00018, i.e., the largest is 7 times the mean); Middle
panel is the empirical conditional variances of the LEV, UNIF, LEVUNW, and
SLEV estimates; Right panel is the empirical conditional biases. Black lines for
LEV; dash lines for UNIF; grey lines for LEVUNW; dotted lines for SLEV with
α = 0.9.

6. Discussion and Conclusion

Algorithmic leveraging—a recently-popular framework for solving large least-squares re-
gression and other related matrix problems via sampling based on the empirical statistical
leverage scores of the data—has been shown to have many desirable algorithmic proper-
ties. In this paper, we have adopted a statistical perspective on algorithmic leveraging, and
we have demonstrated how this leads to improved performance of this paradigm on real
and synthetic data. In particular, from the algorithmic perspective of worst-case analysis,
leverage-based sampling provides uniformly superior worst-case algorithmic results, when
compared with uniform sampling. Our statistical analysis, however, reveals that, from the
statistical perspective of bias and variance, neither leverage-based sampling nor uniform
sampling dominates the other. Based on this, we have developed new statistically-inspired
leveraging algorithms that achieve improved statistical performance, while maintaining the
algorithmic benefits of the usual leverage-based method. Our empirical evaluation demon-
strates that our theory is a good predictor of the practical performance of both existing as
well as our newly-proposed leverage-based algorithms. In addition, our empirical evalua-
tion demonstrates that, by using a recently-developed algorithm to approximate the leverage
scores, we can compute improved approximate solutions for much larger least-squares prob-
lems than we can compute the exact solutions with traditional deterministic algorithms.

Finally, we should note that, while our results are straightforward and intuitive, obtain-
ing them was not easy, in large part due to seemingly-minor differences between problem
formulations in statistics, computer science, machine learning, and numerical linear algebra.
Now that we have “bridged the gap” by providing a statistical perspective on a recently-
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popular algorithmic framework, we expect that one can ask even more refined statistical
questions of this and other related algorithmic frameworks for large-scale computation.
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Appendix A. Asymptotic Analysis and Toy Data

In this appendix, we will relate our analytic methods to the notion of asymptotic relative
efficiency, and we will consider several toy data sets that illustrate various aspects of algo-
rithmic leveraging. Although the results of this appendix are not used elsewhere, and thus
some readers may prefer skip this appendix, we include it in order to relate our approach
to ideas that may be more familiar to certain readers.

A.1 Asymptotic Relative Efficiency Analysis

Here, we present an asymptotic analysis comparing UNIF with LEV, SLEV, and LEVUNW
in terms of their relative efficiency. Recall that one natural way to compare two procedures
is to compare the sample sizes at which the two procedures meet a given standard of
performance. One such standard is efficiency, which addresses how “spread out” about β0

is the estimator. In this case, the smaller the variance, the more “efficient” is the estimator
(Serfling, 2010). Since β0 is a p-dimensional vector, to determine the relative efficiency of
two estimators, we consider the linear combination of β0, i.e., cTβ0, where c is the linear
combination coefficient. In somewhat more detail, when β̂ and β̃ are two one-dimensional
estimates, their relative efficiency can be defined as

e(β̂, β̃) =
Var(β̃)

Var(β̂)
,

and when β̂ and β̃ are two p-dimensional estimates, we can take their linear combinations
cT β̂ and cT β̃, where c is the linear combination coefficient vector, and define their relative
efficiency as

e(cT β̂, cT β̃) =
Var(cT β̃)

Var(cT β̂)
.

In order to discuss asymptotic relative efficiency, we start with the following seemingly-
technical observation.
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Definition 7 A k × k matrix A is said to be A = O(αn) if and only if every element of A
satisfies Aij = O(αn) for i, j = 1, . . . , k.

Assumption 1 XTX =
∑n

i=1 xix
T
i is positive definite and (XTX)−1 = O(α−1n ).

Remark. Assuming XTX is nonsingular, for a LS estimator β̂ols to converge to true value
β0 in probability, it is sufficient and necessary that (XTX)−1 → 0 as n → ∞ (Anderson
and Taylor, 1976; Lai et al., 1978).
Remark. Although we have stated this as an assumption, one typically assumes an n-
dependence for αn (Anderson and Taylor, 1976). Since the form of the n-dependence is
unspecified, we can alternatively view Assumption 1 as a definition of αn. The usual as-
sumption that is made (typically for analytical convenience) is that αn = n (Fu and Knight,
2000). We will provide examples of toy data for which αn = n, as well as examples for which
αn 6= n. In light of our empirical results in Section 4 and the empirical observation that
leverage scores are often very nonuniform (Mahoney and Drineas, 2009; Gittens and Ma-
honey, 2013), it is an interesting question to ask whether the common assumption that
αn = n is too restrictive, e.g., whether it excludes interesting matrices X with very hetero-
geneous leveraging scores.

Under Assumption 1, i.e., that (XTX)−1 is asymptotically parameterized as (XTX)−1 =
O(α−1n ), we have the following three results to compare the leveraging estimators and the
uniform sampling estimator. The expressions in these three lemmas are complicated; and,
since they are expressed in terms of αn, they are not easy to evaluate on real or synthetic
data. (It is partly for this reason that our empirical evaluation is in terms of the bias and
variance of the subsampling estimators.) We start by stating a lemma characterizing the
relative efficiency of LEV and UNIF; the proof of this lemma may be found in Appendix B.

Lemma 8 To leading order, the asymptotic relative efficiency of cT β̃LEV and cT β̃UNIF is

e(cT β̃LEV , c
T β̃UNIF ) ' O(

1
αn

+ 1
r

√∑
i(1− hii)4 max(hii)

1
αn

+ 1
αnr

√∑
i
(1−hii)4
h2ii

max(hii)

), (24)

where the residual variance is ignored.

Next, we state a lemma characterizing the relative efficiency of SLEV and UNIF; the proof
of this lemma is similar to that of Lemma 8 and is thus omitted.

Lemma 9 To leading order, the asymptotic relative efficiency of cT β̃SLEV and cT β̃UNIF
is

e(cT β̃SLEV , c
T β̃UNIF ) ' O(

1
αn

+ 1
r

√∑
i(1− hii)4 max(hii)

1
αn

+ 1
αnr

√∑
i
(1−hii)4

π2
i

max(hii)

),

where the residual variance is ignored.

Finally, we state a lemma characterizing the relative efficiency of LEVUNW and UNIF; the
proof of this lemma may be found in Appendix B.
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Lemma 10 To leading order, the asymptotic relative efficiency of cT β̃LEV UNW and cT β̃UNIF
is

e(cT β̃LEV UNW , c
T β̃UNIF ) ' O(

1
αn

+ 1
r

√∑
i(1− hii)4 max(hii)

max(hii)
αn min(hii)

+ 1
αn min(hii)r

√∑
i(1− gii)4 max(gii)

),

where the residual variance is ignored and gii = hiix
T
i (XTDiag {hii}X)−1xi.

Of course, in an analogous manner, one could derive expressions for the asymptotic relative
efficiencies e(cT β̃SLEV , c

T β̃LEV ), e(cT β̃LEV UNW , c
T β̃LEV ), and e(cT β̃LEV UNW , c

T β̃SLEV ).

A.2 Illustration of the Method on Toy Data

Here, we will consider several toy data sets that illustrate various aspects of algorithmic
leveraging, including various extreme cases of the method. While some of these toy data
may seem artificial or contrived, they will highlight properties that manifest themselves in
less extreme forms in the more realistic data in Section 4. Since the leverage score structure
of the matrix X is crucial for the behavior of the method, we will focus primarily on that
structure. To do so, consider the two extreme cases. At one extreme, when the leverage
scores are all equal, i.e., hii = p/n, for all i ∈ [n], the first two variance terms in Eqn. (20)
are equal to the first two variance terms in Eqn. (18). In this case, LEV simply reduces to
UNIF. At the other extreme, the leverage scores can be very nonuniform—e.g., there can
be a small number of leverage scores that are much larger than the rest and/or there can
be some leverage scores that are much smaller than the mean score. Dealing with these
two cases properly is crucial for the method of algorithmic leveraging, but these two cases
highlight important differences between the more common algorithmic perspective and our
more novel statistical perspective.

The former problem (of a small number of very large leverage scores) is of particular
importance from an algorithmic perspective. The reason is that in that case one wants to
compare the output of the sampling algorithm with the optimum based on the empirical
data (as opposed to the “ground truth” solution). Thus, dealing with large leverage scores
was a main issue in the development of the leveraging paradigm (Drineas et al., 2006;
Mahoney, 2011; Drineas et al., 2012). On the other hand, the latter problem (of some
very small leverage scores) is also an important concern if we are interested in statistical
properties of algorithmic leveraging. To see why, consider, e.g., the extreme case that a few
data points have very very small leverage scores, e.g. hii = 1/n4 for some i. In this case,
e.g., the second variance term in Eqn. (18) will be much larger than the second variance
term in Eqn. (20).

In light of this discussion, here are several toy examples to consider. We will start with
several examples where p = 1 that illustrate things in the simplest setting.

• Example 1A: Sample Mean. Let n be arbitrary, p = 1, and let the n × p matrix
X be such that Xi = 1, for all i ∈ [n], i.e., let X be the all-ones vector. In this case,
XTX = n and hii = 1/n, for all i ∈ [n], i.e., the leverage scores are uniform, and
thus algorithmic leveraging reduces to uniform sampling. Also, in this case, αn = n
in Assumption 1. All three asymptotic efficiencies are equal to O(1).
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• Example 1B: Simple Linear Combination. Let n be arbitrary, p = 1, and let
the n× p matrix X be such that Xi = ±1, for all i ∈ [n], either uniformly at random,
or such that Xi = +1 if i is odd and Xi = −1 if i is even. In this case, XTX = n and
hii = 1/n, for all i ∈ [n], i.e., the leverage scores are uniform; and, in addition, αn = n
in Assumption 1. For all four estimators, all four unconditional variances are equal

to σ2{ 1n + (1−1/n)2
r }. In addition, for all four estimators, all three relative efficiencies

are equal to O(1).

• Example 2: “Domain Expansion” Regression Line Through Origin. Let n
be arbitrary, p = 1, and let the n × p matrix X be such that Xi = i, i.e., they are
evenly spaced and increase without limit with increasing i. In this case,

XTX = n(n+ 1)(2n+ 1)/6,

and the leverage scores equal

hii =
6i2

n(n+ 1)(2n+ 1)
,

i.e., the leverage scores hii are very nonuniform. This is illustrated in the left panel
of Figure 16. Also, in this case, αn = n3 in Assumption 1. It is easy to see that the
first variance components of UNIF, LEV, SLEV are the same, i.e., they equal

(XTX)−1 =
6

n(n+ 1)(2n+ 1)
.

It is also easy to see that variances of LEV, SLEV and UNIF are dominated by their
second variance component. The leading terms of the second variance component of
LEV and UNIF are the same, and we expect to see the similar performance based
on their variance. The leading term of the second variance component of SLEV is
smaller than that of LEV and UNIF; and thus SLEV has smaller variance than LEV
and UNIF. Simple calculation shows that LEVUNW has a smaller leading term for
the second variance component than those of LEV, UNIF and SLEV.

• Example 3: “In-fill” Regression Line Through Origin. Let n be arbitrary,
p = 1, and let the n × p matrix X be such that Xi = 1/i. This is different than the
evenly spaced data points in the “inflated” toy example since the unevenly spaced data
points this this example get denser in the interval (0, 1]. The asymptotic properties
of such design matrix are so-called “in-fill” asymptotics (Cressie, 1991). In this case,

XTX = π2/6− ψ(1)(n+ 1),

where ψ(k) is the kth derivative of digamma function, and the leverage scores equal

hii =
1

i2(π2/6− ψ(1)(n+ 1))
,

i.e., the leverage scores hii are very nonuniform. This is illustrated in the middle panel
of Figure 16. Also, in this case, αn = 1 in Assumption 1.
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Figure 16: Leverage score-based sampling probabilities for three toy examples (Example 2,
Example 3, and Example 4). Left panel is Inflated Regression Line (Example 2);
Middle panel is In-fill Regression Line (Example 3); Right panel is Regression
Surface (Example 4). In this example, we set n = 10. Black lines connect the
sampling probability for each data points for LEV; dash lines (below black) con-
nect sampling probability for SLEV; and grey lines connect sampling probability
for LEV after we add an intercept (i.e., the sample mean) as a second column
to X.

To obtain an improved understanding of these examples, consider the first two panels of
Figures 16 and 17. Figure 16 shows the sampling probabilities for the Inflated Regression
Line and the In-fill Regression Line. Both the Inflated Regression Line and the In-fill
Regression Line have very nonuniform leverage scores, and by construction there is a natural
ordering such that the leverage scores increase or decrease respectively. For the Inflated
Regression Line, the minimum, mean, and maximum leverage scores are 6/(n(n+ 1)(2n+
1)), 1/n, and 6n/(n + 1)(2n + 1), respectively; and for the In-fill Regression Line, the
minimum, mean, and maximum leverage scores are 1/(n2(π2/6 − ψ(1)(n + 1))), 1/n, and
1/(π2/6− ψ(1)(n+ 1)), respectively. For reference, note that for the Sample Mean (as well
as for the Simple Linear Combination) all of the the leverage scores are equal to 1/n, which
equals 0.1 for the value of n = 10 used in Figure 16.

Figure 17 illustrates the theoretical variances for the same examples for particular values
of σ2 and r. In particular, observe that for the Inflated Regression Line, all three sampling
methods tend to have smaller variance as n is increased for a fixed value of p. This is
intuitive, and it is a common phenomenon that we observe in most of the synthetic and real
data sets. The property of the In-fill Regression Line where the variances are roughly flat
(actually, they increase slightly) is more uncommon, but it illustrates that other possibilities
exist. The reason is that leverage scores of most data points are relatively homogeneous (as
long as i is greater than

√
6n/π2, the leverage score of ith observation is less than mean

1/n but greater than 1/n2(π2/6)). When subsample size r is reasonably large, we have high
probabilities to sample these data points, whose sample probabilities inflate the variance.
These curves also illustrate that LEV and UNIF can be better or worse with respect to each
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Figure 17: Theoretical variances for three toy examples (Example 2, Example 3, and Exam-
ple 4) for various sample sizes n. Left panel is Inflated Regression Line (Example
2); Middle panel is In-fill Regression Line (Example 3); Right panel is Regression
Surface (Example 4). In this example, we set σ2 = 1 and r = 0.1n, for varying
n from 100 to 1000. Black line for LEV (Equation 18); dash line for UNIF
(Equation 20); dotted line (below black) for SLEV; and grey line for LEVUNW
(Equation 23).

other, depending on the problem parameters; and that SLEV and LEVUNW can be better
than either, for certain parameter values.

From these examples, we can see that the variance for the leveraging estimate can be
inflated by very small leverage scores. That is, since the variances involve terms that depend
on the inverse of hii, they can be large if hii is very small. Here, we note that the common
practice of adding an intercept, i.e., a sample mean or all-ones vector tends to uniformize
the leverage scores. That is, in statistical model building applications, we usually have
intercept—which is an all-ones vector, called the Sample Mean above—in the model, i.e.,
the first column of X is 1 vector; and, in this case, the hiis are bounded below by 1/n and
above by 1/wi (Weisberg, 2005). This is also illustrated in Figure 16, which shows the the
leverage scores for when an intercept is included. Interestingly, for the Inflated Regression
Line, the scores for elements that originally had very small score actually increase to be
on par with the largest scores. In our experience, it is much more common for the small
leverage scores to simply be increased a bit, as is illustrated with the modified scores for
the In-fill Regression Line.

We continue the toy examples with an example for p = 2; this is the simplest case that
allows us to look at what is behind Assumption 1.

• Example 4: Regression Surface Through Origin. Let p = 2 and n = 2k be even.
Let the elements of X be defined as x2j−1,n =

( √
n
3j

0
)
, and x2j,n =

(
0
√

n
3j

)
.

In this case,

XTX = (n
n∑
j=1

1

3j
)I2 = k

3k − 1

3k
I2 = O(n),
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and the leverage scores equal

h2j−1,2j−1 = h2j,2j =
2× 3k

3j(3k − 1)
.

Here, αn = n in Assumption 1, and the largest leverage score does not converge to
zero.

To see the leverage scores and the (theoretically-determined) variance for the Regression
Surface of Example 4, see the third panel of Figures 16 and 17. In particular, the third
panel of Figure 16 demonstrates what we saw with the p = 1 examples, i.e., that adding
an intercept tends to increase the small leverage scores; and Figure 17 illustrates that the
variances of all four estimates are getting close as sample size n becomes larger.
Remark. It is worth noting that (Miller, 1974a) showed αn = n in Assumption 1 implies
that maxhii → 0. In his proof, Miller essentially assumed that xi, i = 1, . . . , n is a
single sequence. Example 4 shows that Miller’s theorem does not hold for triangular array
(with one pattern for even numbered observations and the other pattern for odd numbered
observations) (Shao, 1987).

Finally, we consider several toy data sets with larger values of p. In this case, there
starts to be a nontrivial interaction between the singular value structure and the singular
vector structure of the matrix X.

• Example 5: Truncated Hadamard Matrix. An n × p matrix consisting of p
columns from a Hadamard Matrix (which is an orthogonal matrix) has uniform lever-
age scores—all are equal. Similarly, for an n × p matrix with entries i.i.d. from
Gaussian distribution—that is, unless the aspect ratio of the matrix is extremely
rectangular, e.g., p = 1, the leverage scores of a random Gaussian matrix are very
close to uniform. (In particular, as our empirical results demonstrate, using nonuni-
form sampling probabilities is not necessary for data generated from Gaussian random
matrices.)

• Example 6: Truncated Identity Matrix. An n×p matrix consisting of the first p
columns from an Identity Matrix (which is an orthogonal matrix) has very nonuniform
leverage scores—the first p are large, and the remainder are zero. (Since one could
presumably remove the all-zeros rows, this example might seem trivial, but it is useful
as a worst-case thought experiment.)

• Example 7: Worst-case Matrix. An n × p matrix consisting of n − 1 rows all
pointing in the same direction and 1 row pointing in some other direction. This has
one leverage score—the one corresponding to the row pointing in the other direction—
that is large, and the rest are mediumly-small. (This is an even better worst-case
matrix than Example 6; and in the main text we have an even less trivial example of
this.)

Example 5 is “nice” from an algorithmic perspective and, as seen in Section 4, from a sta-
tistical perspective as well. Since they have nonuniform leverage scores; Example 6 and
Example 7 are worse from an algorithmic perspective. As our empirical results will demon-
strate, they are also problematic from a statistical perspective, but for slightly different
reasons.
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Appendix B. Proofs of our main results

In this appendix, we will provide proofs of several of our main results.

B.1 Proof of Lemma 1

Recall that the matrix W = SXD
2STX encodes information about the sampling/rescaling

process; in particular, this includes UNIF, LEV, and SLEV, although our results hold more
generally.

By performing a Taylor expansion of β̃W (w) around the point w0 = 1, we have

β̃W (w) = β̃W (w0) +
∂β̃W (w)

∂wT
|w=w0(w −w0) +RW ,

where RW is remainder. Remainder RW = op(||w−w0||) when w is close to w0. By setting
w0 as the all-one vector, i.e., w0 = 1, β̃W (w0) is expanded around the full sample ordinary
LS estimate β̂ols, i.e., β̃W (1) = β̂ols. That is,

β̃W (w) = β̂ols +
∂(XTDiag {w}X)−1XTDiag {w}y

∂wT
|w=1(w − 1) +RW .

By differentiation by parts, we obtain

∂(XTDiag {w}X)−1XTDiag {w}y
∂wT

=
∂Vec[(XTDiag {w}X)−1XTDiag {w}y]

∂wT

= (1⊗ (XTDiag {w}X)−1)
∂Vec[XTDiag {w}y]

∂wT

(25)

+ (yTDiag {w}X ⊗ Ip)
∂Vec[(XTDiag {w}X)−1]

∂wT

(26)

where Vec is Vec operator, which stacks the columns of a matrix into a vector, and ⊗ is the
Kronecker product. The Kronecker product is defined as follows: suppose A = {aij} is an
m×n matrix and B = {bij} is a p× q matrix; then, A⊗B is a mp×nq matrix, comprising
m rows and n columns of p× q blocks, the ijth of which is aijB.

To simplify (25), note that is easy to show that (25) can be seen as

(1⊗ (XTDiag {w}X)−1)(yT ⊗XT )
∂Vec[Diag {w}]

∂wT
. (27)

To simplify (26), we need the following two results of matrix differentiation,

∂Vec[X−1]

∂(VecX)T
= −(X−1)T ⊗X−1, and

∂Vec[AWB]

∂wT
= (BT ⊗A)

∂Vec[W ]

∂wT
, (28)
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where the details on these two results can be found on page 366-367 of (Harville, 1997). By
combining the two results in (28), by the chain rule, we have

∂Vec[(XTDiag {w}X)−1]

∂wT

=
∂Vec[(XTDiag {w}X)−1]

∂Vec[(XTDiag {w}X)]T
∂Vec[(XTDiag {w}X)]

∂wT

= −(XTDiag {w}X)−1 ⊗ (XTDiag {w}X)−1(XT ⊗XT )
∂Vec[Diag {w}]

∂wT

By simple but tedious algebra, (25) and (26) give rise to

{(yT−yTDiag {w}X(XTDiag {w}X)−1XT )⊗(XTDiag {w}X)−1XT }∂Vec[Diag {w}]
∂wT

= {(y −Xβ̃W (w))T ⊗ (XTDiag {w}X)−1XT }∂Vec[Diag {w}]
∂wT

(29)

By combining these results, we thus have,

β̃W = β̂ols + {(y −Xβ̂ols)T ⊗ (XTX)−1XT }∂Vec(Diag {w})
∂wT

(w − 1) +RW

= β̂ols + {êT ⊗ (XTX)−1XT }


e1e

T
1

e2e
T
2

ene
T
n

 (w − 1) +RW

= β̂ols + (XTX)−1XTDiag {ê} (w − 1) +RW

where ê = y−Xβ̂ols is the LS residual vector, ei is a length n vector with ith element equal
to one and all other elements equal to zero, from which the lemma follows.

B.2 Proof of Lemma 2

Recall that we will use W to refer to the sampling process.

We start by establishing the conditional result. Since E [w] = 1, it is straightforward to
calculate conditional expectation of β̃W . Then, it is easy to see that

E [(wi − 1)(wj − 1)] =
1

rπi
− 1

r
for i = j

= −1

r
for i 6= j.

We rewrite it in matrix form,

Var [w] = E
[
(w − 1)(w − 1)T

]
= Diag

{
1

rπ

}
− 1

r
Jn,
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where π = (π1, π2, . . . , πn)T and Jn is a n × n matrix of ones. Some additional algebra
yields that the variance of β̃W is

Varw

[
β̃W − β̂|y

]
= Var

[
(XTX)−1XTDiag {ê} (w − 1)|y

]
+ Varw [RW ]

= (XTX)−1XTDiag {ê} (Diag

{
1

rπ

}
− 1

r
Jn)Diag {ê}X(XTX)−1

+ Varw [RW ]

= (XTX)−1XT [Diag {ê}Diag
{

1

rπ

}
Diag {ê}]X(XTX)−1 + Var [RW ]

= (XTX)−1XTDiag

{
1

rπ
ê2
}
X(XTX)−1 + Varw [RW ] .

Setting πi = hii/p in above equations, we thus prove the conditional result.
We next establish the unconditional result as follows. The unconditional expectation

result is easy to see as each data point is unbiased to β0. By rule of double expectations,
we have the variance of β̃W result, from which the lemma follows.

B.3 Proof of Lemma 5

First note that the unweighted leveraging estimate β̃LEV UNW can be written as

β̃LEV UNW = (XTSXS
T
XX)−1XTSXS

T
Xy = (XTWLEV UNWX)−1XTWLEV UNWy,

where WLEV UNW = SXS
T
X = Diag {wLEV UNW }, and where wLEV UNW has a multinomial

distribution Multi(r,π). The proof of this lemma is analogous to the proof of Lemma 1; and
so here we provide only some details on the differences. By employing a Taylor expansion,
we have

β̃LEV UNW (wLEV UNW ) = β̃LEV UNW (w0) +
∂β̃LEV UNW (w)

∂wT
|w=w0(wLEV UNW −w0)

+RLEV UNW ,

where RLEV UNW = op(||wLEV UNW −w0||). Following the proof of the previous lemma, we
have that

β̃LEV UNW = β̂wls + {(y −Xβ̂wls)T ⊗ (XTW0X)−1XT }∂vec(Diag {wLEV UNW })
∂wT

LEV UNW

(wLEV UNW −w0) +RLEV UNW

= β̂wls + {êTw ⊗ (XTW0X)−1XT }


e1e

T
1

e2e
T
2

ene
T
n

 (wLEV UNW −w0) +RLEV UNW

= β̂wls + (XTW0X)−1XTDiag {êw0} (wLEV UNW −w0) +RLEV UNW ,

where W0 = Diag {w0} = Diag {rπ}, β̂wls = (XTW0X)−1XTW0y, êw = y−Xβ̂wls is the
weighted LS residual vector, ei is a length n vector with ith element equal to one and all
other elements equal to zero. From this the lemma follows.
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B.4 Proof of Lemma 6

By taking the conditional expectation of Taylor expansion of the LEVUNW estimate
β̃LEV UNW in Lemma 5, we have that

Ew

[
β̃LEV UNW |y

]
= β̂wls + (XTW0X)−1XTDiag {êw}Ew [w − rπ] + Ew [RLEV UNW ] .

Since Ew [wLEV UNW ] = rπ, the conditional expectation is thus obtained. Since wLEV UNW

is multinomial distributed, we have

Var [wLEV UNW ] = E
[
(wLEV UNW − rπ)(wLEV UNW − rπ)T

]
= Diag {rπ} − rππT .

Some algebra yields that the conditional variance of β̃LEV UNW is

Varw

[
β̃LEV UNW − β̂wls|y

]
= Varw

[
(XTW0X)−1XTDiag {êw} (wLEV UNW − rπ)|y

]
+ Varw [RLEV UNW ]

= (XTW0X)−1XTDiag {êw}W0Diag {êw}X(XTW0X)−1 + Varw [RLEV UNW ] .

Finally, note that

E
[
β̂wls

]
= (XTW0X)−1XW0E [y] = (XTW0X)−1XW0Xβ0 = β0.

From this the lemma follows.

B.5 Proof of Lemma 8

Since Var(cT β̃LEV ) = cTVar(β̃LEV )c, we shall the derive the asymptotic order of Var(β̃LEV ).
The second variance component of β̃LEV in (18) is seen to be

pσ2

r
(XTX)−1XTDiag

{
(1− hii)2

hii

}
X(XTX)−1

=
pσ2

r

∑
i

(1− hii)2

hii
(XTX)−1xix

T
i (XTX)−1

≤ pσ2

r

√∑
i

(1− hii)4
h2ii

∑
i

((XTX)−1xixTi (XTX)−1)2,

where Cauchy-Schwartz inequality has been used. Next, we show that∑
i

((XTX)−1xix
T
i (XTX)−1)2 = O(max(hii)α

−2
n ).

To see this, observe that∑
i

((XTX)−1xix
T
i (XTX)−1)2 ≤ max((XTX)−1xix

T
i )
∑
i

(XTX)−2xix
T
i (XTX)−1

≤ max(xTi (XTX)−1xi)
∑
i

(XTX)−2xix
T
i (XTX)−1

= max(xTi (XTX)−1xi)(X
TX)−2

= O(max(hii)α
−2
n )
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Thus, the second variance component of β̃LEV in (18) is of the order of

O(
1

αnr

√∑
i

(1− hii)4
h2ii

max(hii)).

Analogously, the second variance component of β̃UNIF in (20) is of the order of

O(
1

r

√∑
i

(1− hii)4 max(hii)).

The lemma then follows immediately.

B.6 Proof of Lemma 10

It is easy to see that (XTDiag {hii}X)−1 = O(1/(min(hii)αn)). The second variance
component of β̃LEV UNW in (23) is seen to be

pσ2

r
(XTDiag {hii}X)−1XTDiag

{
(1− gii)2hii

}
X(XTDiag {hii}X)−1

=
pσ2

r

∑
i

(1− gii)2hii(XTDiag {hii}X)−1xix
T
i (XTDiag {hii}X)−1

≤ pσ2

r

√∑
i

(1− gii)4
∑
i

(hii(XTDiag {hii}X)−1xixTi (XTDiag {hii}X)−1)2,

where Cauchy-Schwartz inequality has used. Next, we show that∑
i

(hii(X
TDiag {hii}X)−1xix

T
i (XTDiag {hii}X)−1)2 = O(max(gii)(min(hii)αn)−2).

To see this, observe that∑
i

(hii(X
TDiag {hii}X)−1xix

T
i (XTDiag {hii}X)−1)2

≤ max(hii(X
TDiag {hii}X)−1xix

T
i )
∑
i

hii(X
TDiag {hii}X)−2xix

T
i (XTDiag {hii}X)−1

≤ max(hiix
T
i (XTDiag {hii}X)−1xi)

∑
i

hii(X
TDiag {hii}X)−2xix

T
i (XTDiag {hii}X)−1

= max(hiix
T
i (XTDiag {hii}X)−1xi)(X

TDiag {hii}X)−2 = O(max(gii)(min(hii)αn)−2).

Thus, the second variance component of β̃LEV UNW in (23) is of the order of

O(
1

αn min(hii)r

√∑
i

(1− gii)4 max(gii)).

The lemma then follows immediately.
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