Big	Data	and	

Big Data and Supercomputing Using R

Jie Yang

Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago

October 15, 2015

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 Big Data and R

- What is big data
- Why using R

2 R Packages for Big Data

- Sources for R and its packages
- R packages for big data management
- R packages for numerical calculation involving big data
- Speeding up
- Scaling up
- 3 A Case Study
 - Airline on-time performance data
 - Analyzing big data
- 4 Super Computing Using R
 - Argo Cluster at UIC
 - Install R at Argo
 - Run R batch job at Argo

Big Data and R	R Packages for Big Data	A Case Study	Super Computing Using R
●○	0000000	00000	000000
What is Big I	Data		

- Big data is a broad term for data sets so large or complex that traditional data processing applications are inadequate (Wikipedia).
- Data is *large* if it exceeds 20% of the random access memory (RAM) on a given machine, and *massive* if it exceeds 50% (Emerson and Kane, 2012).
- Big Data represents the Information assets characterized by such a High *Volume* (amount of data), *Velocity* (speed of data in and out) and *Variety* (range of data types and sources) to require specific Technology and Analytical Methods for its transformation into value (De Mauro et al., 2015, also known as *Gartner's definition of the 3Vs*).

Big Data and R	R Packages for Big Data	A Case Study	Super Computing Using R
○●	0000000	00000	000000
Why Using R			

- Handling big data requires high performance computing, which is undergoing rapid change.
- R is the most popular *open source* statistical software. R and its adds-on packages provide a wide range of high performance computing. It's free with most latest updates.
- Commercial software options (Wang, et al., 2015):
 - *RRE (Revolution R Enterprise)*: A commercialized version of R, also offers free academic use. RRE focuses on big data, large scale multiprocessor computing, and multicore functionality.
 - *SAS*: One of the most widely used commercial software for statistical analysis, provides big data support through SAS High Performance Analytics.
 - SPSS (Statistical Product and Services Solution): Provide big data analytics through SPSS Modeler, SPSS Analytic Server, SPSS Analytic Catalyst (IBM, 2014), etc.
 - MATLAB: Provide a number of tools to tackle the challenges of big data analytics (Inc., 2014).

Big Data and R Packages for Big Data •OOOOOO A Case Study •OOOOOO Sources for R and Its Packages

- CRAN (Comprehensive R Archive Network): A network of ftp and web servers around the world for R. As of 10/12/2015, it features 7333 available packages. https://cran.r-project.org/
- CRAN Task Views: Browse packages by topic and provide tools to automatically install all packages for special areas of interest. As of 10/12/2015, 33 views are available, especially HighPerformanceComputing for big data. https://cran.r-project.org/web/views/
- *Bioconductor*: Provide open source tools for the analysis and comprehension of high-throughput genomic data using R. https://www.bioconductor.org/

• *R Studio*: Open source and environmental software for R programming. https://www.rstudio.com/

Big Data and R
ooR Packages for Big Data
oocoocA Case Study
oocoocSuper Computing Using R
oocoocWindows-based R Packages for Data Management (Wang
et al., 2015)

- Providing interfaces to R with an external database management system such as MySQL, PostgreSQL, SQLite, H2, ODBC, Oracle, etc:
 - sqldf (Grothendieck, 2014)
 - RSQLite (Wickham et al., 2014)
- Providing a simple database itself: filehash (Peng, 2006)
- Providing data structures for massive data while retaining a look and feel of R objects: ff (Adler et al., 2014)

Big Data and R
ooR Packages for Big Data
ooA Case Study
occooSuper Computing Using R
occooWindows-based R Packages for Numerical Calculation
(Wang et al., 2015)

- speedglm (Enea, 2014): Fitting linear and generalized linear models to large data sets; computing X'X and X'y in increment.
- biglm (Lumley, 2013): Bounded memory linear and generalized linear models; computing incremental *QR* decomposition (Miller, 1992).
- ffbase (Jonge et al., 2014): Basic statistical functions for Package ff.
- biglars (Seligman et al., 2011): Scalable least angle regression and LASSO.
- PopGenome (Pfeifer et al., 2014): An efficient "Swiss Army Knife" for population genetic and genomic analysis.

- inline (Sklyar et al., 2013): Wrap C/C++ or FORTRAN code as strings in R.
- Rcpp (Eddelbuettel et al., 2011): Provide C++ classes for many basic R data types. Has been used by hundreads of other R packages.
- RInside (Eddelbuettel and Francois, 2014): Provide easy access of R objects from C++.
- RcppArmadillo (Eddelbuettel and Sanderson, 2014): Connect R with Armadillo, a powerful linear algebra library.

- microbenchmark (Mersmann, 2014): Provide very precise timings for small pieces of source code.
- proftools (Tierney and Jarjour, 2013): Provide tools to analyze profiling outputs.
- aprof (Visser, 2014): Directed optimization for analyzing profiling outputs.

• GUIProfiler (de Villar and Rubio, 2014): Provide visualization of profiling results.

- Rmpi (Yu, 2002): Provide an R interface to the Message Passing Interface (MPI) in parallel computing.
- snow (Rossini et al., 2007): Provide an abstract layer with the communication details hidden from the end users. Some of it has been incorporated into the based R package parallel.
- snowFT (Sevcikova and Rossini, 2012) and snowfall (Knaus, 2013): Extend snow with fault tolerance and wrappers for easier development of parallel R programs.
- foreach (Revolution Analytics and Weston, 2014): Allow general iterations without any explicit loop counter.

- *Programming with Big Data in* R project (pbdR) (Ostrouchov et al., 2012):
 - pbdMPI: Provide S4 classes to directly interface with MPI (message passing interface) to support the Single Program Multiple Data (SPMD) parallelism.
 - pbdSLAP: Serve as a mechanism to utilize a subset of functions of scalable dense linear algebra.

- Extra care on random number generation towards parallel computing:
 - rlecuyer (Sevcikova and Rossini, 2012b): Provide an interface to the random number generator with multiple independent streams.
 - doRNG (Gaujoux, 2014): Provide functions to perform reproducible parallel foreach loops.


```
    Source: 2009 ASA Data Expo,
http://stat-computing.org/dataexpo/2009/the-data.html;
or
Kane et al. (2013),
http://data.jstatsoft.org/v55/i14/Airline.tar.bz2.
```

- Data: 12GB, about 120 million flights from October 1987 to April 2008, recorded with 29 variables
- Response: Late arrival (1 for late by more than 15 mins; 0 otherwise).

• Transformed covariates: 2 binary (night, weekend); 2 continuous (departure hour, distance).

 Big Data and R
 R Packages for Big Data
 A Case Study
 Super Computing Using R

 00
 000000
 00000
 00000
 000000

LTFViewer: A very useful tool for viewing very large text files.

http://www.symantec.com/connect/sites/default/files/LTFViewer.zip

= 900

- Cygwin (https://www.cygwin.com/): Get that Linux feeling on Windows. Also install package R in Math category and all packages in Devel category for R package bigmemory.
- bzip2 -d Airline.tar.bz2 extract the file to the current directory.
- tar -xvf Airline.tar extract the file to the current directory.
- install.packages("bigmemory") for R with Linux or Unix. Also install package biglm.
- install.packages("ff") for R with Windows. Also install package biglm.

- The data file airline.csv is about 12 GB.
- The use of R's native read.csv would require about 32 GB of RAM.
- Solution provided by read.big.matrix in bigmemory:

```
> library("bigmemory")
> ttemp=proc.time() # on a laptop with intel(R) CPU @ 2GHz, 8GB RAM
> x <- read.big.matrix("airline.csv",</pre>
                      header=TRUE, backingfile="airline.bin",
+
                      descriptorfile="airline.desc", type="integer")
+
> dim(x)
[1] 123534969
                   29
> proc.time()-ttemp # 2459.172
> ttemp=proc.time()
> summary(x[, "DepDelay"])
  Min. 1st Qu. Median Mean 3rd Qu.
                                         Max.
                                                 NA's
                                   6.0 2601.0 2302136
-1410.0 -2.0
                   0.0
                           8.2
> proc.time()-ttemp # 7.657
```


Time cost in secs on a 8-core machine running Linux, with Intel Core i7 2.93GHz CPU, and 16GB memory:

	Reading data	Transforming variables	Fitting logistic regression
bigmemory	968.6	105.5	1501.7
ff	1111.3	528.4	1988.0
RRE	851.7	107.5	189.4

The fitted logistic regression models are the same from all the three approaches:

logit(Chance of late arrival)

 $= -2.985 + 0.104 \cdot \texttt{DepHour} + 0.235 \cdot \texttt{Distance}$

 $-0.448 \cdot \texttt{Night} - 0.177 \cdot \texttt{Weekend}$

Argo cluster

(http://accc.uic.edu/service/argo-cluster) is a group of servers which are interconnected and used for serial or parallel program execution. It's free for UIC faculty, staff, and students.

• The purpose behind clustering is to make a group of computers perform as a single system and to deliver supercomputer performance.

Argo has 57 computers connected.

- You need an Argo account and then use an SSH client to connect to argo at argo.cc.uic.edu.
- For example, you may first install SecureCRT (free at UI webstore, https://webstore.illinois.edu) and use it to ssh your account at math.uic.edu and then ssh -l username argo.cc.uic.edu.

Big Data and R	R Packages for Big Data	A Case Study	Super Computing Using R
00	0000000	00000	○●○○○○
Install R at A	rgo		

- Log into argo: ssh -l username argo.cc.uic.edu
- Get zipped R source file: sftp username@math.uic.edu and then get R-2.12.2.tar.gz
- Unzip R source file: gzip -d R-2.12.2.tar.gz and then tar -xf R-2.12.2.tar
- Install R: cd R-2.12.2, then issue commands (at the shell prompt) ./configure and then make.
- Run R at Argo: /home/homes53/username/R/R-2.12.2/bin/R
- Install R packages: install.packages(
 "/home/homes53/username/R/e1071.tar.gz",
 lib="/home/homes53/username/R", repos = NULL) or
 install.packages("ff",
 lib="/home/homes53/username/R", repos =
 "http://cran.us.r-project.org", dependencies =T)

```
    Big Data and R
    R Packages for Big Data
    A Case Study
    Super Computing Using R

    00
    000000
    00000
    00000
```

```
sink("test1out.txt")  # save output into a file
cat("\n Data set:")
print(round(Y,3))
```

```
x <- rnorm(100)
cat("\n max=", max(x),"\n")
sink()
save.image(file="/home/homes53/username/test/test1.RData")</pre>
```

 Big Data and R
 R Packages for Big Data
 A Case Study
 Super Computing Using R

 Submit an R Script File to Argo
 Submit an R Script File to Argo

- Compile your script file on master node, for example, "script1":
 - #PBS -m bea
 - #PBS -e /home/homes53/username/test/test1.error

#PBS -o /home/homes53/username/test/test1.output
#PBS -N test1

/home/homes53/username/R/R-2.12.2/bin/R CMD BATCH
 /home/homes53/username/test/test1.r

- Submit your script to Argo: qsub script1
- See which nodes are currently in use: qnodes | more
- Submit a job to a particular node: qsub -l nodes=argo1-1 script1

Monitor Your Jobs at Argo

- Check the status of all your jobs: qstat
- Check the status of a particular job: qstat <job number>
- Check the status of all running jobs: qstat -a or qstat -an
- Check if job 20836 is running. If not, then the reason it is not running is given: qstat -s 20836
- Cancel job 20836: qdel 20836

Big Data and R	R Packages for Big Data	A Case Study	Super Computing Using R
00	0000000	00000	○○○○○●
Reference			

- Emerson, J.W. and Kane, M.J. (2012). Don't drown in the data. *Significance*, **9**, 38–39.
- De Mauro, A., Greco, M., and Grimaldi, M. (2015). What is big data? A consensual definition and a review of key research topics. *AIP Conference Proceedings*, 1644, 97–104.
- Kane, M.J., Emerson, J., and Weston, S. (2013). Scalable strategies for computing with massive data. *Journal of Statistical Software*, 55, 1-19.
- Wang, C, Chen, M.-H., Schifano, E., Wu, J., and Yan, J. (2015). A Survey of Statistical Methods and Computing for Big Data, http://arXiv:1502.07989v1