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A Resampling-Based Stochastic Approximation
Method for Analysis of Large Geostatistical Data

Faming LIANG, Yichen CHENG, Qifan SONG, Jincheol PARK, and Ping YANG

The Gaussian geostatistical model has been widely used in modeling of spatial data. However, it is challenging to computationally implement
this method because it requires the inversion of a large covariance matrix, particularly when there is a large number of observations. This
article proposes a resampling-based stochastic approximation method to address this challenge. At each iteration of the proposed method, a
small subsample is drawn from the full dataset, and then the current estimate of the parameters is updated accordingly under the framework
of stochastic approximation. Since the proposed method makes use of only a small proportion of the data at each iteration, it avoids inverting
large covariance matrices and thus is scalable to large datasets. The proposed method also leads to a general parameter estimation approach,
maximum mean log-likelihood estimation, which includes the popular maximum (log)-likelihood estimation (MLE) approach as a special
case and is expected to play an important role in analyzing large datasets. Under mild conditions, it is shown that the estimator resulting
from the proposed method converges in probability to a set of parameter values of equivalent Gaussian probability measures, and that the
estimator is asymptotically normally distributed. To the best of the authors’ knowledge, the present study is the first one on asymptotic
normality under infill asymptotics for general covariance functions. The proposed method is illustrated with large datasets, both simulated
and real. Supplementary materials for this article are available online.
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1. INTRODUCTION

Geostatistics is a branch of spatial statistics that deals with
data obtained by sampling a spatially continuous process {X(s)},
s ∈ R2, at a discrete set of locations {si, i = 1, . . . , n} in a spa-
tial region of interest A ⊂ R2. Consider a Gaussian geostatisti-
cal model,

Y (si) = μ(si) +X(si) + εi, εi
iid∼ N (0, τ 2), (1)

where Y (si) denotes the observation at location si , μ(si) de-
notes the mean of Y (si), {X(si)} denotes a spatial Gaussian pro-
cess withE(X(si)) = 0, var(X(si)) = σ 2, and corr(X(si),X(sj ))
= ρ(‖si − sj‖) for an appropriate correlation function with Eu-
clidean distance ‖ · ‖, and τ 2 denotes the nugget variance. The
correlation function is chosen from a certain parametric family,
such as the Matérn, exponential, or spherical covariance models
(Cressie 1993). Under this model, {Y (s)} follows a multivariate
Gaussian distribution as follows:

[Y (s1), . . . , Y (sn)]
T ∼ N (μ,�), (2)

where μ = (μ(s1), . . . , μ(sn))T , � = σ 2 R + τ 2 I , I is the n×
n identity matrix, and R is an n× n correlation matrix with
the (i, j )th element ρ(‖si − sj‖). Model (1) is perhaps the most
popular model in geostatistics. It can be easily extended to the
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regression setting with the mean μ(si) being replaced by

μ(si) = β0 +
p∑
j=1

βj cj (si), (3)

where cj (·) denotes the jth explanatory variable, and βj is the
corresponding regression coefficient.

It is generally recognized that the parameter estimation for
model (1) suffers from two severe difficulties. First, evalua-
tion of the likelihood function of this model involves invert-
ing the matrix �. This is infeasible when n is large, because
the complexity of matrix inversion increases as O(n3). Second,
some parameters of this model may be inconsistently estimable
due to the existence of equivalent probability measures for the
Gaussian process (Stein 2004; Zhang 2004).

To alleviate the first difficulty, various methods have been pro-
posed in the literature. These methods can be roughly grouped
into four categories, namely, covariance tapering, lower dimen-
sional space process approximation, likelihood approximation,
and Markov random field approximation. The method of covari-
ance tapering is to set the covariances at large distances to zero
but still keep the original covariances for proximate sites, see,
for example, Furrer et al. (2006), Kaufman et al. (2008), and Du
et al. (2009). The tapered covariance matrix is sparse, and thus
can be inverted much more efficiently than inverting a full ma-
trix of the same dimension. However, not all parameters of the
covariance function are consistently estimable for this method.
The lower dimensional space approximation methods seek to
approximate the spatial process {X(s)} by a lower dimensional
space process {X̃(s)} with the use of smoothing techniques, such
as kernel convolutions, moving averages, low-rank splines, or
basis functions, see, for example, Wikle and Cressie (1999),
Banerjee et al. (2008), and Cressie and Johannesson (2008).
Concerns with these methods are adequacy of approximations.
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For large datasets, the dimension of the approximation process
{X̃(s)} can still be very high, degrading the applicability of
these methods. The likelihood approximation methods seek to
approximate the likelihood function in the spectral domain of the
spatial process (Stein 1999; Fuentes 2007; Matsuda and Yajima
2009) or by a product of conditional densities (Vecchia 1988;
Jones and Zhang 1997; Stein et al. 2004). Concerns about these
methods include adequacy of the likelihood approximation and
some implementation issues. Expertise is required for selecting
an appropriate spectral density estimate or a sequence of condi-
tional densities. As suggested by its name, the Markov random
field approximation method is to approximate the spatial process
{X(s)} by a Markov random field (Rue and Tjelmeland 2002;
Rue and Held 2005), but this method is mainly used for regular
lattice data. An exception is Park and Liang (2012), where the
authors extend this method to irregular lattice data.

The second difficulty has been addressed by several authors,
including Mardia and Marchall (1984), Stein (1999, 2004),
Chen et al. (2000), and Zhang (2004), among others. There
are two different asymptotics in spatial statistics: expanding-
domain asymptotics, where more and more data are collected in
increasing domains while the sampling density stays constant,
and infill asymptotics, where data are collected by sampling
more and more densely in a fixed domain. Asymptotic properties
of estimators are quite different under the two asymptotics. For
example, the maximum likelihood estimator is consistent and
asymptotically normally distributed for many covariance mod-
els under expanding-domain asymptotics (Mardia and Marchall
1984), whereas such consistent estimators do not exist under
infill asymptotics (Chen et al. 2000). Under infill asymptotics,
for exponential and Matérn correlation functions, not all covari-
ance parameters are consistently estimable, and part of them
are consistently estimable only after certain reparameterizations
(Zhang 2004). Also, it is unclear whether or not the estimates
are asymptotically normally distributed.

In this article, we propose a resampling-based stochastic ap-
proximation (RSA) method for addressing the two difficulties.
At each iteration of RSA, a small subsample is drawn from
the full dataset, and then the current estimate of parameters
is updated accordingly under the framework of stochastic
approximation (Robbins and Monro 1951). Since RSA makes
use of only a small proportion of the data at each iteration, it
avoids inverting large covariance matrices and thus is scalable
to large datasets. Note that RSA is conceptually very different
from the existing methods. The existing methods are to approx-
imate the model (1) using a computationally convenient model,
whose parameters are usually not directly comparable with the
parameters of model (1). Instead, RSA seeks to perform a data
dimension reduction, while continuing to work on the model
(1). RSA also leads to a general parameter estimation approach,
maximum mean log-likelihood estimation (MMLE), which
includes the popular maximum (log)-likelihood estimation
(MLE) approach, as a special case, and is expected to play a
major role for large data analysis. Theoretical properties of the
RSA method are explored in this article. Under mild conditions,
we show the RSA estimator converges in probability to a set of
parameter values of equivalent Gaussian probability measures,
and that the estimator is asymptotically normally distributed.
To the best of the authors’ knowledge, the present study is the

first one on asymptotic normality under infill asymptotics for
general covariance functions. The numerical results indicate
that RSA can work well for large datasets.

The remainder of this article is organized as follows. Sec-
tion 2 describes the RSA method. Sections 3 and 4 present
some theoretical results about RSA. Section 5 illustrates RSA
using simulated examples along with comparisons with some
existing methods. In Section 6, RSA is applied to a large
real data example. Section 7 concludes the article with a brief
discussion.

2. A RESAMPLING-BASED STOCHASTIC
APPROXIMATION APPROACH

Consider the Gaussian model (1). Although the number of ob-
servations can be large, the model contains only a small number
of parameters. This motivates us to develop the resampling-
based stochastic approximation method, which, at each it-
eration, makes use of only a small proportion of the data
for parameter estimation. The method can be described as
follows.

Let Z(s) = (Y (s∗1 ), . . . , Y (s∗m))T denote a sample drawn,
randomly and without replacement, from the full dataset
Y = {Y (s1), . . . , Y (sn)}. In statistics, Z(s) is also called a sub-
sample of Y . In the following, we will denote Z(s) by (Z, S),
which makes the dependence of Z on the sites S = (s∗1 , . . . , s

∗
m)

implicit. Given S, we model Z using the same model as for Y;
that is,

Z|S ∼ Nm(μz,�z), (4)

where μz = (μ(s∗1 ), . . . , μ(s∗m))T , �z = σ 2 Rz + τ 2 I , and Rz

is an m×m correlation matrix with the (i, j )th element given
by a correlation function ρ(‖s∗i − s∗j ‖). As in model (1), μz can
also be modeled by a regression,

μz = β01m +
p∑
j=1

βj cj , (5)

where 1m denotes an m-vector of 1’s and cj denotes the jth
explanatory variable of the model.

Let θ denote the parameter vector of a Gaussian geostatistical
model specified by (1) and (3). Therefore, θ includes τ 2, σ 2,
β0, . . . , βp, and the parameters in the correlation function ρ(·).
We propose to estimate θ by minimizing the Kullback–Leibler
divergence,

KL(fθ , g) = −
∫ ∫

log

(
fθ (z|s)

g(z|s)

)
g(z|s)g(s)d zds, (6)

where fθ (z|s) is a multivariate normal density specified by (4),
g(z|s) denotes the unknown true density function from which the
data were generated although we are using (4) for data analysis,
and g(s) is the distribution of the sites s. Jensen’s inequality im-
plies that KL(fθ , g) ≥ 0. As a method of parameter estimation,
minimizing the Kullback–Leibler divergence has been widely
used in the literature, see, for example, Dowe et al. (1998), Liang
and Zhang (2008), and Chen et al. (2009). Using subsamples
randomly drawn from Y , the Kullback–Leibler divergence can
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be approximated by

K̂L(fθ , g |Y) = C −
(
n

m

)−1 (nm)∑
i=1

log fθ (zi | si),

where C denotes a constant related to the entropy of g(z, s), and
( nm ) is the binomial coefficient. Then, the stochastic approxima-
tion method can be used to estimate θ by solving the systems of
equations:

∂K̂L(fθ , g|Y)

∂θ
= −

(
n

m

)−1 (nm)∑
i=1

∂ log fθ (zi |si)
∂θ

= −
(
n

m

)−1 (nm)∑
i=1

H (θ, zi , si) = 0, (7)

whereH (θ, z, s) = ∂ log fθ (z|s)/∂θ is the first-order derivative
of log fθ (z|s) with respect to θ , and (zi , si) denotes a random
sample drawn from Y . Note that ∂K̂L(fθ , g|Y)/∂θ forms a U-
statistic with the kernel H (θ, z, s).

For the purpose of illustration, we consider the exponential
correlation function given by

ρ(h) = exp(−h/φ), (8)

where h denotes the Euclidean distance between two observa-
tions, and φ is the correlation parameter. For the exponential
model, the respective components of H (θ, z, s) in (7) are given
by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hβ0 (θ, z, s) = 1Tm�−1
z (z − μz),

Hβi (θ , z, s) = cTi �−1
z (z − μz), i = 1, . . . , p,

Hφ(θ , z, s) = −1

2
tr

(
�−1
z σ

2 dRz

dφ

)
+σ

2

2
(z − μz)

T�−1
z

dRz

dφ
�−1
z (z − μz),

Hσ 2 (θ, z, s) = −1

2
tr
(
�−1
z Rz

)
+1

2
(z − μz)

′�−1
z Rz�

−1
z (z − μz),

Hτ 2 (θ, z, s) = −1

2
tr
(
�−1
z

)+ 1

2
(z − μz)

T�−2
z (z − μz),

(9)

where dRz/dφ is an m×m-matrix with the (i, j )th element
given by hij /φ2e−hij /φ , and hij denotes the Euclidean distance
between site i and site j.

The varying truncation stochastic approximation algorithm
(Andrieu et al. 2005) was adopted in this article for estimation
of θ . Let 	 denote the space of θ , and let {Ks , s ≥ 0} be a
sequence of compact subsets of 	 such that⋃

s≥0

Ks = 	, and Ks ⊂ int(Ks+1), s ≥ 0, (10)

where int(A) denotes the interior of set A. Let {at } and {bt } be
two monotone, nonincreasing, positive sequences. Let X0 be a
subset of X . Let T : 	 → K0 be a measurable function which
maps a point θ in 	 to a random point in K0; that is, θ will
be reinitialized in K0. Let πt denote the number of truncations
performed until iteration t, and π0 = 0. The varying truncation

stochastic approximation algorithm starts with a random choice
of θ0 in the space K0, and then iterates between the following
steps:

Algorithm 1 Resampling-Based Stochastic Approximation
(RSA) Algorithm

(i) Draw (Zt+1, St+1) from the set {Y (s1), . . . , Y (sn)} at
random and without replacement.

(ii) Update each component of θ t in the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β
(t+ 1

2 )
0 = β

(t)
0 + at+1Hβ0 (θ t , Zt+1, St+1),

β
(t+ 1

2 )
i = β

(t)
i + at+1Hβi (θ t , Zt+1, St+1),

i = 1, . . . , p,

φ(t+ 1
2 ) = φ(t) + at+1Hφ(θ t , Zt+1, St+1),

(σ 2)(t+ 1
2 ) = (σ 2)(t) + at+1Hσ 2 (θ t , Zt+1, St+1),

(τ 2)(t+ 1
2 ) = (τ 2)(t) + at+1Hτ 2 (θ t , Zt+1, St+1).

(iii) If ‖θ t+ 1
2
− θ t‖ ≤ bt and θ t+ 1

2
∈ Kπk , where ‖ · ‖

denote the Euclidean norm of a vector, then set θ t+1 =
θ t+ 1

2
and πt+1 = πt ; otherwise, set θ t+1 = T (θ t ) and

πt+1 = πt + 1.

To facilitate simulations, one may reparameterize φ, σ 2, and
τ 2 in logarithms to ensure their positivity during simulations.
Let θ̃n denote a solution to Equation (7), where the subscript

n indicates its dependence on the sample Y . Let θ̂
(t)
n denote

the estimator of θ̃n obtained by the RSA algorithm at iteration

t, that is, θ̂
(t)
n = θ t as produced in the simulation. The RSA

estimator has very nice theoretical properties. In Sections 3 and
4, we consider, respectively, two types of asymptotics, the infill
asymptotics of θ̃n and the stochastic approximation asymptotics

of θ̂
(t)
n . Under mild conditions, we show that both θ̃n and θ̂

(t)
n are

asymptotically normally distributed.
Regarding the stopping rule of RSA, we note that the stopping

rule for the general stochastic approximation algorithm has been
extensively studied in the literature, see for example, Yin (1990)
and Glynn and Whitt (1992). A popular stopping rule is sequen-
tial stopping; that is, letting the simulation run until the volume
of a confidence set of the parameters achieves a prescribed value.
The conditions that guarantee the asymptotic validity of this rule
were established in Glynn and Whitt (1992). In this article, we
adopt a multiple-run variant of this rule: Run the algorithm mul-
tiple times for the same dataset, and then determine the number
of iterations at which all runs have converged, that is, producing
about the same estimates. To diagnose the convergence of RSA,
the Gelman–Rubin method (Gelman and Rubin 1992) can be
used. The Gelman–Rubin method was designed for diagnosis
of convergence of an iterative simulation algorithm which is not
necessarily an Markov chain Monte Carlo (MCMC) algorithm.

3. INFILL ASYMPTOTICS OF θ̃n

On infill asymptotics of θ̃n, we establish two theorems. In
Theorem 1, we show that θ̃n converges to a minimizer of (6).
In Theorem 2, we show that θ̃n is asymptotically normally
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distributed. The major challenge with infill asymptotics is that
the correlation between observations is gradually increasing as
the number of observations increases; that is, the observation
sequence is not a stationary sequence. This nonstationarity
disenabled the use of conventional laws of large numbers, and
thus, the asymptotic theory, such as consistency and asymptotic
normality, is extremely difficult to be established under the
framework of infill asymptotics.

3.1 Convergence of θ̃n

Let Sn = {X1, . . . , Xn} = {X(s1), . . . , X(sn)} denote a set
of samples drawn from a stationary random field defined on
a bounded region. For the infill asymptotic, we note that it
generally behaves like an asymptotic of resampling from a
finite population: Even infinite samples can be drawn (with
replacement) from the finite population, and the accuracy of
approximation to the underlying system/process is still lim-
ited to the finite population. Motivated by this observation, we
introduce an auxiliary finite population for Sn; that is, treat-
ing Sn as a simple random sample from a finite population
SN = {X1, . . . , Xn,Xn+1, . . . , XN }, where Xn+1, . . . , XN are
drawn in the same sampling procedure from the same ran-
dom field as for the samples {X1, . . . , Xn}. Then, the asymp-
totic of θ̃n can be studied by making use of some known re-
sults of finite population U-statistics. As previously mentioned,
∂K̂L(fθ , g|Y)/∂θ forms a U-statistic. Introduction of auxiliary
populations is crucial to the proof of some results, particularly,
the asymptotic normality of θ̃n.

Let

Un =
(
n

m

)−1 (nm)∑
i=1

ψ
(
X

(i)
1 , . . . , X

(i)
m

)
(11)

be a U-statistic defined on the random sample {X1, . . . , Xn},
where ψ(·) is the kernel of the U-statistic. Lemma 1 concerns
the convergence of the U-statistic, whose proof can be found in
the Appendix.

Lemma 1. Let {X1, . . . , Xn} be a random sample drawn
from a bounded, stationary random field. If the map-
ping (x1, . . . , xm) �→ ψ(x1, . . . , xm) is continuous (a.e.) and
E|ψ(X1, . . . , Xm)|2 < ∞, then, as n → ∞,

Un → E(ψ(X1, . . . , Xm)) in probability.

Remark 1. A similar convergence result was obtained by
Chatterji (1968) (see also Borovskikh 1996) for U-statistics
under the assumption that X1, . . . , Xn are symmetrically de-
pendent. Lemma 1 relaxes this assumption to the case that
X1, . . . , Xn are generally dependent but drawn from a bounded
stationary random field. We note that under expanding-domain
asymptotics, an almost sure convergence ofUn can be obtained.

Suppose that the kernel ψ(·) depends on θ . To indicate this
dependence, we rewrite ψ(·) as ψθ (·) and define

Un(θ) =
(
n

m

)−1 (nm)∑
i=1

ψθ

(
X

(i)
1 , . . . , X

(i)
m

)
and

U (θ) = E(ψθ (X1, . . . , Xm)). (12)

In the rest of this article, ψ(·) and ψθ (·) will be used exchange-
ably. In the context where θ is not our concern, we will depress
θ from ψθ for simplicity of notations.

Suppose that we are interested in maximizingU (θ). Let	 de-
note the space of θ , and let	0 = {θ∗ ∈ 	 : U (θ∗) = supθ U (θ)}
denote the set of global maximizers of U (θ). To avoid triviality,
	0 is assumed not empty. Lemma 2 shows that if 	 is com-
pact, then θ̃n converges in probability to a point in	0 when the
sample size becomes large.

Lemma 2. Let {X1, . . . , Xn} be a random sample drawn from
a bounded, stationary random field. Assume the following con-
ditions hold:

(i) The mapping θ �→ ψθ (X1, . . . , Xm) is continuous for al-
most all (X1, . . . , Xm) and satisfies

E|ψθ (X1, . . . , Xm)|2 < ∞. (13)

(ii) For every sufficiently small ball O ⊂ 	, the map-
ping (x1, . . . , xm) �→ supθ∈O ψθ (x1, . . . , xm) is measur-
able and satisfies

E| sup
θ∈O

ψθ (X1, . . . , Xm)|2 < ∞. (14)

Then, for any estimators θ̃n such that Un(θ̃n) ≥ Un(θ
∗) + op(1)

for some θ∗ ∈ 	0, for every ε > 0 and every compact set K ⊂
	,

P (d(θ̃n,	0) ≥ ε and θ̃n ∈ K) → 0,

where d(·, ·) denotes a distance metric.

Remark 2. The proof of this lemma is given in the online
supplementary material, where the lemma is proved in a similar
way to that of van der Vaart (1998) in proving the consistency
of M-estimators and that of Wald (1949) in proving the consis-
tency of maximum likelihood estimators for a set of iid random
variables.

Remark 3. In Lemma 2, 	 is restricted to a compact space.
To apply this lemma to a problem whose parameter space is
not compact, one needs to show that the estimators are in a
compact set eventually or make a suitable compactification for
the parameter space.

To study the infill asymptotics of θ̃n, we define

lθ (z, s) = log fθ (z|s), M(θ) = E[lθ (z, s)],

Mn(θ) =
(
n

m

)−1 (nm)∑
i=1

lθ (zi , si). (15)

Thus, Mn(θ ) forms a U-statistic estimator of M(θ) with the
kernel lθ (z), and minimizing (6) is equivalent to maximizing
Mn(θ).

Theorem 1 shows that as n → ∞, θ̃n converges to the set
	0 = {θ∗ : Elθ∗ (Z, S) = supθ∈	 Elθ (Z, S)} in probability. Its
proof can be found in the Appendix.

Theorem 1. Let Y = {Y (s1), . . . , Y (sn)} denote a random
sample drawn from the spatial Gaussian model (1) defined
on a bounded region, let θ̃n denote a solution to (7), and let
	0 = {θ∗ ∈ 	 : Elθ∗ (Z, S) = supθ∈	 Elθ (Z, S)}, where (Z, S)
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denotes a random sample of size m drawn from model (1). As-
sume 	 is compact, then for every ε > 0,

P (d(θ̃n,	0) ≥ ε) → 0, as n → ∞,

where d(·, ·) denotes a distance metric.

Remark 4. To accommodate the case that the model is incon-
sistently estimable, that is, part or all parameters of the model
are not consistently estimable, we assume in Theorem 1 that 	
is compact. As implied by Lemma 5, this assumption does not
affect the performance of RSA, because RSA can keep θ t in a
compact set almost surely. In simulations, we may set 	 to a
huge set, say, [−10100, 10100]dθ , which, as a practical matter, is
equivalent to set	 = Rdθ . Here, dθ denotes the dimension of θ .

For the models which are consistently estimable, that is, all
parameters of the model are consistently estimable, the com-
pactness assumption of 	 can be removed. In this case, the
proof of Theorem 1 can be simply accomplished with a suitable
compactification of 	; that is, setting l∂	(z, s) = −∞, where
∂	 denotes the boundary of 	. This is permitted in Lemma
2, and it ensures that θ̃n never takes the boundary values when
maximizing Mn(θ).

Remark 5. As implied by Theorem 1, RSA leads to a general
parameter estimation approach, maximum mean log-likelihood
estimation (MMLE), which has included the maximum (log)-
likelihood estimation (MLE) approach as a special case. Ifm =
n, then RSA is reduced to the MLE. Due to its computational
attractiveness, we expect that MMLE will play an important role
for large data analysis.

3.2 Asymptotic Normality of θ̃n

Assume that the model (1) has been appropriately reparame-
terized such that all parameters are consistently estimable. Un-
der this assumption, we show that θ̃n is asymptotically normally
distributed.

Lemma 3 concerns the asymptotic normality of the U-statistic
defined on a set of samples drawn from a bounded stationary
random field. It is the key to establishing the asymptotic nor-
mality of θ̃n. To prove this lemma, we assume that the function
ψ(x1, . . . , xm) is continuous (a.e.) and E|ψ(X1, . . . , Xm)|2 <
∞. In addition, we impose some constraints on the sampling pro-
cedure of Sn = {X1, . . . , Xn}: Sn is drawn through a procedure
which ensures the following conditions hold: for 1 ≤ k ≤ m− 1
and any α > 0,

E|ψk,n(X1, . . . , Xk)|2 is uniformly bounded with respect to

n and nασ 2
k,n → ∞ as n → ∞, (16)

where ψk,n(x1, . . . , xk)=E{ψ(X1, . . . , Xm)|X1 =x1, . . . , Xk=
xk,Sn} is the conditional expectation of ψ(X1, . . . , Xm) based
on the finite population Sn, and σ 2

k,n = var(ψk,n(X1, . . . , Xk)).
Let ψk(x1, . . . , xk) = E{ψ(X1, . . . , Xm)|X1 = x1, . . . , Xk =
xk}. Be aware that E(|ψk,n(X1, . . . , Xk)|2) is actually the
second-order sample moments of ψk and σ 2

k,n the sample vari-
ance of ψk . This assumption essentially requires that the finite
sample {X1, . . . , Xn} resembles the underlying random field
such that σ 2

k,n converges to a constant as n → ∞. This assump-
tion is satisfied except that the sampling procedure is degener-

ated to drawing samples from a single site or the function ψk(·)
is degenerated to taking a constant value.

Lemma 3. LetSn = {X1, . . . , Xn} be a random sample drawn
from a bounded, stationary random field. Consider the U-
statistic defined in (11). Assume the following conditions hold:

(i) The function ψ(x1, . . . , xm) is continuous (a.e.), and
E|ψ(X1, . . . , Xm)|2 < ∞.

(ii) Sn satisfies the condition (16).

Then, as n → ∞,

(Un − E(ψ(X1, . . . , Xm)))/
√

Var(Un) ⇒ N (0, 1),

where ⇒ denotes the convergence in distribution, and N (0, 1)
denotes the standard normal distribution.

Lemma 4 concerns the asymptotic normality of the estimator
θ̃n, which maximizes Un(θ) defined in (12). Its proof can be
found in the Appendix. In Lemma 4, 	 is assumed to be com-
pact. This assumption stems from Lemma 2, which, as shown
below, is the basis of Lemma 4.

Lemma 4. Let {X1, . . . , Xn} be a random sample drawn from
a bounded stationary random field. Assume the following con-
ditions hold:

(i) The parameter space 	 is compact.
(ii) The kernel ψθ (·) is twice continuously differentiable on

the interior of 	, and satisfies

E|ψθ (X1, . . . , Xm)|2

< ∞, E

∥∥∥∥ ∂∂θ ψθ (X1, . . . , Xm)

∥∥∥∥2

< ∞, E

∥∥∥∥ ∂2

∂θ2ψθ (X1, . . . , Xm)

∥∥∥∥2

< ∞. (17)

(iii) For every sufficiently small ball O ⊂ 	, the mapping
(x1, . . . , xm) �→ supθ∈O ψθ (x1, . . . , xm) is measurable
and satisfies

E| sup
θ∈O

ψθ (X1, . . . , Xm)|2 < ∞. (18)

(iv) Sn satisfies the condition (16); that is, there exists a
constant C such that for 1 ≤ k ≤ m− 1,

sup
n

E

(∥∥∥∥ ∂∂θ ψθ ,k(X1, . . . , Xk)

∥∥∥∥2 ∣∣∣∣Sn
)
< C, a.s.,

where ∂
∂θ
ψθ ,k(x1, . . . , xk) = E{ ∂

∂θ
ψθ (X1, . . . , Xm)|X1

= x1, . . . , Xk = xk)}. In addition, for any α > 0 and
1 ≤ k ≤ m− 1, nα‖�k,n‖ → ∞ as n → ∞, where
�k,n denotes the sample covariance matrix of
∂
∂θ
ψθ ,k(X1, . . . , Xk).

Then, for any estimators θ̃n such that Un(θ̃n) ≥ Un(θ
∗) + op(1)

for some θ∗ ∈ 	0,

θ̃n − θ∗ ⇒ N (0, H−1
∗ �H−1

∗ ),

where H∗ = E{ ∂2ψθ (X1,...,Xm)
∂θ∂θ ′ |θ=θ∗ } is the expected Hessian of

ψθ (X1, . . . , Xm) at θ∗, and � is the covariance matrix of the
U-statistic defined by the kernel ∂ψθ (X1,...,Xm)

∂θ
|θ=θ∗ .
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Theorem 2 concerns the asymptotic normality of the mini-
mizer of the Kullback–Leibler divergence, whose proof can be
found in the Appendix.

Theorem 2. Let {Y (s1), . . . , Y (sn)} be a random sample
drawn from the spatial Gaussian model (1) defined on a bounded
region, let θ̃n denote a solution to (7), and let 	0 = {θ∗ ∈ 	 :
Elθ∗ (Z, S) = supθ∈	 Elθ (Z, S)}, where (Z, S) denotes a ran-
dom sample of size m drawn from model (1). Assume that 	 is
compact, the model is consistently estimable, and the sampling
procedure of {Y (s1), . . . , Y (sn)} satisfies the condition (iv) of
Lemma 4 (with ψθ (·) = lθ (·)). Then,

θ̃n − θ∗ ⇒ N (0, H−1
∗ �H−1

∗ ), (19)

where H∗ = E{ ∂2lθ (z,s)
∂θ∂θ ′ |θ=θ∗ } is the expected Hessian of lθ (z)

at θ∗, and � is the covariance matrix of the U-statistic defined
by the kernel ∂lθ (z,s)

∂θ
|θ=θ∗ .

Remark 6. A necessary condition for the asymptotic normal-
ity of θ̃n is that θ is consistently estimable. As aforementioned,
under this condition, the compactness assumption of 	 can be
simply removed via a suitable compactification of 	. To keep
the assumption of 	 consistent with other theorems, 	 is still
assumed to be compact here.

Remark 7. As mentioned earlier, RSA is reduced to the MLE
if m = n. However, Theorem 2 cannot be directly extended to
MLE. The reason is as follows: In proving Theorem 2, m is
assumed to be fixed while letting n → ∞, but m will increase
with n for the case of MLE. It is interesting to point out that Zhu
and Stein (2005) conjectured that MLE has the same result as
given in (19).

4. STOCHASTIC APPROXIMATION ASYMPTOTICS
OF θ̂

(t)
n

The stochastic approximation algorithm was first introduced
by Robbins and Monro (1951) for solving the mean field func-
tion equation

h(θ) =
∫
X
H (θ, x)gθ (x)dx = 0, (20)

where θ ∈ 	 is a parameter vector and gθ (x), x ∈ X , is a den-
sity function depending on θ . The algorithm works by iterating
between the following two steps:

Algorithm 2 Stochastic Approximation

• Generate Xt+1 ∼ gθ t (x), where t indexes the iteration.
• Set θ t+1 = θ t + atH (θ t , Xt+1), where at is the gain factor.

Later, this algorithm was applied by Kiefer and Wolfowitz
(1952) to solve the optimization problem of the form,

max
θ

∫
l(θ, x)gθ (x)dx, (21)

by settingH (θ , x) = ∂l(θ, x)/∂θ or an estimate of the derivative
when it is not explicitly available. For the problem of minimizing
the Kullback–Leibler divergence (6) based on a finite set of ob-
servations, we have X = (Z, S), H (θ , z, s) = ∂ log fθ (z|s)/∂θ

as defined in (7), and gθ (z, s) is a uniform distribution defined
on the set of all possible m-subsamples drawn from Y .

To prove the convergence of the stochastic approximation al-
gorithm, one often needs to impose a severe restriction on the
growth rate of h(θ). To remove this restriction, Chen and Zhu
(1986) proposed a varying truncation stochastic approximation
algorithm. The convergence of the modified algorithm can be
shown for a wide class of mean field functions, see, for example,
Chen (2002). A similar varying truncation stochastic approxi-
mation algorithm has also been studied in Andrieu et al. (2005).
The main difference between the two varying truncation algo-
rithms is at their reinitialization step. In Chen and Zhu (1986),
the simulation is always reinitialized at the same point while in
Andrieu et al. (2005), the simulation is reinitialized in a pre-
specified region. Of course, these two algorithms share similar
theoretical properties, such as the sampling path {θ t } can be kept
in a compact set almost surely.

The remainder of this section is organized as follows. In
Section 4.1, we present a varying truncation stochastic approx-
imation algorithm in the reinitialization style of Andrieu et al.
(2005), and study its convergence. In Section 4.2, we show
that the RSA estimator converges to θ̃n almost surely, and it is
asymptotically normally distributed.

4.1 Convergence of a Varying Truncation Stochastic
Approximation Algorithm

Let 	 be the parameter space, which is not necessarily com-
pact. To make the results more general, we set 	 = Rdθ in
this section. Let {Ks , s ≥ 0} be a sequence of compact subsets
of 	 as defined in (10), and let {at } and {bt } be two monotone,
nonincreasing, positive sequences. A general varying truncation
stochastic approximation algorithm can be described as follows.
It starts with a random choice of θ0 in the space K0 and then
iterates between the following steps:

Algorithm 3 Varying Truncation Stochastic Approximation

(i) Generate Xt+1 ∼ gθ t (x), where t indexes the iteration.
(ii) Set θ t+ 1

2
= θ t + atH (θ t , Xt+1), where at is the gain fac-

tor.
(iii) If ‖θ t+ 1

2
− θ t‖ ≤ bt and θ t+ 1

2
∈ Kπk , then set θ t+1 =

θ t+ 1
2

and πt+1 = πt ; otherwise, set θ t+1 = T (θ t ) and
πt+1 = πt + 1. Here, T and πt are defined as in Algo-
rithm 1.

Algorithm 3 is the same as the varying truncation stochastic
approximation MCMC algorithm given in Andrieu et al. (2005)
except that at each iteration the new sample Xt+1 is gener-
ated through an exact sampler instead of an MCMC sampler.
Hence, Algorithm 3 can be viewed as a special varying trunca-
tion stochastic approximation MCMC algorithm by viewing the
exact sampler as a special MCMC sampler. Let Pθ denote the
Markov transition kernel corresponding to the exact sampler. It
is easy to see that it is irreducible and aperiodic, admits gθ t (x) as
the invariant distribution, and satisfies the drift condition given
in Andrieu et al. (2005). Therefore, Algorithm 3 has the same
convergence as the varying truncation stochastic approxima-
tion MCMC algorithm. Lemma 5 is a formal statement for this
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convergence, whose proof is given in supplementary material,
available online.

Lemma 5. Assume the conditions (A1), (A2), and (A4) (given
in the online supplementary material) hold. Let kπ denote the it-
eration number at which the π th truncation occurs in the simula-
tion. LetX0 ⊂ X be such that supx∈X0

V (x) < ∞ andK0 ⊂ VC0 ,
where VC0 is defined in (A1). Let {θ t } be given by Algorithm
3. Then, there exists almost surely a number, denoted by πs ,
such that kπs < ∞ and kπs+1 = ∞; that is, {θ t } can be kept in a
compact set almost surely. In addition,

d(θ t ,L) → 0, a.s.,

where L is defined in (A1), and d(θ ,L) = infθ ′ {‖θ − θ ′‖ : θ ′ ∈
L} denotes a distance measure induced by the Euclidean norm.

Lemma 6 concerns the asymptotic normality of θ t . Liang
and Wu (2010) studied the asymptotic normality of the vary-
ing truncation stochastic approximation MCMC estimator. By
viewing the exact sampler as a special MCMC sampler, Liang
and Wu’s result (Theorem 2.2) implies the following lemma.
We note that a similar result can also be found in Benveniste
et al. (1990) (Theorem 13, chap. 4), where the asymptotic nor-
mality is established for conventional stochastic approximation
MCMC algorithms (without varying truncation) under slightly
different conditions.

Lemma 6. Assume the conditions (A1), (A2), (A3), and (A4)
(given in the online supplementary material) hold. Let the sim-
ulation start with a point (θ0, X0) ∈ K0 × X , where K0 ⊂ VC0

(defined in (A1)) and supX∈X V (X) < ∞. Let {θ t } be given by
Algorithm 3. Conditioned on �(θ∗) = {θ t → θ∗},

θ t − θ∗√
at

⇒ N(0,�sa), (22)

where θ∗ ∈ L as defined in (A1), N(·, ·) denotes the Gaussian
distribution, and

�sa =
∫ ∞

0
e(F ′+ζ I )t�e(F+ζ I )t dt, (23)

where F is defined in (A3), ζ is given in Equation (7) of the
online supplementary material, and � is defined by

1

N

N∑
t=1

E
(
εt+1ε

T
t+1

∣∣Ft) → �,

with εt+1 = H (θ t , Xt+1) − h(θ t ), and Ft = σ {θ0, X0, . . . ,

θ t , Xt } being a σ -algebra formed by {θ0, X0, . . ., θ t , Xt }.
4.2 Convergence of Algorithm 1

As shown by Stein (2004) and Zhang (2004), the model (1) is
inconsistently estimable for some correlation functions, such as
exponential and Matérn. To accommodate this case, we restrict
	 to a compact set. This ensures that {θ̃n}, the solution to (7),
lies in a compact set. Under this assumption, the convergence of
Algorithm 1 can be established based on Lemma 5. In simula-
tions,	 can be set to a huge set, for example, [−10100, 10100]dθ ,
which, as mentioned before, is equivalent to set 	 = Rdθ . For
the case that the model is consistently estimable, the compact-

ness constraint of 	 can be simply removed following from
Lemmas 5 and 6.

Theorem 3. Let {Y (s1), . . . , Y (sn)} be a random sample
drawn from a spatial Gaussian model (1), which is defined
on a bounded region and has an exponential correlation func-
tion. Let L = {θ : ∂K̂L(fθ , g|Y)/∂θ = 0} denote the set of so-
lutions to the system of Equations (7). Assume 	 is compact

and let {θ̂ (t)
n } be given by Algorithm 1 (i.e., θ̂

(t)
n = θ t ), then

limt→∞ d(θ̂
(t)
n ,L) = 0 a.s. as t → ∞.

The proof of this theorem is given in the online supplemen-
tary material. Although the model (1) is inconsistently estimable
for certain correlation functions, for example, exponential or
Matérn, it can be reparameterized such that the resulting model
is consistently estimable (Zhang 2004). Theorem 4 shows that

the RSA estimator θ̂
(t)
n is asymptotically normally distributed,

provided that the model or the reparameterized model is consis-
tently estimable. The proof of Theorem 4 is given in the online
supplementary material.

Theorem 4. Let {Y (s1), . . . , Y (sn)} be a random sample
drawn from a spatial Gaussian model (1), which is defined
on a bounded region and has an exponential correlation func-
tion. Assume the model (1) is consistently estimable and 	

is compact. Let {θ̂ (t)
n } be given by Algorithm 1. Then, given

�(θ̃n) = {θ̂ (t)
n → θ̃n},

θ̂
(t)
n − θ̃n√
at

⇒ N(0,�sa), (24)

where θ̃n denotes a solution to (7) and �sa is as defined in
Lemma 6.

As a summary of Theorems 2 and 4, we note that θ̂
(t)
n is asymp-

totically normally distributed, and its asymptotic distribution is
given by

θ̂
(t)
n ⇒ N (θ∗, at�sa + H−1

∗ �H−1
∗ ),

where H∗ and � are given in Theorem 2 and �sa is given in
Theorem 4. The term at�sa of the covariance matrix represents

the part of Monte Carlo error in θ̂
(t)
n .

5. SIMULATED EXAMPLES

In this section, we use three simulated examples to illustrate
the performance of RSA. These examples address the following
issues: (i) How is the RSA estimator related to the MLE?, (ii)
How can one choose the value of m?, (iii) Is RSA feasible for
very large datasets?, and (iv) Does RSA work under expanding-
domain asymptotics?

To apply RSA to our examples, we reparameterize φ, σ 2, and
τ 2 in their logarithms and set the sequence of compact subsets
of 	 as follows:

Kπt = [−2 − πt , 2 + πt ] × [−2 − πt , 2 + πt ] × [−πt , 4 + πt ]

× [−2 − πt , 2 + πt ] × [−2 − πt , 2 + πt ], (25)

in the order of parameters β0, β1, log(φ), log(σ 2), and log(τ 2),
where πt denotes the number of varying truncations at iteration
t. Note that this setting has been used for all examples of this
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Table 1. Comparisons of RSA with MLE, the Bayesian method, and the Gaussian predictive process (GPP) method for 50 simulated datasets
with nugget effects

Estimator Size β̂0 β̂1 φ̂/σ̂ 2 τ̂ 2 CPU(m)

True – 1.000 1.000 25.000 1.0 –
100 1.022 (0.068) 0.998 (0.009) 19.278 (0.768) 0.939 (0.010) 0.3

RSA 300 1.016 (0.065) 1.000 (0.007) 22.046 (0.684) 0.974 (0.009) 6.4
500 1.013 (0.064) 1.001 (0.007) 23.084 (0.675) 0.977 (0.008) 29.3
700 0.997 (0.063) 0.999 (0.006) 24.023 (0.659) 0.993 (0.007) 81.5

MLE – 1.000 (0.061) 1.000 (0.006) 25.269 (0.72) 0.999 (0.007) 19.4
Bayes – 0.994 (0.058) 1.000 (0.006) 28.560 (0.829) 1.098 (0.009) 93.9

36 1.031 (0.075) 0.998 (0.008) 35.199 (6.958) 1.809 (0.045) 111.2
GPP 100 1.031 (0.075) 0.998 (0.008) 21.212 (4.683) 1.773 (0.042) 343.0

Size: It refers to the subsample size for RSA and the grid size for GPP. CPU(m): CPU time (in min) cost by a single run on a 3.0 GHz personal computer (all computations of this article
were done on the same computer). The numbers in the parentheses denote the standard error of the estimates (this is the same for other tables of this article).

article, including the real data examples studied in Section 6.
A different choice of Kπt may result in different numbers of
truncations, but should not affect the convergence of RSA.

The sequences {at } and {bt } are set in the form

at = a0t0

max(t, t0)
, bt = b0

(
t0

max(t, t0)

)η
, (26)

where we set b0 = 100, t0 = 400, and η = 0.55 for all examples.
For a0, we tried two different values, 0.01 and 0.001, for different
examples. In general, if m is large, we set a0 to a smaller value;
otherwise, we may try a slightly larger value for a0. The reason
is as follows: When m is large, the innovation term defined in (9)
tends to have a large magnitude, so a small gain factor sequence
can stabilize the convergence of RSA.

5.1 Comparison Studies

In this example, we consider a geostatistical model with mea-
surement errors. The model is specified by (1) and (3) with
β0 = β1 = 1, φ = 25, σ 2 = 1, τ 2 = 1.0, and the explanatory
variable c1 is generated from a Gaussian distribution with mean
0 and standard deviation 0.5. Using the package geoR (Ribeiro
Jr. and Diggle 2001), we simulated 50 datasets of size n = 2000
with the sampling sites uniformly distributed in a bounded re-
gion of [0, 100] × [0, 100].

For each dataset, RSA was run four times with m = 100,
300, 500, and 700, respectively. We set a0 = 0.01 for the runs
with m = 100, 300, and 500 and a0 = 0.001 for the run with
m = 700. Each run consisted of 2500 iterations. Our multiple
pilot runs indicate that RSA can converge within 2500 itera-
tions for this example. The numerical results are summarized in
Table 1.

Stein (1999, 2004) showed that the model (1) is inconsistently
estimable for the exponential correlation function. Two proba-
bility measures can be equivalent for a sampling path {Y (s), s ∈
A} from any bounded subset A of Rd if φ1/σ

2
1 = φ2/σ

2 (see
Stein 1999 for d = 1 and Stein 2004 for d > 1). For this rea-
son, we reported in Table 2 the ratios of the estimates of φ and
σ 2 instead of their respective estimates. As a contrast, we will
show in Section 5.3 that in the scenario of domain expanding,
the model is consistently estimable.

5.1.1 Comparison with MLE. For comparison, we calcu-
lated the MLE of θ for each dataset using the package geoR.

The comparison indicates that RSA works very well for this
example. Even when m is as small as 100, the estimates of β0

and β1 are extremely accurate. As m increases, the estimates
of φ/σ 2 and τ 2 are improved and get closer and closer to their
true values. Figure 1 compares the MLE and RSA estimates
for the 50 datasets. It shows that for each dataset, the estimates
from the two methods are close to each other. In the presence of
nugget effects, the parameters φ, σ 2, and τ 2 are usually difficult
to estimate. As shown in Table 1, both τ 2 and φ/σ 2 tend to
be underestimated when m is small. However, these biases tend
to disappear as m increases. This finding is consistent with the
results reported in the literature: The nugget effect can reduce
the convergence rate of the MLE of the Gaussian process model,
see, for example, Chen et al. (2000).

Regarding central processing unit (CPU) time, we note that
for this example, 2500 iterations have been excessively long
for the convergence of RSA. Figure 2 shows the trajectories of
RSA collected in six independent runs for a dataset with nugget
effects, and Figure 3 shows the Gelman–Rubin shrink factor
for the φ/σ 2-trajectories of the six runs (the plots are similar
for other trajectories). Both plots indicate that 1000–1500 itera-
tions have been good enough for RSA to converge. Around the
1300th iteration, the upper limit of the 95% confidence level
of the Gelman–Rubin shrink factor starts to be lower than 1.1.
It is worth noting that the convergence rate of RSA is almost
independent of n, the sample size of the full dataset. As shown
in the next example, where each dataset consists of 50000 obser-
vations, the CPU time cost by RSA is about the same as for this
example. However, this is different for MLE, whose CPU time
increases as O(n3). Although it was quite fast for this example,
it took an extremely long CPU time for the next example (with

Table 2. A comparison of RSA and MLE for 50 simulated datasets
without nugget effects (see Table 1 for notations)

Estimator Size β̂0 β̂1 φ̂/σ̂ 2

100 1.027 (0.053) 1.002 (0.002) 24.453 (0.414)
RSA 300 1.008 (0.049) 0.999 (0.002) 24.932 (0.451)

500 1.025 (0.053) 1.004 (0.002) 24.990 (0.512)
MLE – 1.031 (0.054) 1.001 (0.001) 25.291 (0.739)
True – 1.000 1.000 25.000
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Figure 1. Comparison of the MLE and RSA estimates for the simulated example. The horizontal axis shows the MLE and the vertical axis
shows the RSA estimates obtained with m = 700: (a) plot for β0; (b) plot for β1; (c) plot for φ; (d) plot for σ 2; and (e) plot for τ 2.

Figure 2. Trajectories of RSA (m = 700, 6 runs) for a dataset with nugget effects: (a)–(f) are for β0, β1, τ 2, φ, σ 2, and φ/σ 2, respectively.

Figure 3. Gelman–Rubin shrink factor for the φ/σ 2-trajectories of RSA collected in six runs for one dataset. The solid and dashed lines show
the shrink factor and the upper limit of the 95% confidence interval of the shrink factor, respectively. The online version of this figure is in color.
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Table 3. RSA for very large datasets: n = 50,000 and 2500 iterations (see Table 1 for notations)

Estimator Size β̂0 β̂1 φ̂/σ̂ 2 τ̂ 2 CPU(m)

100 1.029 (0.050) 0.998 (0.005) 19.035 (0.789) 0.941 (0.008) 0.6
300 1.036 (0.047) 1.004 (0.004) 21.327 (0.633) 0.970 (0.006) 7.3

RSA 500 1.033 (0.045) 1.002 (0.004) 22.204 (0.531) 0.976 (0.006) 30.6
700 1.006 (0.045) 0.999 (0.002) 23.494 (0.677) 0.989 (0.004) 82.4

True – 1.000 1.000 25.000 1.0 –

n = 50000). Even for a dataset with n = 11,000 (one of our real
data examples), it took 10,340 min on the same computer.

5.1.2 Comparisons with the Bayesian and Predictive Pro-
cess Methods. For a thorough comparison study, we applied
the Bayesian method (Diggle et al. 1998; Diggle and Ribeiro
Jr. 2002) and the Gaussian predictive process approximation
method (Banerjee et al. 2008) to this example. The former
method has been implemented in the R package geoR and the
latter in spBayes. The reason why these two methods were cho-
sen for comparison is twofold: their parameters still match with
the parameters of the model (1), and their software is available
to the public. Note that some other methods, for example, those
based on the likelihood or Markov random field approximation,
may contain parameters that do not match with the model (1).
In running the Bayesian method, we have followed the instruc-
tion of geoR to impose uniform priors on β0, β1, φ, and the
nugget-to-sill ratio parameter τ 2/σ 2, impose a reciprocal prior
on σ 2 (i.e., f (σ 2) ∝ 1/σ 2), and discretize the nugget-to-sill
ratio parameter to 21 points which are equally spaced on the in-
terval [0.5, 1.5]. The discretization reduced the simulation time
substantially; otherwise, it would be extremely long. Under the
default setting of geoR, the algorithm was run for 1050 iterations
for each dataset. The results are summarized in Table 1.

As previously mentioned, the Gaussian predictive process
approximation method belongs to class of lower dimensional
space approximation methods, for which the lower dimensional
process, that is, the so-called predictive process, was constructed
based on the local kriging prediction on a number of prespecified
knots. The computational cost of this method is governed by
the number of knots. In general, a larger number of knots will
cause longer CPU time and lead to a better approximation to the
original process. In running this method, we tried two different
settings for the knots, a 6 × 6 grid and a 10 × 10 grid. We also
followed the instruction of spBayes to specify a flat prior for β0

and β1, and the following priors for the other parameters:

φ ∼ Uniform[1, 50], σ 2 ∼ IG(0.1, 0.1), τ 2 ∼ IG(0.1, 0.1),

where IG(a, b) denotes the inverse-gamma distributions with
parameters a and b. For each dataset, the algorithm was run for
2000 iterations, where the first 500 iterations were discarded for
burn-in and the samples drawn from the remaining 1500 itera-
tions were used for inference. The results are also summarized
in Table 1.

The comparison indicates that RSA outperforms the Bayesian
and Gaussian predictive process methods significantly, in both
estimation accuracy and CPU time. For the Gaussian predictive
process method, even it requires more CPU time than RSA, the
estimates of τ 2 are wrong, and the estimates of φ/σ 2 are highly
varied. The Bayesian method performs better than the Gaussian

predictive method, but its estimates for τ 2 and φ/σ 2 are both
severely upper biased. Compared to these two methods, RSA
did a much better job, especially withm = 700; it cost less CPU
time and produced much more accurate estimates.

Both the Bayesian and Gaussian predictive process meth-
ods have been applied to the very large datasets considered
in Section 5.2, where each dataset consists of 50000 observa-
tions. Due to the n× n-covariance matrix storage problem in
their software, both methods failed to produce any results for
those datasets. Note that both the Bayesian and Gaussian predic-
tive process methods involve inversions of n× n-matrices, al-
though in the latter the computation can be reduced based on the
Sherman–Woodbury–Morrison matrix identity (e.g., Harville
1997). In contrast, as shown in Table 3, RSA works well for
those large datasets with almost the same CPU time as for this
example. Note that RSA does not involve any computations of
n× n matrices. This feature makes RSA uniquely appealing in
computer memory in addition to its attractiveness in computa-
tional time and estimation accuracy.

5.1.3 On Nugget Effect. We have also considered the data
without measurement errors, that is, the nugget effect τ 2 = 0.
We simulated 50 datasets with β0 = β1 = 1, φ = 25, σ 2 = 1
and the explanatory variable c1 being generated from Normal
N (0, 0.52). Each dataset consisted of n = 2000 observations
with the sampling sites being uniformly distributed in the region
[0, 100] × [0, 100]. RSA was run for these datasets with a0 =
0.001. The results are summarized in Table 2. A comparison
with Table 1 indicates that RSA can work very well for the
data without nugget effects. With onlym = 300, the parameters
could have been estimated rather accurately. This result is very
encouraging, which indicates that MMLE can work as a general
parameter estimation approach for the models of big data.

5.2 RSA for Very Large Data

In this section, we explored the performance of RSA for very
large datasets. We simulated 50 datasets from models (1) and (3)
with β0 = β1 = 1, φ = 25, σ 2 = 1, τ 2 = 1.0, and the explana-
tory variable c1 being generated from the Normal N (0, 0.52).
Each dataset consisted of 50,000 observations uniformly po-
sitioned in the region [0, 100] × [0, 100]. RSA was run for
these datasets with a0 = 0.01 for m = 100, 300, and 500 and
a0 = 0.001 form = 700. The numerical results are summarized
in Table 3. Even for such large datasets, RSA still work well.
More importantly, its CPU time is almost independent of n.
Therefore, RSA can be applied to very large datasets. As men-
tioned earlier, MLE failed for these datasets.

Taking a closer look at Tables 1 and 3, it is easy to see that
for a fixed value of m, the bias of the estimate of φ/σ 2 tends to
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Table 4. RSA for the datasets simulated in the scenario of domain
expanding (see Table 1 for notations)

Estimator Size β̂0 β̂1 φ̂ σ̂ 2 τ̂ 2 φ̂/σ̂ 2

100 0.996 1.008 2.591 0.857 1.138 7.409
(0.008) (0.009) (0.236) (0.044) (0.041) (3.407)

RSA 300 0.988 1.022 1.932 1.052 0.949 1.893
(0.009) (0.009) (0.040) (0.022) (0.018) (0.067)

500 0.995 1.015 1.950 1.041 0.953 1.932
(0.008) (0.008) (0.041) (0.021) (0.017) (0.070)

MLE – 0.988 1.016 2.021 1.033 0.967 2.002
– (0.007) (0.008) (0.045) (0.019) (0.016) (0.067)

True – 1.0 1.0 2.0 1.0 1.0 2.0

increase with n, although not significantly. This suggests that a
slightly larger value of m should be used for a large dataset. This
is reasonable: A large dataset needs a large subset to represent
itself.

5.3 RSA under the Scenario of Domain Expanding

In this section, we explored the performance of RSA for
the scenario of domain expanding. We simulated 50 datasets
from models (1) and (3) with β0 = β1 = 1, φ = 2, σ 2 = 1,
τ 2 = 1, and the explanatory variable c1 being generated from the
NormalN (0, 0.52). Each dataset consisted of 2000 observations
uniformly positioned in the region [0, 100] × [0, 100]. Since the
region is so large relative to the true value of φ, this example
mimics the scenario of domain expanding and it is known that
the model is consistently estimable in this scenario.

RSA was run for these datasets with a0 = 0.01, and each
run consisted of 2500 iterations. The numerical results were
summarized in Table 4. The CPU times are similar to those
reported in Table 1. Certain patterns can be observed in Table
4: (i) For all values of m, σ̂ 2 + τ̂ 2 = 2 approximately holds;
and (ii) when m is large, both σ̂ 2 and τ̂ 2 converge to their true
values. This example shows that RSA also works under domain
expanding asymptotics.

6. REAL DATA ANALYSIS

In this section, we illustrate the application of RSA to large,
irregularly spaced spatial data. Two examples are examined. The
first is for the observations from weather stations in the United
States, and the second is for the observations from a gold mine.
Due to space limitations, only the first example is presented
next, and the second example is presented in the supplementary
material, available online.

We consider the precipitation data from the National Climatic
Data Center for the years 1895 to 1997, which are available at

/www.image.ucar.edu/GSP/Data/US.monthly.met/. This dataset
has been examined by several authors, for example, Johns et al.
(2003), Furrer et al. (2006), and Kaufman et al. (2008). Johns
et al. (2003) focused on missing observations imputation, and
Furrer et al. (2006) and Kaufman et al. (2008) used the datasets
to illustrate the covariance tapering method. In this analysis,
we analyze the monthly total precipitation anomalies, which are
defined as the monthly totals standardized by the long-run mean
and standard deviation for each station. The dataset we con-
sidered is the precipitation anomalies of April 1948, which has
been used as a demonstration dataset in the software KriSp (Fur-
rer 2006). The reason why we chose to work on this dataset is
twofold. First, the dataset is large, consisting of 11,918 stations.
Note that part of the data was imputed by Johns et al. (2003), but
for the purpose of illustration, we follow Furrer (2006) to treat
all data as real observations. Second, the data show no obvi-
ous nonstationarity or anisotropy. Otherwise, it would require a
more complicated model, such as a mixture spatial model, than
is considered here.

In our analysis, we first divide the data into two parts, a
random subset of 11,000 observations as the training set and the
remaining 918 observations as the test set. RSA was applied to
the training data with m = 500 and m = 700. For each setting
of m, RSA was run for five times with a0 = 0.001 and each run
consisted of 2500 iterations.

The results are summarized in Table 5. It indicates that RSA
works very stable for this example. The standard deviations of
all parameters are quite small.

To assess the quality of RSA estimates, we measure their
prediction performance on the test set. For a given estimate (to-
tally, 10 estimates have been produced by RSA in 10 runs), the
conditional mean E(Y (s0)|Y (s1), . . . Y (sn)) is calculated, where
s0 denotes a prediction site and {Y (s1), . . . , Y (sn)} denotes
the training data. Since the error process in (1) is Gaussian,
the conditional mean E(Y (s0)|Y (s1), . . . , Y (sn)) coincides
with the kriging predictor. However, this predictor involves
inverting a large matrix, 11,000 × 11,000, for this example. To
reduce computational time, we predict Y (s0) based on only the
observations that lie in a neighborhood around s0. As discussed
in Cressie (1993), the choice of neighborhood size, denoted by
δ, may depend on the range (φ), the nugget-to-sill ratio (τ 2/σ 2),
and the spatial configuration of data locations. However, there is
no simple relationship between δ and those parameters. For this
reason, we tried different values of δ, including 25, 40, 50, and
100 miles. On average, each point has approximately 10, 24, 37,
and 132 neighboring points for the four neighborhood sizes, re-
spectively. In what follows, we will call this prediction method
local kriging. The mean squared prediction errors (MSPEs)
were calculated for each value of δ and each model estimate

Table 5. Numerical results of RSA for anomalies of monthly precipitation for April 1948

Method Size β̂0 φ̂ σ̂ 2 τ̂ 2 CPU(m)

RSA 500 0.163 (0.000) 183.71 (0.45) 0.825 (0.003) 0.059 (0.000) 29.6
700 0.161 (0.001) 179.38 (1.15) 0.829 (0.001) 0.057 (0.000) 84.1

MLE 0.138 164.20 0.807 0.057 10,340.4

The estimates were calculated by averaging over five independent runs with standard deviations given in the parentheses (see Table 1 for notations).
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Table 6. MSPEs for anomalies of monthly precipitation in April 1948

Neighborhood size (δ)

Methods m 25 40 50 100

500 0.118 (9.1 × 10−6) 0.116 (8.1 × 10−5) 0.125 (1.2 × 10−4) 0.147 (6.3 × 10−5)
Local Kriging 700 0.118 (1.7 × 10−5) 0.117 (8.6 × 10−5) 0.126 (1.1 × 10−4) 0.147 (7.3 × 10−5)

MLE 0.118 0.119 0.129 0.148

500 0.297 (9.7 × 10−5) 0.160 (2.9 × 10−5) 0.136 (1.3 × 10−5) 0.115 (1.8 × 10−5)
Tapering 700 0.297 (1.4 × 10−4) 0.160 (3.7 × 10−5) 0.136 (1.6 × 10−5) 0.115 (1.8 × 10−5)

MLE 0.279 0.150 0.130 0.111

The values reported in the table are calculated by averaging over five runs, and the numbers in parentheses denote the standard deviations of the averaged MSPEs.

obtained previously. Total, there were 40 MSPEs calculated and
they are summarized in Table 6. The results indicate that the
local kriging method with about 20 neighboring points can pro-
vide a sufficiently precise prediction. This is consistent with the
results of Furrer et al. (2006), where it is stated that a tapering
radius with 16–24 points is sufficient for this example. A natural
question is why the predictions produced with δ = 50 and 100
are worse than those produced with δ = 25 and 40. Possible
reasons include (i) the mistake in model specification; that is,
the data may (slightly) violate the assumptions of stationarity
and isotropy; and (ii) the error in parameter estimation.

Given the estimate of parameters, the prediction can also be
done using the covariance tapering method. Furrer et al. (2006)
showed that tapering the covariance matrix with an appropriate
compactly supported correlation function reduces the computa-
tional burden significantly and still leads to an asymptotically
optimal mean squared prediction error. Note that Furrer et al.
(2006) assumed that the covariance function is known. For this
example, we have the estimated covariance matrices tapered by
a spherical correlation function with different range parameter
values, φ = 25, 40, 50, and 100 miles. The resulting MSPEs
are summarized in Table 6. Due to its covariance adjustment,
it is not a surprise that the tapering method produced better
predictions than the local kriging method when the neighbor-

hood is large. This suggests that the covariance tapering method
can be used in conjunction with RSA for prediction of large
datasets.

For comparison, the covariance tapering method was also re-
run with the covariance function given in Furrer et al. (2006),
which is a mixture of two exponential covariance functions with
respective parameters (φ, σ 2) = (40.73, 0.277) and (φ, σ 2) =
(523.73, 0.722), and the range parameter of the spherical cor-
relation function being set to 50 miles. The resulting MSPE is
0.132, which is slightly worse than the best values reported in
Table 6. For a thorough comparison, MLE was also applied to
this example with the estimation results reported in Table 5.
It cost extremely long CPU time, 10,340.4 min, on the same
computer. The resulting MSPEs are shown in Table 6.

Figure 4(b)–(d) show the prediction surfaces of the monthly
precipitation anomaly, which are evaluated on a regular 0.065 ×
0.12 latitude/longitude grid within the conterminous U.S.,
roughly at the solution of the NOAA data product. Compar-
ing to Figure 4(a), it is easy to see that our predictions are rather
accurate, which match the observed images very well.

In summary, RSA and MLE perform similarly for this exam-
ple in both parameter estimation and prediction, but MLE takes
much more CPU time than RSA. This example shows that RSA
is advantageous for large spatial data.

Figure 4. Observed and predicted precipitation anomaly for April 1948 (500 × 400 grid). (a) Observed image. (b) Predicted image by local
kriging with δ = 40 miles for an RSA estimate obtained with m = 500. (c) Predicted image by covariance tapering with δ = 100 miles for an
RSA estimate obtained with m = 500. (d) Predicted image by covariance tapering with δ = 100 miles for the MLE. The online version of this
figure is in color.
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7. DISCUSSION

In this article, we have proposed the RSA method for analysis
of large spatial data. At each iteration of RSA, a small subsample
is drawn from the full dataset, and then the current estimates of
the parameters are updated accordingly under the framework of
stochastic approximation. Since RSA makes use of only a small
proportion of the data at each iteration, it avoids inverting large
covariance matrices and thus, is scalable to very large datasets.
Under mild conditions, we show that the RSA estimator con-
verges in probability to a set of parameter values of equivalent
Gaussian probability measures, and that the estimator is asymp-
totically normally distributed. The numerical examples indicate
that RSA can work well for large datasets. RSA also leads to
a general parameter estimation approach, MMLE, for big data,
which has included MLE as a special case.

For implementation of RSA, two issues need to be addressed.
The first issue is about the subsample size m, which plays the role
of sample size for the mean log-likelihood function. To indicate
the dependence of θ̃n on m, we write θ̃m,n for θ̃n in what follows.
Obviously, if the model is consistently estimable, then θ̃m,n is
consistent for θ as both m and n go to infinity. A question of
interest is for a given value of n, how to choose m such that
θ̃m,n is close to the MLE of θ . Intuitively, as also suggested
by our numerical results, m should increase with n such that the
subsample can resemble characteristics of the whole dataset and
thus θ̃m,n is close to the MLE of θ . To find such a value of m,
practically we can gradually increase the value of m until θ̃m,n
becomes stable as a function of m. In theory, it is still unclear
how m should grow with n in the scenario of fixed domain.
Further study of this issue is of great interest.

The second issue is about the subsampling scheme. For
mathematical simplicity, this article advocates the simple ran-
dom sampling scheme, that is, each sample is drawn from the
full dataset at random and without replacement. An alternative
scheme is stratified sampling, which may be more attractive
than the simple random sampling scheme from the perspec-
tive of parameter estimation. When the sites s1, . . . , sn are not
uniformly distributed in the given region, stratified sampling is
potentially more efficient than simple random sampling in terms
of subsample sizes. In other words, to achieve the same estima-
tion accuracy, stratified sampling may need a smaller subsample
size than simple random sampling. To use stratified sampling in
RSA, a little extra theoretical work need to be done to ensure
that the resulting estimator still converges to the right place.

Regarding the relationship between RSA and bootstrap, we
note that they are closely related: Equation (7) is the m out of
n without replacement bootstrap estimator (e.g., Politis et al.
2001; Bickel and Sakov 2008) of the partial derivative of the
Kullback–Leibler divergence defined in (6). For dependent data,
the bootstrap method has been extensively studied under the
expanding-domain asymptotics (e.g., Hall 1985; Davison and
Hinkley 1997; Lahiri 2003). These studies are typically con-
ducted for a block resampling procedure, which attempts to
retain the dependence structure of the data, under some mix-
ing conditions for the process. This ensures that the resampling
scheme produces replicates that are asymptotically independent,
identically distributed. However, under the infill asymptotics,
there is no general analog to mixing conditions. Except for Loh
and Stein (2008), where the authors considered bootstrapping

one-dimensional Gaussian random fields defined on a regular
grid, we are not aware of any previous results demonstrating the
validity of bootstrapping under infill asymptotics. RSA provides
a way for parameter estimation based on the bootstrapped log-
likelihood function under the infill asymptotics. Bootstrapping
may provide us useful tools for a further study of the property
of the RSA method.

In this article, RSA is only applied to geostatistical data. Ex-
tending it to spatiotemporal data is straightforward. RSA can
also be easily modified to accommodate the missing data prob-
lem by adding a missing data imputation step in its procedure.
This is very important for real data analysis and will be ex-
plored elsewhere. In addition to the spatial data, RSA can also
be applied to large independent data in which the observations
are mutually independent. For large independent data, a popu-
lar method is divide-and-conquer (e.g., Xi et al. 2009; Lin and
Xi 2011), which works in three steps: partition the dataset into
a number of small subsets, analyze each subset separately, and
then aggregate the results from each subset to get the final result.
Compared to the divide-and-conquer method, RSA is more gen-
eral: RSA can work for both dependent and independent data,
while the divide-and-conquer method can only work for the lat-
ter. Given its generality and computational attractiveness, we
expect that RSA will play an important role in big data analysis.

APPENDIX

In this appendix, the lemmas and theorems are only proved for the
case ψ(·) taking values in one-dimensional space R = (−∞,∞). Ex-
tending the results to the case of multiple-dimensional space is straight-
forward. To facilitate the proofs, we introduce the following notations:

Sn = {X1, . . . , Xn}, SN = {X1, . . . , Xn,Xn+1, . . . , XN },
q = 1 − n

N
,

ψk(x1, . . . , xk) = E{ψ(X1, . . . , Xm)|X1 = x1, . . . , Xk = xk},
1 ≤ k ≤ m− 1,

ϕk,N (x1, . . . , xk) = E{ψ(X1, . . . , Xm)|X1 = x1, . . . , Xk = xk,SN },
1 ≤ k ≤ m− 1,

σ 2
k = var(ψk(X1, . . . , Xk)), σ 2

k,N = var(ψk,N (X1, . . . , Xk)),

1 ≤ k ≤ m− 1,

Proof of Lemma 1

To prove this lemma, it suffices to show that var(Un) → 0 as
n → ∞. To calculate var(Un), we construct an auxiliary set SN =
{X1, . . . , Xn,Xn+1, . . . , XN }. Thus, Sn can be viewed as a simple ran-
dom sample of SN , and Un can be viewed as a U-statistic defined on
the finite population SN . By Zhao and Chen (1990), we have

var(Un |SN ) = qm2

n
σ 2

1,N +O
( q

nN

)
+O

(
q2

n2

)
. (A.1)

Since ψ(·) is continuous (a.e.) and E|ψ(X1, . . . , Xm)|2 < ∞, it fol-
lows from Lahiri (1996) that

σ 2
1,N

p→ σ 2
1 , as N → ∞, (A.2)

where
p→ denotes convergence in probability. Lahiri (1996) studied the

convergence of an empirical measure of the spatial process under infill
asymptotics, and his result (Corollary of Theorem 4) implies that for a
bounded stationary random field, the sample mean of any continuous
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function will converge in probability to its true mean (provided exis-
tence) as the sample size becomes large.

Therefore, by (A.1) and (A.2),

var(Un|S∞) = lim
N→∞

var(Un|SN ) = Op

(
1

n

)
, (A.3)

where Op(cn) = cnOp(1), and Op(1) denotes a sequence of random
variables converging in probability to a constant.

On the other hand, Un, as a linear function ψ(X(i)
1 , . . . , X

(i)
m ), is also

a.e. continuous and possesses the second-order moment. It follows

from Lahiri (1996) that var(Un|SN )
p→ var(Un) as N → ∞; that is,

var(Un|S∞) = var(Un) + op(1), (A.4)

where op(1) is short for a sequence of random variables that converge
to zero in probability. By (A.3) and (A.4), we have

var(Un) = Op

(
1

n

)
− op(1) = op(1). (A.5)

Since var(Un) is a constant sequence, (A.5) further implies that
var(Un) → 0. This concludes the proof of Lemma 1.

To prove Lemma 2, we introduce another lemma, whose proof is
left to the reader.

Lemma 7. Let X(k)
i , k = 1, . . . , q, denote q sequences of random

variables. If q is finite and for all 1 ≤ k ≤ q,

X
(k)
i

p→ ak, as i → ∞, (A.6)

then

max
k
X

(k)
i

p→ max
k
ak, as i → ∞.

Proof of Theorem 1

Because Z follows a multivariate Gaussian distribution, lθ (z, s) is
continuous and nonpositive, and

lθ (z, s) = −m
2

log(2π ) − 1

2
log(|�z|) − 1

2
(z − μz)

T�−1
z (z − μz).

Since the normal distribution possesses finite moments of any order,
(13) and (14) are satisfied. By Lemma 2, we have d(θ̃n,	0) → 0 in
probability.

Proof of Lemma 3

The proof of this lemma is partly based on the proof of Zhao
and Chen (1990) for the asymptotic normality of finite population
U-statistics, and the proof of Lahiri (1996) for the convergence of em-
pirical measures under infill asymptotics. In the following, we will omit
the details for the parts that are from these references.

As in the proof of Lemma 1, we construct an auxiliary finite popula-
tion SN = {X1, . . . , Xn,Xn+1, . . ., XN } with N being fixed to N = n2.
Since the auxiliary samples {Xn+1, . . . , XN } are drawn in the same
sampling procedure from the same random field as for {X1, . . . , Xn},
SN also satisfies the condition (16). Thus,

E(|ψk,N |2)

nσ 2
1,N

= E(|ψk,N |2)√
Nσ 2

1,N

→ 0, a.s., as N → ∞. (A.7)

Therefore, by Corollary 2.1 of Zhao and Chen (1996) (the setting
N = n2 and (A.7) imply that the conditions required by Corollary 2.1
of Zhao and Chen (1996) are satisfied), we have

(Un − E(Un|SN ))/
√

var(Un|SN ) ⇒ N (0, 1). (A.8)

Since ψ(·) is continuous (a.e.) and its second-order moment exists,
it follows from Lahiri (1996) that

E(Un|SN )
p→ E(Un), var(Un|SN )

p→ var(Un), as N → ∞.

By the setting N = n2, which implies n → ∞ ⇔ N → ∞, and Slut-
sky’s theorem, we have

(Un − E(Un))/
√

var(Un) ⇒ N (0, 1). (A.9)

This complete the proof of the lemma.

Proof of Lemma 4

In this proof, we assume that θ = (θ1, . . . , θd ) is a d-dimensional
vector. Since θ̃n maximizes Un(θ ), it solves the first-order equation
given by (

n

m

)−1 (nm)∑
i=1

ωθ

(
x

(i)
1 , . . . , x

(i)
m

) = 0,

whereωθ (x1, . . . , xm) = (∂ψθ (x1, . . . , xm)/∂θ1, . . . , ∂ψθ (x1, . . . , xm)/
∂θd )T . Let

Hθ

(
x

(i)
1 , . . . , x

(i)
m

) = ∂2ψθ

(
x

(i)
1 , . . . , x

(i)
m

)
∂θ∂θ ′

be the Hessian ofψθ (·). Then, by a mean-value expansion,we can write

0 =
(
n

m

)−1 (nm)∑
i=1

ωθ

(
X

(i)
1 , . . . , X

(i)
m

) =
(
n

m

)−1 (nm)∑
i=1

ωθ∗
(
X

(i)
1 , . . . , X

(i)
m

)
+
⎧⎨⎩
(
n

m

)−1 (nm)∑
i=1

H̃ i

⎫⎬⎭ (θ̃n − θ∗),

where H̃ i is equal to the Hessian Hθ (x(i)
1 , . . . , x

(i)
m ) except that whose

each row is evaluated at a different mean value of θ between θ̃n and θ∗.
By Lemma 2, whose conditions are satisfied by conditions (i)–(iii), θ̃n
converges to θ∗ in probability. Furthermore, H̃ i is continuous in θ and
its second-order moment exists, so we have(

n

m

)−1 (nm)∑
i=1

H̃ i

p→ H∗,

by Lemma 1. Since the model has been assumed to be consistently
estimable, H∗ is nonsingular. Therefore,⎧⎨⎩

(
n

m

)−1 (nm)∑
i=1

H̃ i

⎫⎬⎭
−1

p→ H−1
∗ , (A.10)

and thus,

(θ̃n − θ∗)=−
⎧⎨⎩
(
n

m

)−1 (nm)∑
i=1

H̃ i

⎫⎬⎭
−1⎧⎨⎩

(
n

m

)−1 (nm)∑
i=1

ωθ∗
(
X

(i)
1 , . . . , X

(i)
m

)⎫⎬⎭ .
(A.11)

Note that E(ωθ∗ (X1, . . . , Xm)) = 0 under regularity conditions. By
Lemma 3, whose conditions are satisfied by conditions (ii) and (iv),(

n

m

)−1 (nm)∑
i=1

ωθ∗
(
X

(i)
1 , . . . , X

(i)
m

) ⇒ N (0,�), (A.12)

where � is the covariance matrix of the U-statistic defined by the kernel
ωθ∗ = ∂ψθ/∂θ |θ=θ∗ . By (A.10), (A.11), and (A.12), we conclude the
proof of the lemma.

Proof of Theorem 2

Since Z follows a multivariate normal distribution, it is easy to see
that the kernel lθ (Z, S) of the U-statistic Mn(θ ) satisfies conditions
(i)–(iii) of Lemma 4. Assuming that the sampling process satisfies the
condition (iv), by Lemma 4, θ̃n is asymptotically normally distributed
as described in (19).
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SUPPLEMENTARY MATERIALS

Section 1: A real data example, goldmine samples.
Section 2: The proof of Lemma 3.2.
Section 3: The proofs of Lemma 4.1, Theorem 4.1, and Theo-

rem 4.2.

[Received March 2011. Revised October 2012.]
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