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Confidence Distributions and a Unifying
Framework for Meta-Analysis

Minge XIE, Kesar SINGH, and William E. STRAWDERMAN

This article develops a unifying framework, as well as robust meta-analysis approaches, for combining studies from independent sources.
The device used in this combination is a confidence distribution (CD), which uses a distribution function, instead of a point (point estimator)
or an interval (confidence interval), to estimate a parameter of interest. A CD function contains a wealth of information for inferences, and
it is a useful device for combining studies from different sources. The proposed combining framework not only unifies most existing meta-
analysis approaches, but also leads to development of new approaches. We illustrate in this article that this combining framework can include
both the classical methods of combining p-values and modern model-based meta-analysis approaches. We also develop, under the unifying
framework, two new robust meta-analysis approaches, with supporting asymptotic theory. In one approach each study size goes to infinity,
and in the other approach the number of studies goes to infinity. Our theoretical development suggests that both these robust meta-analysis
approaches have high breakdown points and are highly efficient for normal models. The new methodologies are applied to study-level data
from publications on prophylactic use of lidocaine in heart attacks and a treatment of stomach ulcers. The robust methods performed well
when data are contaminated and have realistic sample sizes and number of studies.

KEY WORDS: Combination of p-values; Fixed-effects model; Random-effects model; Robust methods.

1. INTRODUCTION

In the modern era with explosive growth of information, it
is important to process information in an efficient and mean-
ingful manner. Meta-analysis is such a statistical methodology
that combines results from separate studies. The topic of meta-
analysis has an enormous literature. For instance, the review of
recent developments by Sutton and Higgins (2008) on model-
based meta-analysis alone listed 281 references. Some recent
books include, for example, Hedges and Olkin (1985), Stangl
and Berry (2000), Whitehead (2002), Schulze (2004), Preiss et
al. (2006), and many more. Indeed, collecting together over-
all information from different studies is a critical component
for decision making. Combined results from multiple studies
summarize overall associations, and inferences from the com-
bined results are typically more reliable than inferences from
any single study. The study of formal and meaningful ways
of combining studies from independent sources is important
both theoretically and practically. This article develops a unify-
ing framework for combining studies from independent sources
and, based on this framework, develops robust meta-analysis
approaches that can effectively mitigate the impact of outlying
studies.

The device used in our proposed combination approach is
a confidence distribution (CD), a concept loosely referring to
a distribution function that can represent confidence intervals
of all levels for a parameter of interest. The CD concept has
a long history (see, e.g., Fisher 1973 and Efron 1993), but
recent developments have redefined the CD as a purely fre-
quentist concept and focused on providing inference tools for
problems in modern applied statistics. Generally speaking, a
CD approach uses a distribution function, instead of a point or

Minge Xie (E-mail: mxie@stat.rutgers.edu), Kesar Singh (E-mail: kesar@
stat.rutgers.edu), and William E. Strawderman (E-mail: straw@stat.rutgers.
edu) are Professors of Statistics, Department of Statistics and Biostatistics, Rut-
gers University, Piscataway, NJ 08854. This research is partly supported by
research grants from NSF (DMS0915139, SES0851521) and NSA (H98230-
08-1-0104). The authors are very grateful to Brad Efron, Ingram Olkin, Regina
Liu, Jan Hannig, and David Hoaglin, as well as the editors and two anonymous
reviewers, for their constructive suggestions and discussions.

an interval, to estimate a parameter of interest. More specif-
ically, let � be the parameter space of a parameter of inter-
est θ and X be the sample space of the sample observations
X = {X1,X2, . . . ,Xn}. A CD function H(·) = H(X, ·) is a map-
ping from X ×� → [0,1] where, for each given sample X ∈ X ,
H(·) is a sample-dependent continuous cumulative distribution
function on �. Also, we require that, when θ = θ0 the true
parameter value, H(θ0) ≡ H(X, θ0), as a function of the sam-
ple X, follows the uniform distribution U[0,1]. The U[0,1]
requirement guarantees that inferences (such as confidence in-
tervals, point estimators, p-values, etc.) derived from the CD
function have desired properties for making inference on θ0.
The function H(·) is an asymptotic CD (aCD), if this U[0,1]
requirement is true only asymptotically. See Definition A.1 in
Appendix A.1, which was formulated in Schweder and Hjort
(2002) and Singh, Xie, and Strawderman (2005). This new CD
definition is consistent with the classical CD notion which is
compiled from confidence intervals of varying confidence lev-
els (cf., Singh, Xie, and Strawderman 2005). A CD function
contains a wealth of information for inferences; much more
than a point estimator or a confidence interval. Schweder and
Hjort (2003) suggested that a CD is a “frequentist analogue of
a Bayesian posterior.” However, the notion of CD, especially
in its asymptotic form, is much broader. Recent research has
shown that the new CD concept encompasses and unifies a wide
range of examples, from regular parametric cases (including
most examples in the classical development of Fisher’s fiducial
distributions) to bootstrap distributions, significance (p-value)
functions (Fraser 1991), normalized likelihood functions, and,
in some cases, Bayesian priors and Bayesian posteriors. There
is renewed interest in CDs (e.g., Efron 1998; Schweder and
Hjort 2002; Schweder 2003; Lawless and Fredette 2005; Parzen
2005; Singh, Xie, and Strawderman 2005, 2007; Xie et al. 2009;
Tian et al. 2010; among others). A brief review and highlights
of recent developments on CDs are provided in Appendix A.2.
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In this article, we extend the general recipe for combining
CDs proposed by Singh, Xie, and Strawderman (2005) to meta-
analysis settings and develop a general framework to perform
meta-analysis from separate studies. With the flexibility of the
general framework and the breadth of the CD concept, the pro-
posed CD-combining procedure represents a large class of com-
bining methods for meta-analysis. We illustrate that the classi-
cal approach of combining p-values can be viewed as a special
case of combining CDs. We also propose a weighted combina-
tion, unifying the model-based meta-analysis approaches under
the proposed framework of combining CDs. To our knowledge,
this is the first time that the classical methods of combining
p-values and the model-based meta-analysis methods are placed
under a unified framework. The unifying framework not only
has theoretical value, but can also promote broader applications
of, and easier access to, meta-analysis through development of
a common computer program for a variety of approaches.

The proposed CD combining framework also allows us to de-
velop new methodologies. Specifically, we develop two robust
meta-analysis approaches, with supporting asymptotic theory.
In one approach, the size of each study goes to infinity, and in
the other, the number of studies tends to infinity. The proposed
robust meta-analysis approaches have high breakdown points
and are resistant to “bad” studies. Here, “bad” studies are those
whose underlying true parameter values differ from the parame-
ter of interest, and we assume that we do not know which stud-
ies are “bad” studies. This development removes a constraint,
often implicitly imposed in current practice, requiring all stud-
ies be of the same type and with the exact same underlying
parameter (or hyperparameter) values. The proposed robust ap-
proaches also have high efficiency, asymptotically. We prove
an oracle property implying that, in the first setting, the ro-
bust meta-analysis estimator is asymptomatically equivalent to
the theoretically most efficient point estimator in fixed-effects
models, regardless of whether any studies are outlying or not.
The second approach can attain (3/π)1/2 ≈ 97.7% efficiency
asymptotically in both fixed-effects and random-effects mod-
els when there are no outlying studies. The second approach
also offers some protection against model misspecification, and
it has an interesting connection to an M-estimation approach,
which has not been explored before.

The CD concept has a historical connection to the classi-
cal fiducial development, and recent developments on CDs also
share some common goals with fiducial inference and its ex-
tensions, including recent development on “generalized fidu-
cial” inference and the development of belief functions under
Dempster–Shafer theory; see, for example, review articles by
Hannig (2009), Dempster (2008), and Martin, Zhang, and Liu
(2010). In particular, Dempster’s rule of recombination pro-
poses “a universal rule to combine evidence” through com-
bining belief functions. However, as stated in Martin, Zhang,
and Liu (2010), “the belief function does not satisfy long-run
frequency properties” and the expression for combining belief
functions is “rather complicated.” To the best of our knowledge,
computational difficulty and other issues have so far limited the
use of the Dempster’s rule of recombination in practice. In con-
trast to these developments, the CD concept considered here
is defined and developed strictly within the frequentist domain.
There is no involvement of any new theoretical framework such

as fiducial reasoning or Dempster–Shafer theory. The research
on combining CDs in the present article is not an attempt to
provide a universal theory of combining evidence. Rather, the
focus is on providing a unifying framework that subsumes most
commonly used meta-analysis approaches and developing new
robust approaches for practical applications. Unlike Dempster’s
rule of recombination, the CD-combining approach is easy to
compute and can be directly related to a vast collection of prac-
tical examples, including most approaches used in the classical
and current meta-analysis practices.

The article is organized as follows. Section 2 introduces
a general recipe and framework for combining CDs from in-
dependent studies. Section 3 illustrates that classical methods
of combining p-values, as well as model-based meta-analysis
approaches, can be derived as special examples under the gen-
eral framework of combining CDs. Section 4 develops two gen-
eral robust meta-analysis approaches under different asymptotic
settings and illustrates them using fixed-effects and random-
effects models. Section 5 contains two numerical examples. The
first uses the intravenous lidocaine treatment data studied by
Normand (1999), and the other uses the stomach ulcer data pro-
vided in Efron (1996). Section 6 provides some further remarks.

2. A SIMPLE RECIPE AND GENERAL FRAMEWORK
OF CD COMBINATION

Suppose Hi(θ) = Hi(Xi, θ), i = 1, . . . , k, are CD functions
for the same parameter θ from k independent samples Xi and
the sample size of Xi is ni. By extending the classical methods
of combining p-values, Singh, Xie, and Strawderman (2005)
proposed a general recipe for combining CD functions using
a coordinate-wise monotonic function from the k-dimensional
cube [0,1]k to the real line R = (−∞,+∞). Specifically, let
gc(u1, . . . ,uk) be a given continuous function on [0,1]k → R

which is monotonic (without loss of generality, say, increasing)
in each coordinate. Singh, Xie, and Strawderman (2005) sug-
gested to combine the k CD functions as

H(c)(θ) = Gc
{
gc(H1(θ), . . . ,Hk(θ))

}
. (2.1)

Here, the function Gc is completely determined by the mono-
tonic gc function: Gc(t) = P(gc(U1, . . . ,Uk) ≤ t), where U1,

. . . ,Uk are independent U[0,1] random variables. When the un-
derlying true parameter values of the k individual CD functions
Hi(θ) are the same, it is evident that H(c)(θ) is a CD function
for the parameter θ . This function H(c)(θ) contains information
from all k samples, and it is referred to as a combined CD func-
tion. A nice feature of the proposed CD-combining method is
that it does not require any information regarding how the in-
put CD functions, Hi(θ), are obtained, aside from the assumed
independence.

Although only representing a small fraction of combining ap-
proaches covered by (2.1), a special class of the general com-
bining recipe, specified below, plays a prominent role in unify-
ing many meta-analysis approaches currently used in practice.
In this special class, the choice of the function gc is

gc(u1, . . . ,uk) = w1F−1
0 (u1) + · · · + wkF−1

0 (uk), (2.2)

where F0(·) is a given cumulative distribution function and
wi ≥ 0, with at least one wi 	= 0, are generic weights for the
combination. Two types of weights are considered: (a) fixed
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weights in various contexts to improve the efficiency of com-
bination, and (b) adaptive weights (or data-based weights) to
deal with unknown parameters or to obtain a robust combina-
tion. When w1 ≡ · · · ≡ wk ≡ 1, this weighted combining recipe
reduces to the subclass of equal-weight combination with

gc(u1, . . . ,uk) = F−1
0 (u1) + · · · + F−1

0 (uk). (2.3)

Singh, Xie, and Strawderman (2005) focused on the study of
Bahadur efficiency in the setting where the underlying true pa-
rameter values of the k individual CD functions Hi(θ) are the
same. They showed that, when gc(u1, . . . ,uk) = DE−1(u1) +
· · · + DE−1(uk), the combined CD function H(c)(θ) is most ef-
ficient, in terms of Bahadur slope. Here, DE(·) is the cumulative
distribution function of the standard double exponential distri-
bution and k is bounded. Singh, Xie, and Strawderman (2005)
also extended this Bahadur optimality result to an empirical-
Bayes like setting discussed by Efron (1993) in which, in addi-
tion to a “current study” of interest, there are also some “past
studies” that may or may not provide useful information for
the current study. To achieve the goal of incorporating past
information with the current study (say, Study 1) under the
framework of combining CDs, they considered a special form
of (2.2), in which w1 ≡ 1 and wi for past studies are data-
dependent adaptive weights which are equal to (or, asymptot-
ically, tending to) either 0 or 1.

In contrast, here we study methods of combining CDs to
obtain an overall conclusion from separate studies in a meta-
analysis setting in which the underlying true parameters of the
studies may or may not be the same. Also, since Bahadur opti-
mality has some technical problems when dealing with nonex-
act inferences (as is commonly the case in meta-analysis appli-
cations), instead of focusing on Bahadur efficiency, we concen-
trate on providing a unifying framework for various existing
meta-analysis approaches and provide Fisher-type optimality
(or near optimality) results whenever possible. Weighted com-
bining to improve Fisher-efficiency of a combination, which
was not discussed in Singh, Xie, and Strawderman (2005),
plays a key role in this development, especially in model-based
meta-analysis approaches. As illustrated in Section 3, the clas-
sical approaches of combining p-values (cf., Fisher 1932 and
Marden 1991) as well as the model-based meta-analysis meth-
ods (e.g., Normand 1999) are special cases of this framework
of combining CDs. To our knowledge, the current development
has allowed, for the first time, these seemingly unrelated meth-
ods to be studied in a unified framework.

We also extend the adaptive weighting idea of Singh, Xie,
and Strawderman (2005) to a meta-analysis setting, in which
up to half of the studies can be allowed to have different un-
derlying parameter values; see Section 4.1. Besides providing
a robust meta-analysis approach for a set of large studies, the
development also offers an improved and much stronger theo-
retical result on adaptive combining than Singh, Xie, and Straw-
derman (2005). Furthermore, it provides a Fisher-optimal com-
bining result for the fixed-effects models in the normal case.

Additionally, we study another choice in (2.1),

gc(u1, . . . ,uk) = w1u1 + · · · + wkuk, (2.4)

which leads to our second robust approach under the asymptotic
assumption that the number of studies k goes to infinity. It can

be shown that the combined CD function H(c)(θ) obtained by
using (2.4) is related to an M-estimation approach. This new
robust approach is close to Fisher-optimal in normal models,
and it covers both random effects and fixed-effects models.

To facilitate the use of the CD combining approaches, we
present below a lemma to the effect that the general recipe (2.1)
can preserve orders of error bounds (the error is quantified in
term of deviating from U[0,1] distribution at its true parameter
value). The result implies that the combined CD function can
preserve the convergence rates of individual aCD functions. It
also allows us to use approximations of CD functions in prac-
tice. A proof of the lemma is in Appendix B.

Lemma 1. Suppose H̃i(θ) is an approximate CD function
that satisfies∣∣P(H̃i(θ0) ≤ t) − t

∣∣ ≤ εi

for an εi > 0 and all t ∈ (0,1), i = 1,2, . . . , k. (2.5)

Then, the combined function H̃(c)(θ) = Gc{gc(H̃1(θ), . . . ,

H̃k(θ))} is an approximate CD function satisfying

∣∣P(
H̃(c)(θ0) ≤ t

) − t
∣∣ ≤

k∑
i=1

εi for all t ∈ (0,1).

3. UNIFYING CLASSICAL AND MODEL–BASED
META–ANALYSIS APPROACHES

3.1 Unifying Classical p-Value Combining Methods

One classical approach combines the p-values from individ-
ual studies. Let us start with a left-sided test K0 : θ ≤ t0 versus
K1 : θ > t0 for some fixed t0. Denote by pi the p-value from
the ith study, i = 1,2, . . . , k. Fisher (1932) suggested a simple
combining method using

p(c) = P

{
χ2

2k ≥ −2
k∑

i=1

log(pi)

}
(3.1)

as a p-value for all k studies, and Littell and Folks (1973) estab-
lished that the combination in (3.1) is Bahadur optimal. Here,
χ2

2k is a χ2
2k-distributed random variable. Another commonly

used p-value combining method, proposed by Stouffer et al.
(1949), is

p(c) = �

(
1√
k
[�−1(p1) + �−1(p2) + · · · + �−1(pk)]

)
, (3.2)

where � is the cumulative distribution function of the stan-
dard normal distribution. Additional approaches of combining
p-values in the classical meta-analysis literature include Tippett
(min), sum, and max methods (see, e.g., Marden 1991 and the
references therein).

For the test K0 : θ ≤ t0 versus K1 : θ > t0, the p-value pi
depends on the value t0. When t0 varies, pi = pi(t0) forms
a function on the parameter space. This function pi(·) is called
a significance function by Fraser (1991) and is also known
as a p-value function. Singh, Xie, and Strawderman (2005,
2007) showed that a p-value function is usually a CD or an aCD
function. Based on the development of the p-value function and
its connection to the CD concept, the aforementioned methods
of combining p-values are naturally linked to the approach of
combining CDs.
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Table 1. A list of meta-analysis approaches unified under the proposed combining CDs framework

Classical approaches of combining p-values Fisher method
(from Marden 1991) Stouffer (normal) method

Tippett (min) method
Max method
Sum method

Model-based meta-analysis approaches Fixed-effects model: MLE method
(from Normand 1999, table IV) Fixed-effects model: Bayesian method

Random-effects model: Method of moment
Random-effects model: REML method
Random-effects model: Bayesian method (normal prior on θ and fixed τ )

More specifically, let p1(s), . . . ,pk(s) be the p-value func-
tions in the k studies. In each study, the value pi = pi(t0) is
the p-value of the one-sided test K0 : θ ≤ t0 versus K1 : θ > t0.
Based on the equal-weight recipe (2.3) with F0(t) = et for t ≤ 0
or F0(t) = �(t), we can get a combined CD

H(c)(s) = P

[
χ2

2k ≥ −2
k∑

i=1

log{pi(s)}
]

(3.3)

or

H(c)(s) = �

(
1√
k

[
�−1(p1(s)) + �−1(p2(s)) + · · ·

+ �−1(pk(s))
])

, (3.4)

respectively. The p(c) in (3.1) equals H(c)(t0) in (3.3), and the
p(c) in (3.2) equals H(c)(t0) in (3.4). Thus, the approaches
of combining p-value functions (CDs) in (3.3) and (3.4) sub-
sume the approaches of combining p-values in (3.1) and (3.2).
This conclusion can be extended to the other approaches of
combining p-values. We have verified that all five methods
of combining p-values investigated in Marden (1991) can be
subsumed under the framework of combining CDs. For Tip-
pett (min), max, and sum methods, the gc choices in (2.1) are
gc(u1, . . . ,uk) = min(u1, . . . ,uk) or max(u1, . . . ,uk) or u1 +
· · · + uk, respectively.

The extension of this argument to combining p-values for a
right-sided test is trivial. Note that p̃i = 1 − pi(t0) is the p-value
for the right-sided test K0 : θ ≥ t0 versus K1 : θ < t0, where pi(s)
is the p-value function defined on the corresponding left-sided
tests. Let H(c)(s) be the combined CD function from combin-
ing these pi(s) functions. Then, 1 − H(c)(t0) is the combined
p-value for the right-sided test.

For a two-sided test K0 : θ = t0 versus K1 : θ 	= t0, the p-value
of the test is p̃i = 2 min{pi(t0),1−pi(t0)}; see Fraser (1991) and
Singh, Xie, and Strawderman (2007). In this case, instead of
using the p-value (CD) functions pi(s), we obtain the combined
p-value p(c) of the two-sided test using the centrality functions
ci(s) = 2 min{pi(s),1 − pi(s)}. In contrast to a CD function, the
centrality function ci(s) = 2 min{pi(s),1 − pi(s)} peaks around
s = t0. But ci(t0) is still U[0,1] distributed as a function of the
sample. We can prove that, using the general combining recipe
(2.1) and with gc in the form of (2.3), the result of combining
centrality functions

c(c)(s) = Gc
{
gc(c1(s), . . . , ck(s))

}

is still a centrality function. Its value at t0, c(c)(t0), is the com-
bined p-value p(c) for the two-sided test.

The first half of Table 1 lists the five classical p-value com-
bining approaches considered in Marden (1991). The combined
p-values of these five approaches can all be obtained under the
general CD-combining framework, with an equal-weight for
each individual study in the combination.

3.2 Unifying Model-Based Meta-Analysis Methods

Normand (1999) and Sutton and Higgins (2008) provided
excellent reviews of model-based meta-analysis in modern bio-
statistics applications. They summarized various meta-analysis
procedures under the framework of both fixed-effects and
random-effects models. We illustrate in this subsection that
commonly used meta-analysis procedures based on fixed-
effects and random-effects models fit into our general frame-
work of combining CDs. In particular, we use the weighted
recipe (2.2), with some chosen weights, to match the esti-
mators from combined CDs with the estimators from model-
based meta-analysis approaches. For simplicity, we use here the
normal models described in Normand (1999) to illustrate the
unification of model-based meta-analysis. Further remarks on
asymptotically normal or t-distributed models and other non-
normal cases are provided at the end of the section.

3.2.1 Fixed-Effects Model. Normand (1999) used the fol-
lowing model to illustrate a fixed-effects meta-analysis ap-
proach

Yi
ind∼ N(θ, s2

i ) for i = 1,2, . . . , k, (3.5)

where θ is the parameter of interest, Yi is a summary statistic
from the ith study, and s2

i = var(Yi) is assumed known. Nor-
mand (1999) reviewed under (3.5) two meta-analysis estima-
tors: MLE and Bayes.

Under the fixed-effects model assumption (3.5), the CD
function from the ith study is Hi(θ) = �((θ − Yi)/si). Taking
F0(t) = �(t) and wi = 1/si in (2.2), we have a combined CD
function

H(c)(θ) = �

(
1√∑k
i=1 w2

i

k∑
i=1

wi
θ − Yi

si

)

= �

((
k∑

i=1

1

s2
i

)1/2

(θ − θ̂c)

)
, (3.6)
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where θ̂c = (
∑k

i=1 Yi/s2
i )/(

∑k
i=1 1/s2

i ). Thus, we can estimate
θ by a normal CD function with mean θ̂c = (

∑k
i=1 Yi/s2

i )/

(
∑k

i=1 1/s2
i ) and variance (

∑k
i=1 1/s2

i )
−1. These are exactly the

expressions for the MLE method listed in table IV of Normand
(1999).

The conventional Bayes meta-analysis estimator can also
fit into our CD combining framework. Following Normand
(1999), we assume that the prior distribution is π(θ) ∼ N(0,

σ 2
0 ). As described in Example A.2 in Appendix A.1, the prior

function π(θ) ∼ N(0, σ 2
0 ) can be viewed as a CD function, as-

suming that there was a prior study whose summary statistic Y0
had variance var(Y0) = σ 2

0 and realization (observation) Y0 = 0.
Write H0(θ) = �((θ − Y0)/σ0) = �(θ/σ0), the CD function
from the prior study. By taking F0(t) = �(t), w0 = 1/σ0, and
wi = 1/si for i = 1, . . . , k, and including H0(θ) of the prior
study in the combination in (2.2), we have a combined CD func-
tion

H(c)(θ) = �

(
1√∑k
i=0 w2

i

k∑
i=0

wi
θ − Yi

si

)

= �

((
k∑

i=1

1

s2
i

+ 1

σ 2
0

)1/2

(θ − θ̂B)

)
,

where θ̂B = (
∑k

i=1 Yi/s2
i )/(

∑k
i=1 1/s2

i + 1/σ 2
0 ). Thus, we esti-

mate the parameter θ by a normal CD function with mean θ̂B

and variance (
∑k

i=1 1/s2
i + 1/σ 2

0 )−1. These are exactly the ex-
pressions for the Bayes method listed in table IV of Normand
(1999).

3.2.2 Random-Effects Model. The random-effects model
described in Normand (1999) is a hierarchical model:

Yi|(θi, si)
ind∼ N(θi, s2

i ) and θi|θ, τ 2 ind∼ N(θ, τ 2)

for i = 1,2, . . . , k, (3.7)

where θi is the study-specific mean (random effect), and θ

and τ 2 are hyperparameters for θi. The variance of the given
ith study s2

i is assumed known. From (3.7), we have Yi
ind∼

N(θ, τ 2 +s2
i ). Thus, based on each study, we can construct a CD

function Hi(θ) = �((θ − Yi)/(τ
2 + s2

i )
1/2). Taking F0(t) =

�(t) and wi = 1/(τ 2 + s2
i )

1/2 in (2.2), it follows that the com-
bined CD function is

H(c)(θ) = �

((
k∑

i=1

1

τ 2 + s2
i

)1/2

(θ − θ̂c)

)
, (3.8)

where θ̂c = {∑k
i=1 Yi/(τ

2 + s2
i )}/{

∑k
i=1 1/(τ 2 + s2

i )}. There-
fore, the combined CD function has mean θ̂c and variance
{∑k

i=1 1/(τ 2 + s2
i )}−1.

Replacing τ 2 with the DerSimonian and Laird estima-
tor τ̂ 2

DL, the combined CD function H(c)(θ) then has mean
θ̂DL = {∑k

i=1 Yi/(τ̂
2
DL + s2

i )}/{
∑k

i=1 1/(τ̂ 2
DL + s2

i )} and variance

{∑k
i=1 1/(τ̂ 2

DL + s2
i )}−1. These expressions match the meta-

analysis estimators for the method of moments listed in table IV
of Normand (1999).

If τ 2 is estimated by its REML estimator τ̂ 2
R, the combined

CD of θ has mean θ̂R = {∑k
i=1 Yi/(τ̂

2
R + s2

i )}/{
∑k

i=1 1/(τ̂ 2
R +

s2
i )} and variance {∑k

i=1 1/(τ̂ 2
R + s2

i )}−1. These expressions
match the REML type of estimators listed in table IV of Nor-
mand (1999).

The second half of Table 1 includes the model-based meta-
analysis methods listed in table IV of Normand (1999). The
meta-analysis estimators from these approaches can all be ob-
tained under our CD combining framework, using the weighted
recipe (2.2). Since an appropriate choice of weights can im-
prove the combining efficiency in normal models, this explains
why an approach of combining p-values is typically not as ef-
ficient as a model-based approach when the model assumption
holds. We remark that, in the random-effects model (3.7) with
τ 2 	= 0, neither θ̂DL nor θ̂R is a consistent estimator of θ when
k is bounded. The implications of this fact are further discussed
in Section 4.

In the fixed-effects and random-effects models (3.5) and
(3.7), the variance s2

i in each study is assumed known, following
Normand (1999). In practice, the variance s2

i is often estimated.
This will not change our methodology, and the same CD-
combining methods still apply and lead to matches to their cor-
responding items in the conventional meta-analysis. The only
difference in using an estimated s2

i is that Hi(θ) and H(c)(θ)

now are aCD instead of exact CD functions. There may be an
interesting twist in this case. For example, in the fixed-effects
model, we can replace the aCD function Hi(θ) = �((θ − Yi)/si)

with an exact CD function Hi(θ) = Ftni−1((θ − Yi)/si), when-
ever the exact t-distribution statement applies. Here, Ftni−1 is
the cumulative distribution function of the tni−1 distribution.
Combining these t-CD functions probably will not yield a meta-
analysis estimator that matches any conventional meta-analysis
estimator from directly combining point estimators (i.e., Yi’s),
except asymptotically. But the estimator computed from com-
bining these t-CD functions may have better performance than
the MLE meta-analysis estimator corresponding to the H(c)(θ)

in (3.6) when ni is small or only moderately large, noting that
the t-based approach uses exact distributions with no asymp-
totic approximations.

As mentioned in Section 2, the proposed CD combining
method does not require any information regarding how Hi(θ)

are obtained. Neither is limited to normal or asymptotically nor-
mal cases. For instance, the examples of using p-value functions
discussed in Section 3.1 do not rely on normality or asymptotic
normality. The CDs (p-value functions) can come from any
one-sided tests under any distributions, including those from
nonparametric tests where the exact form of the underlying dis-
tribution is not unavailable. Another example is to combine in-
dependent bootstrap distributions from different studies, not-
ing that bootstrap distributions are aCD functions (Efron 1998;
Singh, Xie, and Strawderman 2005). Section 5.3 of Singh, Xie,
and Strawderman (2005) provided an example of combining
bootstrap distributions, as a way to save computing effort in
a setting involving heavy computations on a large dataset. In-
deed, the CD combing framework for meta-analysis is very
broad. It provides a structure and opportunity to explore and
discover sensible meta-analysis approaches that are not possi-
ble, or difficult to get, under the conventional approach of com-
bining point estimators.
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4. ROBUST META–ANALYSIS APPROACHES

The development of robust meta-analysis methods in this
section offers another illustration that the CD-combining frame-
work can lead to new approaches. Section 4.1 considers the set-
ting of combining large studies, and the development in Sec-
tion 4.2 assumes that the number of studies goes to infinity.

4.1 Robust Meta-Analysis of a Set of Large Studies

Suppose there are k studies of the same treatment and the
sample sizes in these studies are n1,n2, . . . ,nk, respectively.
Throughout this subsection, we assume that each ni goes to in-
finity and k is bounded. For notational simplicity, we assume
that the ni go to infinity at the same rate n, although this as-
sumption can be relaxed to a certain degree.

Assume that we are interested in a specific characteristic of
the treatment described by a parameter θ . Let the underlying
true value of the parameter θ for the ith study be θ

(0)
i , which

may not be the same across all k studies (we do not know which
studies are different). The parameter of interest is defined as

θ0 = median
{
θ

(0)
1 , . . . , θ

(0)
k

}
. (4.1)

Define a set I0 = {i : θ(0)
i = θ0}. If the number of studies in I0 is

greater than [k/2], θ0 is the true parameter value of the majority
of the studies. Here, [·] is the rounding function for integers.

Let Hi(θ) be a CD function of the parameter θ obtained from
the ith study, i = 1,2, . . . , k. In this subsection, we assume that
the θ

(0)
i are fixed and each Hi(θ) satisfies:

Condition (A). For any fixed γ , 0 < γ < 1
2 , Li(γ ) = H−1

i (1−
γ ) − H−1

i (γ ) → 0, in probability, as n → ∞.

Here, H−1
i (β) is the β-quantile of Hi(θ); i.e., it solves the

equation Hi(θ) = β . Condition (A) is the same as Condi-
tion (3.1) of Singh, Xie, and Strawderman (2007), where this
condition was imposed for obtaining consistent point estimators
from a CD function. This condition essentially assumes that the
ith study can produce a consistent estimator for its underlying
parameter θ

(0)
i . Condition (A) is equivalent to condition

Condition (A′). For any fixed δ > 0, Hi(θ
(0)
i − δ) → 0 and

Hi(θ
(0)
i + δ) → 1, in probability, as n → ∞.

A proof of the equivalence is in Appendix B. We interpret
Condition (A′) as follows: as n increases, the information con-
tained in the CD function Hi(θ) becomes more and more con-
centrated around θ

(0)
i .

A special example of the above set-up is the following fixed-
effects model:

Yi
ind∼ N(θi, s2

i ) for i = 1,2, . . . , k, (4.2)

where θi is a study-specific parameter with true underlying

value θ
(0)
i . If θi ≡ θ (with the same true underlying value

θ
(0)
i ≡ θ0) for all studies, model (4.2) reduces to the con-

ventional fixed-effects model (3.5). In Model (4.2), n can be
a generic sample size of the order 1/s2

i , assuming that all 1/s2
i

are of the same order. In either (3.5) or (4.2), the CD function
from the ith study is Hi(θ) = �((θ −Yi)/si). Since we typically
have si = Op(n−1/2), it follows that Li(γ ) = 2si�

−1(1 − γ ) =

Op(n−1/2) → 0 for any 0 < γ < 1/2. Thus, Condition (A) is
satisfied in the fixed-effects models.

The key idea in developing our robust approach under the
current setting is to obtain a set of data-dependent adaptive
weights, so that, as sample sizes increase, the CD-combining
procedure (2.2) tends to combine only the correct information
and down weight or exclude studies containing little informa-
tion about the parameter of interest.

To illustrate this idea, let us first consider an empirical-
Bayes-like setting studied by Efron (1993) and Singh, Xie, and
Strawderman (2005). In particular, suppose that there is a “cur-
rent” study and some “past” studies; without loss of generality
in our context, say, the first study is the “current” study and
the remaining k − 1 are the “past” studies. We are interested
in making inference about the true parameter value θ

(0)
1 , based

on the first study and incorporating information from the “past”
studies. Denote by a set I1,0 = {i : θ(0)

i = θ
(0)
1 }. Although we do

not know the membership of I1,0 except for the first study, we
would like to combine all studies in I1,0, excluding or down
weighing all studies outside of I1,0. This task may be achieved
asymptotically by using a set of adaptive weights w(a)

i in the
weighted combination (2.2) such that

lim
n→∞ w(a)

i =
{

1 if θ
(0)
i = θ

(0)
1

0 if θ
(0)
i 	= θ

(0)
1

for i = 1,2, . . . , k. (4.3)

One set of adaptive weights w(a)
i that satisfies (4.3) is the fol-

lowing. Let θ̂i be a consistent estimator of θ
(0)
i from the ith

study and K(t) be a symmetric kernel function,
∫

K(t)dt = 1,∫
tK(t)dt = 0, and

∫
t2K(t)dt < ∞. Also, let bn be a tuning

constant such that bn → 0 and |θ̂i − θ
(0)
i | = op(bn). We define

w(a)
i = K

(
θ̂1 − θ̂i

bn

)/
K(0) for i = 1,2, . . . , k. (4.4)

One example that we use in our numerical study in Sec-
tion 5 is K(t) = 2 min{�(t),1 − �(t)}, θ̂i = H−1

i (1/2), and
bn ∝ {H−1

1 (3/4) − H−1
1 (1/4)}1/2. Here, under Condition (A),

θ̂i = H−1
i (1/2) is a median-unbiased consistent estimator of

θ
(0)
i with the same convergence rate as Li(δ); cf., theorem 3.1 of

Singh, Xie, and Strawderman (2007). In the fixed-effects model
(4.2), this choice leads to |θ̂i − θ

(0)
i | = Op(si) = Op(n−1/2) and

bn ∝ Op(s
1/2
i ) = Op(n−1/4); thus, it ensures (4.3).

Let H(c)
1 (θ) be the combined CD function of H1(θ), . . . ,

Hk(θ), using the weighted recipe (2.2) where the weights wi =
w(a)

i w(e)
i with the adaptive weights w(a)

i in (4.4) and also pos-

sibly other given weights w(e)
i from efficiency considerations.

(For instance, w(e)
i = 1/si in the normal model considered later

in Theorem 2.) Let H(c)
1,0(θ) be the the corresponding target in

the ideal case, that combines all studies in I1,0 and excludes all
studies outside of I1,0. That is, H(c)

1,0(θ) is obtained in the same

way as H(c)
1 (θ), but the adaptive weight w(a)

i in the combination

is replaced by 1 if θ
(0)
i = θ

(0)
1 and by 0 if θ

(0)
i 	= θ

(0)
1 . We use

the following lemma in the development. A proof is given in
Appendix B.
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Lemma 2. Consider the settings described above. Suppose
F0 in (2.2) is selected such that

K(1/bn)F
−1
0

(
Hi

(
θ

(0)
1

)) → 0 in probability (4.5)

for all 1 ≤ i ≤ k. We have

(i) supθ |H(c)
1 (θ)−H(c)

1,0(θ)| → 0 in probability, and H(c)
1 (θ)

is an aCD for the parameter θ
(0)
1 .

(ii) The median of the combined CD function θ̂
(c)
1 =

H(c)
1

−1
(1/2) → θ

(0)
1 in probability, as n → ∞.

The first result in Lemma 2 is a significantly improved ver-
sion of theorem 3.5 of Singh, Xie, and Strawderman (2005),
with a much stronger result under weaker conditions. Also,
Singh, Xie, and Strawderman (2005) only covered the special
case with w(e)

i ≡ 1.
A set of sufficient conditions for (4.5) is as follows. Suppose

that bn = Op((log n)−2) and, as |t| → ∞, K(t) → 0 exponen-
tially fast. Let the tail convergence rate in Condition (A′) be
such that

max
[
log

{
Hi

(
θ

(0)
i − δ

)}
, log

{
1 − Hi

(
θ

(0)
i + δ

)}]
/ns → 0,

as n → ∞, for an s > 0. (4.6)

Then, for any F0 such that min{F0(t),1 − F0(t)} → 0 exponen-
tially fast, as |t| → ∞, condition (4.5) is satisfied. Most CD
functions in the exponential family satisfy (4.6).

We are now ready to propose our robust meta-analysis
estimator of θ0, the parameter of interest defined in (4.1).
For each i, i = 1,2, . . . , k, we obtain a combined CD func-
tion H(c)

i (θ) for its true parameter value θ
(0)
i . As claimed

in Lemma 2, the median of the ith combined CD function

θ̂
(c)
i = H(c)

i
−1

(1/2) is a consistent estimator of θ
(0)
i . A robust

meta-analysis estimator of θ0 is then

θ̂ (c) = median
{
θ̂

(c)
1 , . . . , θ̂

(c)
k

}
.

Denote by H(o)(θ) the combined CD function that corresponds
to θ̂ (c). Specifically, when k = 2m + 1 is odd, H(o)(θ) is the
CD function that corresponds to the mth smallest θ̂

(c)
(m); when

k = 2m is even, H(o)(θ) is the average of the two CD functions
that correspond to θ̂

(c)
(m) and θ̂

(c)
(m+1).

Let H(c)
0 (θ) be the corresponding combined CD function, in

the ideal case, using only the studies in the set I0 = {i : θ(0)
i =

θ0}, assuming I0 	= ∅ and the membership of I0 is known. The-
orem 1 below suggests that θ̂ (c) is a robust and consistent es-
timator of θ0. Also, when I0 	= ∅ and H(c)

0 (θ) is well defined,

H(o)(θ) is asymptotically the same as H(c)
0 (θ). A proof is given

in Appendix B.

Theorem 1. Under the setting of Lemma 2, we have, as
n → ∞:

(i) The breakdown point of the estimator θ̂ (c) is [k/2]/k.
(ii) The estimator θ̂ (c) → θ0, in probability.

If further I0 	= ∅, we have, as n → ∞,

(iii) supθ |H(o)(θ) − H(c)
0 (θ)| → 0, in probability, and

H(o)(θ) is an aCD for θ0.

In the special case of fixed-effects model (4.2), using the
combining recipe (2.2) with F0 = � and wi = w(a)

i /si, we have
for the first study

H(c)
1 (θ) = �

((
k∑

i=1

w(a)
i

s2
i

)1/2(
θ − θ̂

(c)
1

))

and

H(c)
1,0(θ) = �

(( ∑
i∈I1,0

1

s2
i

)1/2(
θ − θ̃

(c)
1,0

))
,

where θ̂
(c)
1 = (

∑k
i=1 w(a)

i Yi/s2
i )/(

∑k
i=1 w(a)

i /s2
i ) and θ̃

(c)
1,0 =

(
∑

i∈I1,0
Yi/s2

i )/(
∑

i∈I1,0
1/s2

i ). In this case θ̃
(c)
1,0 is the Fisher-

optimal “estimator” of θ
(0)
1 when the membership of I1,0 is

known. Similar formulas can be obtained for the other studies.
In addition, from the expression of H(c)

1,0(θ), we can see that the

optimal CD function for θ0 from all studies in I0 = {i : θ(0)
i =

θ0} is

H(c)
0 (θ) = �

((∑
i∈I0

1

s2
i

)1/2(
θ − θ̃

(c)
0

))

assuming I0 	= ∅ and the membership of I0 is known. Here,
θ̃

(c)
0 = (

∑
i∈I0

Yi/s2
i )/(

∑
i∈I0

1/s2
i ) is the most efficient meta-

analysis “estimator” when I0 is known. Typically, θ̃
(c)
0 − θ0 =

Op(n−1/2).
In this special case of fixed-effects model (4.2), in addition to

Theorem 1, we have a stronger oracle result. In particular, Theo-
rem 2 below states that, under the fixed-effects model (4.2), the
proposed robust estimator θ̂ (c) without knowledge of I0 (except
assuming I0 	= ∅) is asymptotically equivalent to θ̃

(c)
0 , up to the

rate of op(n−1/2). Thus, θ̂ (c) is an asymptotically efficient esti-
mator of θ0, regardless of whether there are any outlying studies
or not. A proof of the theorem is in Appendix B.

Theorem 2. Under the fixed-effects model (4.2) and when
I0 	= ∅, we have, as n → ∞, n1/2|θ̂ (c) − θ̃

(c)
0 | → 0. Thus, θ̂ (c)

is also an asymptotically efficient estimator of θ0.

4.2 Robust Meta-Analysis of a Large Number of Studies

Section 4.1 does not cover conventional random-effects mod-
els. It can be verified that, under a random-effects model such
as (3.7), the underlying population parameter θ cannot be con-
sistently estimated without requiring the number of studies k
to tend to infinity, even if the sample sizes ni of all k studies
go to infinity. To expand our development to cover random-
effects models, we develop in this subsection a general robust
meta-analysis assuming that the number of studies goes to in-
finity. Unless specifically stated otherwise, the sample sizes in
the studies can either be bounded or tend to infinity.

Suppose we have a large number k of independent studies.
Along the lines of the formulation in Huber (1964), we assume
that the true parameters of the studies come from a contami-
nated distribution

θi ∼ (1 − ε)D0(θ) + εDε(θ), i = 1,2, . . . , k, (4.7)
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where D0 and Dε are distribution functions of good and con-
taminating populations, respectively, and ε, 0 ≤ ε < 1/2, is an
unknown mixing parameter. Denote by θ0 and θ∗ the population
mean of the good population D0 and the contaminated popu-
lation (1 − ε)D0 + εDε , respectively. The parameters θ0 ≡ θ∗
when ε ≡ 0 or the contamination distribution Dε is symmetric
around θ0.

A special example of (4.7) is a random-effects model,

Yi|θi, si
ind∼ N(θi, s2

i ) and
(4.8)

θi|(θ, τ 2)
ind∼ (1 − ε)N(θ, τ 2) + εDε(θ)

for an unknown contaminating population Dε . In absence of
contamination (i.e., ε ≡ 0), this model is the same as the stan-
dard random-effects model (3.7). Furthermore, model (4.7) also
covers fixed-effects models. Specifically, for a given k, the
fixed-effects model (4.2), can be be treated as a special case
of (4.7) with D0 being the Dirac delta function at θ0 and Dε

being a combination of Dirac delta functions at θ
(0)
i when

i ∈ I 0 = {i : θ(0)
i 	= θ0}.

Let Hi(θ) be a CD function for θ∗ based on the sample
from the ith study. Our robust proposal is to use the special
weighted combination (2.4). Since the k studies are indepen-
dent and a U[0,1] random variable has mean 1/2 and variance
1/12, it leads to a combined aCD function (as k → ∞),

H(c)(θ) = �

(
k−1/2

k∑
i=1

wi

{
Hi(θ) − 1

2

}/
sc

)
, (4.9)

where s2
c = k−1 ∑k

i=1 w2
i E{Hi(θ∗) − 1/2}2 = (12k)−1 ∑k

i=1 w2
i .

We remark that, in practice, we typically do not need a very
large k to have a good asymptotic performance from H(c)(θ)

in (4.9), noting that the sum of k U[0,1]-distributed random
variables can approximate a normal distribution fairly well even
when k is quite small.

In the combined CD function H(c)(θ) in (4.9), the impact of
each study is bounded. In fact, the inference based on H(c)(θ)

in (4.9) is asymptotically equivalent to the inference of an M-
estimation approach that solves the following estimating equa-
tion:

k∑
i=1

wi

{
Hi(θ) − 1

2

}
= 0. (4.10)

Note that, since E{Hi(θ∗)} = 1/2, θ∗ is also the solution to the
equation

∑k
i=1 wiE{Hi(θ) − 1/2} = 0.

To simplify our theoretical discussion, we assume that the
weights wi considered here are fixed and nonadaptive weights,
although under some mild restrictions the development can be
extended to include adaptive weights including those used in
Section 4.1 or something similar to those used in Hu and Zidek
(2002) or Wang and Zidek (2005) in the context of weighted
likelihood. The theoretical developments, except for the last re-
sult on Fisher efficiency, hold for any fixed weights. For nor-
mal or normal-like CDs, we suggest using 1/vi with vi being
a measure of the scale of Hi(θ); see a later example in (4.12)
and Theorem 4 in which vi is the standard deviation of the nor-
mal CD Hi(θ) = �((θ − Yi)/vi). However, if achieving a high
breakdown point is a key concern, choosing w1 = · · · = wk = 1

guarantees an (asymptotic) breakdown point of 1/2, as shown
in Theorem 2 below. In general, we borrow a line from weighted
likelihood developments: “The best choice of weights will de-
pend on context” (Hu and Zidek 2002).

The following theorem implies that the median of H(c)(θ),

θ̂ (c) = H(c)−1
(1/2), is a robust and consistent estimator of θ∗.

A proof of the theorem is in Appendix B.

Theorem 3. Under the setting above, let w(1),w(2), . . . ,w(k)
be the ordered weights (in decreasing order) in the weighted
combination (4.9).

(i) As k → ∞, θ̂ (c) = H(c)−1
(1/2) is a consistent estimator

of θ∗.
(ii) The breakdown point of θ̂ (c) = H(c)−1

(1/2) is

min
1≤t≤k/2

{
t :

t∑
i=1

w(i) ≥
k∑

i=t+1

w(i)

}/
k.

When the weights are all the same, the breakdown point is 1/2.

The above combining approach can be extended to combine
CD-like functions. Here, a CD-like function is a function that
follows Definition A.1 in Appendix A.1 except that the U[0,1]
distribution assumption is not required. In this case, we replace
H(c)(θ) in (4.9) by

H̃(c)(θ) = �

(
k−1/2

k∑
i=1

wi

{
Hi(θ) − 1

2

}/
ŝc

)
, (4.11)

where ŝ2
c = k−1 ∑k

i=1 w2
i {Hi(θ̂

(c)) − 1/2}2 and θ̂ (c) =
H(c)−1

(1/2) is the solution of Equation (4.10). We can prove
that this H̃(c)(θ) is still an aCD for θ∗, even if the input Hi(θ)’s
are only CD-like functions. Here, θ∗ is the solution to equa-
tion

∑k
i=1 wiE{Hi(θ) − 1/2} = 0. We can also prove that the

results of Theorem 3 still hold, where θ̂ (c) = H(c)−1
(1/2) is

also the median of H̃(c)(θ). When all input Hi(θ)’s are indeed
CD functions, ŝ2

c → s2
c and H̃(c)(θ) is asymptotically the same

as H(c)(θ) in (4.9).
This extension to H̃(c)(θ) provides some protection from

model misspecification. For instance, we may wrongly assume
that model (3.7) is true when in fact the true model is the
contaminated model (4.8). In this case, the function Hi(θ) =
�((θ − Yi)/(s2

i + τ 2)1/2), a CD function under model (3.7), is
not a CD function for either θ0 or θ∗ under model (4.8). Thus,
combining such Hi(θ) functions amounts to combining CD-like
functions. In this case, ŝ2

c is a correct variance estimator, and the
use of H̃(c)(θ), instead of H(c)(θ), provides a protection against
model misspecification. The same statement also applies when
the true model is a random-effects model but we wrongly apply
a fixed-effects model. In addition, when the task of constructing
a CD or aCD function from each study is difficult, for instance,
under the contaminated model with small studies, the extension
of combining CD-like functions is also practically useful.

Finally, we examine the efficiency of this robust combina-
tion under the standard fixed effects model (3.5) and the stan-
dard random-effects model (3.7), assuming there are no out-
lying studies. In this case, a CD function from the ith study
is Hi(θ) = �((θ − Yi)/vi), where v2

i = s2
i in the fixed-effects

model (3.5) and v2
i = s2

i +τ 2 in the random-effects model (3.7).
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Table 2. Meta-analysis results for effect of lidocaine on mortality

Conventional approach Robust approach

Original data Contaminated data Original data Contaminated data

Estimate 0.0294 0.0174 0.0290 0.0287
sd 0.0131 0.0136 0.0131 0.0138
95% CI (0.0038, 0.0549) (−0.0091, 0.0439) (0.0033, 0.0546) (0.0016, 0.0556)
Conclusion θ0 > 0 θ0 = 0 θ0 > 0 θ0 > 0

(not significant)

When we pick wi = 1/vi, we have a combined normal aCD
function (as k → ∞),

H(c)(θ) = �

(√
12

k∑
i=1

(1/vi)

{
�

(
θ − θ̂i

vi

)
− 1

2

}

/(
k∑

i=1

1/v2
i

)1/2)
. (4.12)

From the standard asymptotic argument, we also know that
the asymptotically efficient meta-analysis estimator is θ̃

(c)
0 =∑k

i=1(Yi/v2
i )/(

∑k
j=1 1/v2

j ). The aCD function corresponding to

θ̃
(c)
0 is

H(c)
0 (θ) = �

((
θ − θ̃

(c)
0

)
/s̃c

)
,

where s̃2
c = 1/

∑k
i=1(1/v2

i ). But, clearly, this optimal estima-

tor θ̃
(c)
0 , thus H(c)

0 (θ), lacks robustness, with their breakdown
points equal to 0 in the limit.

Theorem 4 below compares the efficiency of H(c)(θ) with
H(c)

0 (θ), in the sense of the ratio of the lengths of the confidence
intervals for θ0 at the same confidence level. For notational sim-
plicity, we assume that ni ∝ 1/s2

i → ∞ at the same rate, say n.
A proof of Theorem 4 is provided in Appendix B.

Theorem 4. Under the standard fixed-effects model (3.5) or
the standard random-effects model (3.7), as k → ∞ and n →
∞, the asymptotic relative efficiency of H(c)(·) compared to
H(c)

0 (·) is (3/π)1/2 ≈ 0.977.

5. NUMERICAL STUDIES

We perform numerical studies to examine the proposed ro-
bust meta-analysis approaches using data from the literature
on prophylactic use of lidocaine after a heart attack (Nor-
mand 1999) and on a surgical treatment for stomach ulcers
(Efron 1996). In the studies, the conventional model-based
meta-analysis approaches are compared with the proposed ro-
bust meta-analysis approaches.

5.1 Mortality Data of Prophylactic Lidocaine Use in
Six Large Studies

Table 1 of Normand (1999) contained mortality data for con-
trol and intravenous lidocaine treatment from k = 6 studies. The
sample sizes of these six studies range from 82 to 300 heart
attack patients. The main parameter of interest is the differ-
ence of mortality risk between control and treatment θ . Nor-
mand (1999) provided detailed statistical analysis using both

fixed-effects and random-effects models. Since k = 6 is rela-
tively small, we only consider fixed-effects models. The first
column in Table 2 contains the results reported in Normand
(1999) using a fixed-effects model. The density function of
N(0.0294,0.01312), which is also the CD density function
based on the conventional meta-analysis estimator, is plotted
in Figure 1(a) as a solid curve. It is concluded from the meta-
analysis that θ0 > 0 and there is a “detrimental effect” of lido-
caine on the mortality rate (Normand 1999).

To illustrate the impact of potential outliers, we create an out-
lying study by replacing the first study data {39,43,2,1} with
{39,43,2,21}. That is, the one death in the control group of
the first study is “mistakenly” replaced by a typographic er-
ror 21. Reported in the second column of Table 2 and the dashed
density curve in Figure 1(a) are results from the same conven-
tional meta-analysis approach but using the contaminated data.
Clearly, the results change a lot, including changing the con-
clusion to no significant effect. The conventional fixed-effects
model meta-analysis is not robust.

We reanalyze both the original, as well as the contaminated,
data using the robust meta-analysis method proposed in Sec-
tion 4.1. Reported in the third and fourth columns of Table 2
and the density curves in Figure 2(b) are results from the robust

Figure 1. Comparison of the meta-analysis results of conventional
method versus the robust method developed in Section 4.1. The curves
for the conventional method are the corresponding normal density
curves with mean and standard deviation reported in Table 2. The
curves for the robust method are the CD density curves of the CD func-
tion H(o)(θ) as defined in Section 4.1. For the original data, the curves
are solid. For the contaminated data, the curves are broken. In the case
of no outlying studies, the CD density curve [solid curve in (b)] is
almost identical to the normal density curve of the corresponding con-
ventional method [solid curve in (a)]. In the presence of one outlying
study, the curve from the conventional method has a large shift, but
the curve from the proposed robust method has essentially the same
location.
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Figure 2. Comparison of the meta-analysis results from conventional method versus the robust method developed in Section 4.2. The first row
[(a)–(c)] uses random-effects models, and the second row [(d)–(f)] uses fixed-effects models. The curves for the conventional methods are the
normal density curves with mean and standard deviation estimates from the respective meta-analyses. The curves for the robust meta-analysis
approaches are the CD density curves of the CD functions H(c)(θ) and H̃(c)(θ) defined in Section 4.2. Robust-a refers to H(c)(θ), and Robust-b
refers to H̃(c)(θ). For the original data, the curves are solid lines. For the contaminated data, the curves are broken lines. In the presence of
outlying studies, the curve from the conventional meta-analysis has a large shift, but the curves from the proposed robust meta-analyses have
essentially the same location.

meta-analysis approach using the original and contaminated
data, respectively. For the original dataset, there appears to be
almost no difference between the robust and conventional fixed
effects analysis. This may imply that there is no potential outlier
among the six studies. But when an outlying study is injected
into the original dataset, the results change only slightly from
the robust approach. Clearly, the robust meta-analysis method
provides a means to protect against the outlying study.

5.2 Stomach Ulcer Data From 41 Studies

Table 1 of Efron (1996) lists data from k = 41 randomized
clinical trials on a new treatment for stomach ulcers from 1980
to 1989. The parameter of interest, θ , is the log odds-ratio in
favor of the treatment. Our goal is to obtain an overall estimate
of θ using the 41 clinical trials. For the ith trial, we can cal-
culate an estimate θ̂i. As in Efron (1993), to obtain meaningful
estimates of θ , nine entries of zero are changed to 0.5 in the
subsequent analysis; see Sweeting, Sutton, and Lambert (2004)
for a discussion on the impact of the addition of 0.5. Also, as in
Efron (1993) and others, the log odds ratios are approximated
by normal distributions; see also Example A.1 in Appendix A.1.

We use both the conventional model-based meta-analysis ap-
proaches and the robust meta-analysis approaches developed in
Section 4.2. The analysis is performed under random-effects
models and then repeated under fixed-effects models.

The left half of Table 3 Part I and the solid curves in Fig-
ure 2(a)–(c) present results for the random-effects models. In

the table, “robust-a” refers to the method using H(c)(θ) in (4.9),
and “robust-b” refers to the method using H̃(c)(θ) in (4.11).
Apparently, for this dataset there is little difference between
the conventional random-effects meta-analysis and the corre-
sponding robust meta-analysis method, using either H(c)(θ) or
H̃(c)(θ). This seems to imply that there is little impact of outly-
ing studies, if there are any.

To illustrate potential impact of gross outlying studies, we
create a “contaminated” dataset by altering the values of the
six studies whose log odds ratios are greater than 0.5. More
specifically, we increase the observed log odds ratios of these
six studies by a factor of 10. The contaminated data are ana-
lyzed using the same methods. The results are reported in the
right half of Table 3 Part I and the broken curves in Figure 2(a)–
(c). Clearly, the conventional approach is sensitive to the impact
of the outlying studies. On the other hand, the results from the
robust meta-analysis hardly change, indicating high resistance
to the impact of outlying studies.

We also repeat the same analysis using fixed-effects models.
The results are reported in Table 3 Part II and Figure 2(d)–
(f). Again, the conventional approach is sensitive to the im-
pact of the outlying studies, and the robust meta-analysis
method demonstrates high resistance to the outlying studies.
As expected in the conventional meta-analysis, the fixed-effects
model produces narrower confidence intervals (Table 3) and
more peaked CD functions (Figure 2) than the random-effects
model. This is consistent with what is reported by Normand
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Table 3. Meta-analysis results for log-odds-ratio of the treatment on stomach ulcer

Original data Contaminated data

Conventional Robust-a Robust-b Conventional Robust-a Robust-b

Part I. Random-effects model
Estimate −1.1208 −1.0924 −1.0924 −0.1120 −1.0175 −1.0175
95% CI (−1.5595, −0.6821) (−1.5388, −0.6545) (−1.5273, −0.6655) (−0.5506, 0.3266) (−1.4942, −0.5264) (−1.5178, −0.5013)
Conclusion θ0 < 0 θ0 < 0 θ0 < 0 θ0 = 0 θ0 < 0 θ0 < 0

(not significant)

Part II. Fixed-effects model
Estimate −0.8876 −0.9708 −0.9708 −0.0325 −0.9551 −0.9551
95% CI (−1.1337, −0.6415) (−1.3097, −0.6125) (−1.3947, −0.5180) (−0.2786, 0.2136) (−1.3003, −0.5799) (−1.3910, −0.4687)
Conclusion θ0 < 0 θ0 < 0 θ0 < 0 θ0 = 0 θ0 < 0 θ0 < 0

(not significant)

(1999) and many others. Interestingly, the combined CDs us-
ing H̃(c)(θ) are notably different from those using H(c)(θ) un-
der the fixed-effects model. This difference suggests that the
empirical ŝ2

c is different from the s2
c computed using U[0,1]

distribution. The input function Hi(θ) = �((θ − Yi)/si) in the
ith study is a CD function (with the U[0,1]-distributed prop-
erty) only when the assumed fixed-effects model (3.5) is true.
Hence, this discrepancy seems to imply that this fixed-effects
model may not be appropriate. Nevertheless, the combined CDs
under the fixed-effects model in Figure 2(f) are not too far from
those under the random-effects model in Figure 2(c), suggest-
ing that the method based on H̃(c)(θ) may offer some resistance
to model misspecification.

6. DISCUSSION AND FURTHER REMARKS

This article develops a general framework for combining CD
functions as a means to perform meta-analysis, and it provides
a unifying platform that subsumes both the classical approaches
of combining p-values and the model-based meta-analysis ap-
proaches. This unification not only can theoretically and con-
ceptually help us understand seemingly different meta-analysis
approaches, it also has practical value. An R-package gmeta is
developed by Yang and Xie (2010) to implement this unify-
ing framework for meta-analysis. The gmeta program mimics
the structure of the glm() function in R, which unifies general-
ized linear models. The glm() function has options of “family”
with different “link” functions. The gmeta() function has op-
tions of meta-analysis “method” with different choices of the
monotonic function “gc” (or “F0” and “weights”).

The general framework also allows us to propose robust ap-
proaches for meta-analysis in line with the robustness litera-
ture in statistics. Specifically, the adaptively weighted robust
method resembles adaptively weighted likelihood inference,
and the robust method developed for combining a large number
of studies is closely associated with M-estimation approaches.
However, the CD approaches are also different from standard
robust methods. For instance, the M-estimation correspond-
ing to (4.12) has a special normal-CD-induced ψ -function
ψ(t) = �(t) − 1/2 that does not involve choice of any con-
stant and has higher efficiency than that using the standard Hu-
ber ψ -function. The development provides a systematic, for-
mal, and effective tool to cope with gross outlying studies in
meta-analysis. Although our development is undertaken under

independent settings without including covariates due to space
limitation, the concepts and approaches can be extended to re-
gression as well as more-complex meta-analysis settings, to be
discussed elsewhere.

APPENDIX A: A REVIEW OF CONFIDENCE
DISTRIBUTION (CD)

A.1 A Formal Definition of CD Function

The following CD definition is formulated in Schweder and Hjort
(2002) and Singh, Xie, and Strawderman (2005). Suppose X1, . . . ,Xn
are n independent random draws from a population F and X is the
sample space corresponding to the data Xn = (X1, . . . ,Xn)T . Let θ be
a parameter of interest associated with F (F may contain some nui-
sance parameters), and let � be the parameter space for θ .

Definition A.1. A function Hn(·) = Hn(Xn, ·) on X × � → [0,1]
is called a confidence distribution (CD) for a parameter θ , if it satisfies
the following two requirements: (R1) For each given Xn ∈ X , Hn(·) is
a continuous cumulative distribution function; (R2) At the true param-
eter value θ = θ0, Hn(θ0) ≡ Hn(Xn, θ0), as a function of the sample
Xn, follows the uniform distribution U[0,1].

The function Hn(·) is called an asymptotic confidence distribution
(aCD), if requirement (R2) above is replaced by (R2)′: At θ = θ0,

Hn(θ0)
W−→ U[0,1], as n → ∞, and the continuity requirement on

Hn(·) is dropped. Here
W−→ stands for weak convergence.

We call, when it exists, hn(θ) = H′
n(θ) a CD density, also known as

confidence density.

In nontechnical terms, a CD is a function of both the parameter
and the random sample, with two requirements. The first requirement
(R1) is simply that, for each given sample, a CD should be a distri-
bution function on the parameter space. The second requirement (R2)
requires that the CD function contains “balanced” (or “right”) infor-
mation about the true parameter value θ0 for making correct infer-

ences. When θ0 is the true value, (R2) implies Hn(θ0)
sto=1 − Hn(θ0),

but Hn(θ)
sto≤1 − Hn(θ) for θ < θ0 and 1 − Hn(θ)

sto≤Hn(θ) for θ > θ0
(see Singh, Xie, and Strawderman 2005). Here, “sto” means stochas-

tic comparison between two random variables; for example, Y1
sto≤Y2

means P(Y1 ≤ t) ≥ P(Y2 ≤ t) for all t. We interpret this stochastic bal-
ancing equality at the true θ0 and the requirement (R2) as the distribu-
tion estimator Hn(θ) contains right amount of information for θ0.

The U[0,1] requirement in (R2) allows us to extract confidence in-
tervals from a CD function easily: (H−1

n (α1),H−1
n (1 − α2)) is a level

100(1 − α1 − α2)% confidence interval for the parameter θ0, for any
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α1 > 0, α2 > 0, and α1 + α2 < 1. Here, H−1
n (β) is the 100β% quan-

tile of Hn(θ) or it solves for θ in equation Hn(θ) = β . CD is a useful
device for constructing all types of frequentist statistical inferences,
and discussions on extracting information from a CD function to make
inferences can be found in Singh, Xie, and Strawderman (2007).

As demonstrated in Singh, Xie, and Strawderman (2005, 2007), the
CD concept encompasses a wide range of examples, including most
examples in the classical development of Fisher’s fiducial distribu-
tions, bootstrap distributions, p-value functions, standardized likeli-
hood functions, and certain Bayesian prior and posterior distributions.
This unification brings together many concepts for statistical inference,
and it has both theoretical and practical importance. The following ex-
amples of CDs are relevant to our exposition in this article.

Example A.1 (An aCD for log-odds ratio—a parametric example).
Suppose in a binomial clinical trial there are X1 successes and n1 − X1
failures among n1 patients in the treatment group, and X0 successes
and n0 − X0 failures among n0 patients in the control group. The pa-
rameter of interest is the log odds ratio of the treatment θ . The ob-
served log odds ratio is θ̂ = log({X1/(n1 − X1)}/{X0/(n0 − X0)}).
A well-known asymptotic result (see, e.g., Lehmann 1998, p. 331)
suggests that (θ̂ − θ)/s → N(0,1), as n0 → ∞ and n1 → ∞, where
s = {1/X0 +1/(n0 −X0)+1/X1 +1/(n1 −X1)}1/2. By Definition A.1,
H(θ) = �((θ − θ̂ )/s) is an aCD for θ . In another words, the log odds
ratio θ can be estimated by the distribution N(θ̂ , s2).

Example A.2 (Informative prior distribution as a CD). Suppose
π(θ) ∼ N(μ0, σ 2

0 ) is an informative prior of a parameter θ of inter-
est. Assume this informative prior is formed on the basis of extensive
prior information of θ from past results of the same or similar exper-
iments. Suppose Y0 is a normally distributed summary statistic from
these past experiments, with a realization Y0 = μ0 and an observed
variance var(Y0) = σ 2

0 , respectively. If we denote by X the sample
space of the past experiments and by � the parameter space of θ , we
can show by the CD definition that H0(θ) = �((θ − Y0)/σ0) is a CD
function on X × �. Thus, we consider H0(θ) = �((θ − Y0)/σ0) =
�((θ − μ0)/σ0) as a distribution estimate (CD) from the past experi-
ments. That is, the prior experiments produced N(μ0, σ 2

0 ) as a distri-
bution estimate of θ .

A.2 Highlights of Recent Developments on CDs

Although the CD concept, especially under the domain of fiducial
inference (Fisher 1930; Neyman 1941; Efron 1993; Lehmann 1993),
has a long history, it has not received much attention until the recent
surge of renewed attention. The recent developments have highlighted
CD’s promising utility as an effective and powerful tool in statistical
inferences. Here are some highlights:

• The renewed interest in CDs starts with Efron (1998), who sug-
gested that bootstrap distributions are “distribution estimators” and
CDs. He predicted that “something like fiducial inference” may “be-
come a big hit in the 21st century.”

• A new CD concept, under a purely frequentist inference frame-
work, is defined by Schweder and Hjort (2002) and Singh, Xie, and
Strawderman (2005). This concept can serve as a unifying framework
for many statistical concepts, from regular parametric cases (includ-
ing most examples in the classical development of Fisher’s fiducial
distributions) to bootstrap distributions, p-value functions, normalized
likelihood functions, and, in some cases, Bayesian priors and Bayesian
posteriors, and so on. This unifying framework allows us to apply in-
ferences developed in CDs to a broad range of applications.

• Schweder and Hjort (2002) and Singh, Xie, and Strawderman
(2005, 2007) explored the connections between likelihood inference
and CD-based inference. They also answered several fundamental
questions related to the theoretical development of CD inference, in-
cluding optimality, point estimation, and hypothesis testing, as well as

other issues related to decision theory. In addition, Lawless and Fre-
dette (2005) developed a concept of predictive distributions, which can
be viewed as a part of CD inference.

• The new developments of CDs also emphasized their applica-
tions in modern applied statistics. For examples, Efron (1993) sug-
gested the use of a CD density function to derive an approximate
likelihood function. Schweder (2003) developed a CD approach to
obtain MLEs of abundance from repeated photographic surveys of a
closed stratified population of bowhead whales off Alaska. Tian et al.
(2010) used a multivariate CD concept to obtain optimal confidence
regions for a vector of constrained parameters. They showed in an
analysis of a survival dataset that the volume of the resulting 95%
confidence region is only one-thirty-fourth of that of the conventional
confidence region. Their confidence region also has better frequency
coverage than the corresponding Bayesian credible region. Xie et al.
(2009) proposed a frquentist (Bayes compromise) approach to com-
bine experts’ opinions with clinical trial data, which is difficult to do
in regular frequentist inference without utilizing the CD concept. They
demonstrated that the CD-based approach can overcome some inher-
ent drawbacks in the conventional Bayesian approaches for analysis of
binomial clinical trials.

APPENDIX B: PROOFS

Proof of Lemma 1

Denote k independent U[0,1] random variables by Ui, i = 1,

2, . . . , k. Also let Ũi, i = 1,2, . . . , k, be k independent random vari-
ables between 0 and 1 such that |P(Ũi ≤ t) − t| ≤ εi for some small
positive number εi and any 0 < t < 1. We have, for the first element,

P
{
Gc(gc(Ũ1, Ũ2, . . . , Ũk)) ≤ t

}
= E

[
P
{
Ũ1 ≤ h−1

1 (G−1
c (t))|Ũ2, . . . , Ũk

}]
= E

[
h−1

1 (G−1
c (t))1{0≤h−1

1 (G−1
c (t))≤1}

] + a1

= P
{
Gc(gc(U1, Ũ2, . . . , Ũk)) ≤ t

} + a1,

where |a1| ≤ ε1, 1{·} is the indicator function, and h1(s) = gc(s,
Ũ2, . . . , Ũk) is the monotonic function of s for a set of given (fixed)
Ũ2, Ũ3, . . . , Ũk . Repeating the same derivation for the 2nd,3rd, . . . ,

kth element, we have

P
{
Gc(gc(Ũ1, Ũ2, . . . , Ũk)) ≤ t

}

= P
{
Gc(gc(U1,U2, . . . ,Uk)) ≤ t

} +
k∑

i=1

ai,

where |ai| ≤ εi. Replacing Ũi by H̃i(θ0) and Ui by Hi(θ0) for i =
1,2, . . . , k, in the above equation leads to the lemma.

Proof of Equivalence of Conditions (A) and (A′)
To prove Condition (A) implies Condition (A′), we first note that

Condition (A) implies that,

|H−1
i (t2) − H−1

i (t1)| → 0

for any fixed t1 and t2, 0 ≤ t1 ≤ t2 ≤ 1, in probability. (B.1)

This can be proved by taking γ = t1 in Condition (A) in the case when
t2 ≤ 1 − t1 and γ = 1 − t2 in the case when t2 ≥ 1 − t1, and noting
that H−1

i (·) is a monotonically nondecreasing function.

For any ε > 0, taking t2 = 1 − ε, we have P(Hi(θ
(0)
i ) ≤ t2) =

1 − ε. Also, for any β > 0, taking t1 = β and by (B.1), there ex-

ists a large enough N0 > 0 such that, when n > N0, P({Hi(θ
(0)
i −

δ) ≥ t1} ∩ {Hi(θ
(0)
i ) ≤ t2}) ≤ P(|H−1

i (t2) − H−1
i (t1)| > δ) ≤ ε. Since
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P({Hi(θ
(0)
i − δ) ≥ t1} ∩ {Hi(θ

(0)
i ) ≤ t2}) ≥ P(Hi(θ

(0)
i − δ) ≥ t1) +

P(Hi(θ
(0)
i ) ≤ t2) − 1, it follows that, when n ≥ N0,

P
(
Hi

(
θ
(0)
i − δ

) ≥ β
) ≤ 2ε for any ε > 0 and β > 0.

Thus, Hi(θ
(0)
i − δ) → 0, as n → ∞, in probability. Similarly, we prove

1 − Hi(θ
(0)
i + δ) → 0 in probability.

Now we prove Condition (A′) implies Condition (A). For any ε > 0

and 0 < γ < 1
2 , we have, by Condition (A′), P({Hi(θ

(0)
i − δ) < γ } ∩

{Hi(θ
(0)
i + δ) > 1 − γ }) → 1, as n → 0. It follows that

P
(|H−1

i (1 − γ ) − H−1
i (γ )| < 2δ

) → 1,

thus Condition (A).

Proof of Lemma 2

The proof in the case when F0 has bounded support is easy because
the function F−1

0 (·) is bounded. We consider here the case when F0
has unbounded support. Let aε and bε , for an ε > 0, be such that

min
i∈I1,0

Hi(aε) = ε and max
i∈I1,0

Hi(bε) = 1 − ε.

Thus, if aε < bε , then ε ≤ Hi(θ) ≤ 1 − ε for all i ∈ I1,0 and θ within
[aε,bε ]. Let us note the bounds

P
(
aε ≥ θ

(0)
1

) = P
(
Hi

(
θ
(0)
1

) ≤ ε for some i ∈ I1,0
) ≤ ‖I1,0‖ε,

where ‖I1,0‖ is the size of I1,0. Similarly P(bε ≤ θ
(0)
1 ) ≤ ‖I1,0‖ε.

We express, for a γ > 0,

P
(

sup
θ

∣∣H(c)
1 (θ) − H(c)

1,0(θ)
∣∣ > γ

)
≤ I + II + III + O(ε),

where

I = P
({

sup
aε≤θ≤bε

∣∣H(c)
1 (θ) − H(c)

1,0(θ)
∣∣ > γ

}
∩ {aε ≤ bε}

)
,

II = P
(

sup
θ≤aε

max
{
H(c)

1 (θ),H(c)
1,0(θ)

}
> γ

)
,

and

III = P
(

sup
θ≤bε

max
{
1 − H(c)

1 (θ),1 − H(c)
1,0(θ)

}
> γ

)
.

The argument for the bounded support case applies to I; and hence
one has

I = o(1) + O(ε),

where o(1) refers to limit as sample size n → ∞.
We obtain suitable bounds on II and III as follows. Denote by

J1,0 = {j|Hj(aε) = ε, j ∈ I1,0} ⊂ I1,0.

P
(

sup
θ≤aε

H(c)
1 (θ) > γ

)

= P
({

sup
θ≤aε

H(c)
1 (θ) > γ

}

∩ {
Hi

(
θ
(0)
1

) ≤ 1 − ε′ for all i ∈ I1,0 − J1,0
} ∩ {

aε ≤ θ
(0)
1

})
+ O(ε)

≤ P

({
Gc

( ∑
i∈J1,0

wiF
−1
0 (ε) +

∑
i∈I1,0−J1,0

wiF
−1
0 (1 − ε)

+
∑

i/∈I1,0

wiF
−1
0

(
Hi

(
θ
(0)
1

)))
> γ

}

∩ {
Hi

(
θ
(0)
1

) ≤ 1 − ε′ for all i ∈ I1,0 − J1,0
} ∩ {

aε ≤ θ
(0)
1

})

+ O(ε) + O(ε′)
= o(1) + O(ε) + O(ε′)

as ε → 0, for a fixed positive ε′. Similar arguments are repeated for

H(c)
1,0(θ) over θ ≤ aε and both 1−H(c)

1 (θ) and 1−H(c)
1,0(θ) over θ ≥ bε .

Since ε′ > 0 is arbitrary, it follows that all I, II, III tend to zero. This
concludes the proof of (i).

To prove (ii), we first note that Conditions (A) and (A′) are equiva-

lent. For i ∈ I1,0, Hi(θ
(0)
i − δ) → 0 and Hi(θ

(0)
i + δ) → 1, in proba-

bility. If follows that

H(c)
1,0

(
θ
(0)
1 − δ

) → 0 and H(c)
1,0

(
θ
(0)
1 + δ

) → 1,

in probability. Thus, by theorem 3.1 of Singh, Xie, and Strawderman

(2007), θ̃
(c)
1,0 = H(c)

1,0
−1

( 1
2 ) is a consistent estimator of θ . From (i), the

result of consistency in (ii) follows.

Proof of Theorem 1

Since θ̂ (c) is the median, the claim of (i) follows immediately. In the
case I0 	= ∅, from Lemma 2, the claims of (ii) and (iii) hold for all i ∈
I0. Therefore they hold for the median as well. In the case when I0 =
∅, which happens when k = 2m is even and θ

(0)
(m)

	= θ
(0)
(m+1)

, we have

θ0 = (θ
(0)
(m)

+ θ
(0)
(m+1)

)/2 and θ̂ (c) = (θ̂
(c)
(m)

+ θ̂
(c)
(m+1)

)/2. By Lemma 2,

we have θ̂
(c)
(m)

→ θ
(0)
(m)

and θ̂
(c)
(m+1)

→ θ
(0)
(m+1)

, the claim of (ii) follows.

Proof of Theorem 2

Let n denote a generic sample size which is of the order 1/s2
i , as-

suming that all 1/s2
i are of the same order. Without loss of generality,

assume that θ
(0)
1 = θ0. Let us express θ̂

(c)
1 − θ̃

(c)
1,0 as a/b − c/d where

a =
k∑
1

w(a)
i

s2
i

(Yi − θ0), b =
k∑
1

w(a)
i

s2
i

,

c =
∑
i∈I0

1

s2
i

(Yi − θ0), d =
∑
i∈I0

1

s2
i

.

Note that I1,0 = I0 and θ̃
(c)
1,0 = θ̃

(c)
0 , and Yi’s have been centered so

that
√

n|Yi − θ0| are bounded in probability. We write now

a

b
− c

d
= a

(
1

b
− 1

d

)
+ a − c

d
.

The weights corresponding to i outside of I0 tend to zero at a rate

n−k , for any k and for those within I0, |w(a)
i − 1| = O(n−1/2(log n)2).

Now it takes elementary algebra to conclude that

√
na

(
1

b
− 1

d

)
→ 0 and

√
n

a − c

d
→ 0,

in probability. In the same way we prove that
√

n|θ̂ (c)
j − θ̃ (c)| → 0 for

all j ∈ I0. So the theorem holds.

Proof of Theorem 3

Consider the M-estimating equation (4.10). The conclusion (i) fol-
lows from the standard argument of an M-estimating equation (see,
e.g., Huber 1964).

This proof for (ii) is similar to that of the standard M-estimation as
well, except that we need to incorporate the given weight wi in our
case. Note that Hi(t) is bounded between 0 and 1, and maximum con-
tribution of a study to the equation is either wi/2 or −wi/2. In order to
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break down the estimating equation so that the solution of the estimat-
ing equation approaches infinity, the sum of wi’s over outlying studies
should dominate the sum of wi’s over the good studies. Consideration
of the worst possible scenario leads to the break down point as stated
in (ii).

Proof of Theorem 4

We only prove the result under random effects model (3.7). The
proof under fixed effects model (3.5) is similar. Taylor expansion of the

M-estimating equation
∑k

i=1(1/vi){�((θ − Yi)/vi) − 1
2 } = 0 around

Zi = (θ0 − Yi)/vi yields

θ̂ (c) − θ0 =
∑k

i=1{�(Zi) − 1/2}/vi∑k
i=1 φ(Zi)/v2

i

+ op
(
n−1/2)

= 2
√

π

∑k
i=1(Ui − 1/2)/vi∑k

i=1 1/v2
i

+ op
(
n−1/2)

,

where Ui are independent U[0,1] random variables and φ(·) is the
density function of the standard normal distribution. The last equa-
tion holds because Zi are independent standard normal random vari-
ables and Eφ(Zi) = 1/(2

√
π). From the expression, we can prove

that asymptotically var(θ̂ (c)) = π/3. So, the combined CD H(c)(θ) is
asymptotically equivalent to a normal aCD �((3/π){θ − θ̂ (c)}). The
efficiency claim thus holds.

[Received December 2009. Revised October 2010.]
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