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Mainly based on
Ping Ma, Michael Mahoney, Bin Yu (2015), A statistical
perspective on algorithmic leveraging, Journal of Machine
Learning Research, 16, 861-911
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Sampling in big data analysis

One popular approach
Choose a small portion of full data
One possible way: uniform random sampling
“Worst-case” may perform poorly
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Leveraging approach

Data-dependent sampling process
Least-square regression (Avron et al. 2010, Meng et al.
2014)
Least absolute deviation and quantile regression (Clarkson
et al. 2013, Yang et al. 2013)
Low-rank matrix approximation (Mahoney and Drineas,
2009)
Leveraging provides uniformly superior worst-case
algorithmic result
No work addresses the statistical aspects
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Summary of the results

Based on linear model
Analytic framework for evaluating sampling approaches
Use Taylor expansion to approximate the subsampling
estimator
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Uniform approach vs leveraging approach

Compare the biases and variance, both conditional and not
unconditional
Both are unbiased to leading order
Leveraging approach improve the “size-scale” of the
variance but may inflate the variance with small leverage
scores
Neither leveraging nor uniform approach dominates each
other
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New approaches

Shrinkage Leveraging Estimator (SLEV): a convex
combination of leveraging sampling probability and uniform
probability
Unweighted leveraging Estimator (LEVUNW): leveraging
sampling approach with unweighted LS estimation
Both approaches have some improvements
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Linear Model

y = Xβ0 + ε

X is n × p matrix
β0 is p × p
ε ∼ N(0, σ2)

Least-squared estimator: β̂ols = (X T X )−1X T y
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About β̂ols

Computation time O(np2)

Can be written as V ∆−1UT y , where X = U∆V T (thin
SVD)
Can be solved approximately with computation time o(np2)
with error bounded by ε
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Leverage

Consider ŷ = Hy , where H = X (X T X )−1X T

The i th diagonal element, hii = xT
i (X T X )−1xi , called the

statistical leverage of the i th observation.
Var(ei) = (1− hii)σ

2

Student residual: ei

σ̂
√

1−hii

hii has been used to qualify for the influential observations
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Leverage

hii =
∑p

j=1 U2
ij

Exact computation time: O(np2)

Approximate computation time: o(np2)
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Sampling algorithm

{πi}ni=1 is a sampling distribution
Randomly sample r > p rows of X and the corresponding
elements of y , using {πi}ni=1

Rescale each sampled row/element by 1
(r
√
πi )

to form a
weighted LS subproblem
Solve the weighted LS subproblem, the solution denoted
as β̃wls
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Weighted LS subproblem

Let ST
X (r × n) be the sampling matrix indicating the

selected samples
Let D (r × r ) be the diagonal matrix with the i th element
being 1√

rπk
if the k th data is chosen

The weighted LS estimator is

argminβ||DST
X y − DST

X Xβ||
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Weighted sampling estimators

β̃W = (X T WX )−1X T Wy

with W = SX D2ST
X (n × n diagonal random matrix). W is a

random matrix with E(Wii) = 1.
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Smapling approaches

Uniform: πi = 1/n, for all i ; Uniform sampling estimator
(UNIF)
Leverage-based: πi = hii∑n

i hii
= hii/p; Leveraging Estimator

(LEV)
Shrinkage: πi = απLev

i + (1−α)πUnif
i ; Shrinkage leveraging

estimator (SLEV)
Unweighted leveraging: with πLev

i solving

argminβ||ST
X y − ST

X Xβ||
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Lemma 1

A Taylor expansion of β̃W around the point E(W ) = 1 yields

β̃W = β̂ols + (X T X )−1X T Diag{ê}(w − 1) + Rw

where ê = y − X β̂ols and Rw is the Taylor expansion reminder

Remark: (1) when Taylor expansion is valid when
RW = op(||W − 1||). No theoretical justification when it holds.
(2) the formula does not apply to LEVUNW
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Lemma 2

EW

[
β̃W |y

]
=β̂ols + EW [Rw ]

VarW

[
β̃W |y

]
=(X T X )−1

[
Diag{ê}Diag{ 1

rπ
}Diag{ê}

]
X (X T X )−1

+ VarW [Rw ]

Remark: when EW

[
β̃W |y

]
is negligible, β̃W is approximately

unbiased relative to full sample estimate β̂ols. The variance is
inversely proportional to subsample size r .
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Lemma 2

E
[
β̃W

]
=β0

Var
[
β̃W

]
=σ2(X T X )−1 +

σ2

r
(X T X )−1Diag{(1− hii)

2

πi
}X (X T X )−1

+ Var [Rw ]

Remark: β̃W is unbiased to true value β0. The variance
depends on leverage and sampling probability, and is inversely
proportional to subsample size r .
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UNIF

EW

[
β̃UNIF |y

]
=β̂ols + EW [RUNIF ]

VarW

[
β̃UNIF |y

]
=

n
r

(X T X )−1 [Diag{ê}Diag{ê}] X (X T X )−1

+ VarW [RUNIF ]

E
[
β̃UNIF

]
=β0

Var
[
β̃UNIF

]
=σ2(X T X )−1 +

n
r

(X T X )−1Diag{(1− hii)
2}X (X T X )−1

+ Var [RUNIF ]

Remark: (1) The variance depends on n
r , could be very large

unless r is closed to n; (2) The sandwich-type expression will
not be inflated by small hii .
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LEV

EW

[
β̃LEV |y

]
=β̂ols + EW [RLEV ]

VarW

[
β̃LEV |y

]
=

p
r

(X T X )−1
[
Diag{ê}Diag{ 1

hii
}Diag{ê}

]
X (X T X )−1

+ VarW [RLEV ]

E
[
β̃LEV

]
=β0

Var
[
β̃LEV

]
=σ2(X T X )−1 +

pσ2

r
(X T X )−1Diag{(1− hii)

2

hii
}X (X T X )−1

+ Var [RLEV ]

Remark: (1) The variance depends on p
r , not sample size n; (2)

The sandwich-type expression can be inflated by small hii .
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SLEV

πi = απLev
i + (1− α)πUnif

i

Lemma 2 still holds
If (1− α) is not small, variance of the SLEV does not get
inflated too much
If (1− α) is not large, variance of the SLEV has a scale of
p/r
Not only increase the small scores, but also shrinkage on
large scores
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LEVUNW

A Taylor expansion of β̃W around the point E(W ) = rπ yields

β̃LEVUNW = β̂wls + (X T X )−1X T Diag{êW}(W − rπ) + RLEVUNW

where β̂wls = (X T W0X )−1XW0y and êW = y − X β̂wls,
W0 = Diag{rhii/p}
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LEVUNW

EW

[
β̃LEVUNW |y

]
=β̂wls + EW [RLEVUNW ]

VarW

[
β̃LEVUNW |y

]
=(X T W0X )−1Diag{êW}W0Diag{êW}X (X T W0X )−1

+ VarW [RLEVUNW ]

Remark: for a given data set, β̃LEVUNW is approximately
unbiased to β̂wls, but not β̂ols.
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LEVUNW

EW

[
β̃LEVUNW

]
=β0

VarW

[
β̃LEVUNW

]
=σ2(X T W0X )−1X T W 2

0 X (X T W0X )−1

+(X T W0X )−1X T Diag{I − PX ,W0}W0Diag{I − PX ,W0}X (X T W0X )−1

+ VarW [RLEVUNW ]

Remark: β̃LEVUNW is unbiased to β0 and the variance is not
inflated by small leverage
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Approximate computation

Based on Drineas et al. (2012)
Generate an r1 × n random matrix

∏
1

Generate an p × r2 random matrix
∏

2

Compute R, where R is the thin SVD of
∏

1 X = QR
Return the leverage score of XR−1∏

2
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Computation time

For approximate choices of r1 and r2, if one chooses
∏

1 to be a
Hadamard-based random matrix, the the computation time is
o(np2)
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Empirical studies

n = 20,000 and p = 1,000
BFast: each element of

∏
1 and

∏
2 is generated i.i.d from

{-1,1} with equal sampling
GFast: each element of

∏
1 and

∏
2 is generated i.i.d from

N(0, 1
n ) and N(0, 1

p )

n = 20,000 and p = 1,000
r1 = p,1.5p,2p,3p,4p,5p and r2 = klog(n) with
k = 1,2, . . . ,20
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Empirical studies: choose of r1 and r2

With the increase of r1, the correlation are not sensitive but
the running time increase linearly
With the increase of r2, the correlation increase rapidly but
the running time not sensitive
Choose small r1 and large r2
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Empirical studies: choose of r1 and r2
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Empirical studies: computation time

When n ≤ 20,000, exact method takes less time
When n > 20,000, the approximate approach has some
advantage
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Empirical studies: computation time
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Empirical studies: estimation comparision

Compare the bias and variance of LEV, SLEV, and
LEVUNW using exact, BFast, and GFast
The results are almost identical
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Empirical studies: estimation comparision
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Plan

Unconditional bias and variance for LEV and UNIF
Unconditional bias and variance for SLEV and LEVUNW
Conditional bias and variance of SLEV and LEVUNW
Real data application
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Synthetic data

y = Xβ + ε, where ε ∼ N(0,9In)

Nearly uniform leverage scores (GA): X ∼ N(1p,Σ),
Σij = 2× 0.5|i−j|, and β = (110,0.11p−20,110)

Moderately nonuniform leverage scores (T3): X is from
multivariate t-distribution with df=3
Very nonuniform leverage scores (T1): X is from
multivariate t-distribution with df=1
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LEV vs UNIF: square loss and variance

n = 1000, p = 10,50,100, and repeat sampling 1000 times
Square loss is much smaller than variance
Similarly for GA
Less similarly for T3

Very different for T1

Both decrease as r increase, but slower for UNIF
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LEV vs UNIF: square loss and variance
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Improvements from SLEV and LEVUNW

n = 1000, p = 10,50,100, and repeat sampling 1000 times
Similarly for GA
Less similarly for T3

Different for T1

SLEV with α = 0.9 and LEVUNW have better performance
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Improvements from SLEV and LEVUNW



Introduction The framework Bias and variance Approximate computation of leverage Empirical evaluation

Choices of α in SLEV

n = 1000, p = 10,50,100, and repeat sampling 1000 times
T1 data
0.8 ≤ α ≤ 0.9 has beneficial effect
Recommend α = 0.9
LEVUNW has better performance
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Choices of α in SLEV
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Conditional bias and variance

n = 1000, p = 10,50,100, and repeat sampling 1000 times
LEVUNW is biased for β̂ols

LEVUNW has smallest variance
Recommend use SLEV with α = 0.9
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Conditional bias and variance
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Real Data: RNA-SEQ data

n = 51,751 read counts from embryonic mouse stem cells
nij denotes the counts of reads that are mapped to the
genome starting at the j th nucleotide of the i th gene
yij = log(nij + 0.5)

Independent variables: 40 nucleotides denoted as bij,−20,,
bij,−19, . . . ,bij,19.

Linear model: yij = α +
∑19

k=−20
∑

h∈H βkhI(bij,k = h) + εij ,
where H = {A,C,G}, T is used as baseline level.
p = 121
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Sampling analysis

UNIF, LEV, and SLEV
r = 2p,3p,4p,5p,10p,20p,50p
Compare sample bias (respect to β̂ols) and variance
Sampling 100 times
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Comparison

Relatively uniform leverage scores
Almost identical variances
LEVUNW has slightly larger bias
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Emprical resutls for real data I
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Real Data: predicting gene expression of cancer
patient

n = 5,520 genes for 46 patients.
Randomly select one patient’s gene expression as y and
remaining patients’ gene expressions as predictors
(p = 45)
Sample sizes from 100 to 5000
UNIF, LEV, and SLEV
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Comparison

Relatively nonuniform leverage scores
SLEV and LEV have smaller variances
LEVUNW has the largest bias
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Emprical resutls for real data II
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