Discussion of sampling approach in big
data
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Mainly based on

Ping Ma, Michael Mahoney, Bin Yu (2015), A statistical
perspective on algorithmic leveraging, Journal of Machine
Learning Research, 16, 861-911



Introduction

Sampling in big data analysis

@ One popular approach

@ Choose a small portion of full data

@ One possible way: uniform random sampling
@ “Worst-case” may perform poorly
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Leveraging approach

@ Data-dependent sampling process

@ Least-square regression (Avron et al. 2010, Meng et al.
2014)

@ Least absolute deviation and quantile regression (Clarkson
et al. 2013, Yang et al. 2013)

@ Low-rank matrix approximation (Mahoney and Drineas,
2009)

@ Leveraging provides uniformly superior worst-case
algorithmic result

@ No work addresses the statistical aspects
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Summary of the results

@ Based on linear model
@ Analytic framework for evaluating sampling approaches

@ Use Taylor expansion to approximate the subsampling
estimator
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Uniform approach vs leveraging approach

@ Compare the biases and variance, both conditional and not
unconditional

@ Both are unbiased to leading order

@ Leveraging approach improve the “size-scale” of the
variance but may inflate the variance with small leverage
scores

@ Neither leveraging nor uniform approach dominates each
other
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New approaches

@ Shrinkage Leveraging Estimator (SLEV): a convex

combination of leveraging sampling probability and uniform
probability

@ Unweighted leveraging Estimator (LEVUNW): leveraging
sampling approach with unweighted LS estimation

@ Both approaches have some improvements
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The framework

Linear Model

y=XBo+e

@ X is n x p matrix

® foispxp
@ ¢ ~ N(0,02)
@ Least-squared estimator: Sy = (X7 X) " 'XTy
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The framework

AbOUt /[3\0/3

@ Computation time O(np?)

@ Can be written as VA~'U"y, where X = UAVT (thin
SVD)

@ Can be solved approximately with computation time o(np?)
with error bounded by ¢
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The framework

Leverage

@ Consider y = Hy, where H = X(XTX)~1XT

@ The ith diagonal element, h; = xT (X" X)~"x;, called the
statistical leverage of the ith observation.

("] Var(e,-) = (1 — h,‘,‘)0'2

@ Student residual: —2

&v/1—hi

@ h; has been used to qualify for the influential observations

We =



The framework

Leverage

® hj=3",U;
@ Exact computation time: O(np?)
@ Approximate computation time: o(np?)
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The framework

Sampling algorithm

@ {m;}{_, is a sampling distribution

@ Randomly sample r > p rows of X and the corresponding
elements of y, using {7},

@ Rescale each sampled row/element by (,1% to form a
weighted LS subproblem

@ Solve the weighted LS subproblem, the solution denoted
as Bwls
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Weighted LS subproblem

@ Let S; (r x n) be the sampling matrix indicating the
selected samples

@ Let D (r x r) be the diagonal matrix with the ith element

being :m if the kth data is chosen

@ The weighted LS estimator is

argming||DS%y — DS{XB||
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Weighted sampling estimators

Bw = (XTwx) X7 Wy

with W = SXDZS)E (n x ndiagonal random matrix). W'is a
random matrix with E(W;;) = 1.
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Smapling approaches

@ Uniform: =; = 1/n, for all i; Uniform sampling estimator
(UNIF)

@ Leverage-based: w; =
(LEV)

@ Shrinkage: m; = art®’ + (1 — a)x”"; Shrinkage leveraging
estimator (SLEV)

@ Unweighted leveraging: with ¢ solving

Z”T"h — h;;/p; Leveraging Estimator

argming||Sxy — Sx X8|
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Bias and variance

A Taylor expansion of 3y, around the point E(W) = 1 yields
BW:BO/S (XTX) 1XTD/ag{e}( )+ Ry

where & = y — X3, and R, is the Taylor expansion reminder

Remark: (1) when Taylor expansion is valid when
Rw = 0p(||W — 1]|). No theoretical justification when it holds.
(2) the formula does not apply to LEVUNW
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Bias and variance

Ew [BWU’} :Bols + Ew [Rw]
Vary [BW| y} —(XTXx)™" [Diag{é}Diag{:W}Diag{é} X(XTx)~1

+ Vary [Rw]

Remark: when Ejy [E’W|y] is negligible, 3y is approximately

unbiased relative to full sample estimate /.. The variance is

inversely proportional to subsample size r. ——
Mﬂdﬂ



Bias and variance

Var [BW] =2(XTX)" + (XTX) Diag{“;_h"")z})((xwa

]

Remark: 3y is unbiased to true value 3y. The variance
depends on leverage and sampling probability, and is inversely

proportional to subsample size r.
e



Bias and variance

Ew [BUN/FU/: =Bois + Ew [Runi]
= 1N , ~ . ~
Varw | Buniely| == (X" X) ™" [Diag{8} Diag{&}] X(X"X)""

+ Varw [RuniF]

E [/BUNIF: =Po
Var [ Bunie| =o2(XTX) 7" + g(xwa Diag{(1 — hj)2} X(XTX)""
+ Var [RuniF]

Remark: (1) The variance depends on 2, could be very large
unless r is closed to n; (2) The sandwich-type expression Will e sz
not be inflated by small h;. Vﬂﬁ“""l“"



Bias and variance

Ew [BLEVU/_ =Bois + Ew [RLev]

~ 7 _ av i Vi a .
Varw [uevly] =2(X7X)"" | Diag{2) Diag(, } Diag{&} | X(X7X)""

+ Vary [RLev]
E [BLEV_ =50
Var [fuev| —o2(X7X)~" + P2 (x7x) " Diag{ U= x(xTx)
- II
+ Vaf[R[_Ev]
Remark: (1) The variance depends on %, not sample size M@ )-smssses

The sandwich-type expression can be inflated by small h;;.



Bias and variance

o = aﬂ'iLeV +(1- a)7r,-Un"f
@ Lemma 2 still holds

@ If (1 — «) is not small, variance of the SLEV does not get
inflated too much

@ If (1 — «) is not large, variance of the SLEV has a scale of
p/r

@ Not only increase the small scores, but also shrinkage on
large scores
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LEVUNW

A Taylor expansion of 3 around the point E(W) = rr yields

Brevunw = Buwis + (X7 X) ™' XT Diag{éw }(W — rr) + Rievunw

where Bw/s = (XTWOX)AXWOy and éW =y - XBW/S;
Wo = Diag{rhii/p}
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Bias and variance

LEVUNW

Ew [BLEVUNWU’} =Buwis + Ew [RLevunw]
Varw | Buevunwly| =(X WoX)~" Diag{éw} WoDiag{&w } X(XT WoX)"

+ Vary [RLevunw]

Remark: for a given data set, 3, syunw is approximately
unbiased to By, but not Byys.
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Bias and variance

LEVUNW

Ew [BLEVUNW} =50
Vary [BLEVUNW} =2 (XTWoX) T XTWEX(XT W X) ™!
+(X"WoX) "X Diag{! — Px.w, } WoDiag{! — Px w, } X(XT WoX)~"
+ Varw [RLevunw]

Remark: 3, evunw is unbiased to 3, and the variance is not
inflated by small leverage
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Approximate computation of leverage

Approximate computation

Based on Drineas et al. (2012)
@ Generate an ry x nrandom matrix [ [4
@ Generate an p x r, random matrix ],
@ Compute R, where R is the thin SVD of [[; X = QR
@ Return the leverage score of XR~' ],
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Approximate computation of leverage

Computation time

For approximate choices of ry and r,, if one chooses [[, to be a
Hadamard-based random matrix, the the computation time is

o(np?)
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Approximate computation of leverage

Empirical studies

n = 20,000 and p = 1,000
@ BFast: each element of [, and [], is generated i.i.d from
{-1,1} with equal sampling
@ GFast: each element of [[, and [[, is generated i.i.d from
N(0, 7) and N(O, )
@ n=20,000and p = 1,000

@ rp =p,1.5p,2p,3p,4p,5p and r. = klog(n) with
k=1,2,...,20
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Approximate computation of leverage

Empirical studies: choose of r; and r»

@ With the increase of rq, the correlation are not sensitive but
the running time increase linearly

@ With the increase of r, the correlation increase rapidly but
the running time not sensitive

@ Choose small ry and large r»
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Empirical studies: choose of r; and r»

Correlation
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Approximate computation of leverage

Empirical studies: computation time

@ When n < 20,000, exact method takes less time

@ When n > 20,000, the approximate approach has some
advantage
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Empirical studies: computation time
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Approximate computation of leverage

Empirical studies: estimation comparision

@ Compare the bias and variance of LEV, SLEV, and
LEVUNW using exact, BFast, and GFast

@ The results are almost identical

We =



Approximate computation of leverage

Empirical studies: estimation comparision

log(variance)

log(squared bias)
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Empirical evaluation

@ Unconditional bias and variance for LEV and UNIF

@ Unconditional bias and variance for SLEV and LEVUNW
@ Conditional bias and variance of SLEV and LEVUNW

@ Real data application
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Empirical evaluation

Synthetic data

y = XB + ¢, where e ~ N(0,91/p)

@ Nearly uniform leverage scores (GA): X ~ N(1,,X),
¥ =2x 0.5 and 8 = (110,0.11p_20, 110)

@ Moderately nonuniform leverage scores (T3): X is from
multivariate t-distribution with df=3

@ Very nonuniform leverage scores (T1): X is from
multivariate f-distribution with df=1
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LEV vs UNIF: square loss and variance

n= 1000, p = 10,50, 100, and repeat sampling 1000 times
@ Square loss is much smaller than variance
@ Similarly for GA
@ Less similarly for T3
@ Very different for T4
@ Both decrease as r increase, but slower for UNIF
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log(variance)

log(squared bias)
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Empirical evaluation

Improvements from SLEV and LEVUNW

n=1000, p = 10,50, 100, and repeat sampling 1000 times
@ Similarly for GA
@ Less similarly for T3
@ Different for T
@ SLEV with @ = 0.9 and LEVUNW have better performance
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Empirical evaluation

Improvements from SLEV and LEVUNW

log(variance)

log(squared bias)
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Empirical evaluation

Choices of o in SLEV

n=1000, p = 10,50, 100, and repeat sampling 1000 times
@ T data
@ 0.8 < a < 0.9 has beneficial effect
@ Recommend a = 0.9
@ LEVUNW has better performance
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Empirical evaluation

log(variance)

log(squared bias)
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Empirical evaluation

Conditional bias and variance

n=1000, p = 10,50, 100, and repeat sampling 1000 times
@ LEVUNW is biased for B
@ LEVUNW has smallest variance
@ Recommend use SLEV with o = 0.9
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Conditional bias and variance

Empirical evaluation

log(variance)

log(squared bias)
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Real Data: RNA-SEQ data

n = 51,751 read counts from embryonic mouse stem cells

@ nj; denotes the counts of reads that are mapped to the
genome starting at the jth nucleotide of the ith gene

@ yj; = log(n;+0.5)

@ Independent variables: 40 nucleotides denoted as b _»,,
b,‘j7_1g, ey b,‘j719.

@ Linear model: y; = a + Zlngzo > her Brnl(bjx = h) + €,
where H = {A, C, G}, T is used as baseline level.

e p=121
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Sampling analysis

@ UNIF, LEV, and SLEV

@ r=2p,3p,4p,5p,10p,20p, 50p

@ Compare sample bias (respect to 3,;s) and variance
@ Sampling 100 times
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Comparison

@ Relatively uniform leverage scores
@ Almost identical variances
@ LEVUNW has slightly larger bias
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Emprical resutls for real data |
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Real Data: predicting gene expression of cancer
patient

n = 5,520 genes for 46 patients.

@ Randomly select one patient’s gene expression as y and
remaining patients’ gene expressions as predictors

(p = 45)
@ Sample sizes from 100 to 5000
@ UNIF, LEV, and SLEV
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Comparison

@ Relatively nonuniform leverage scores
@ SLEV and LEV have smaller variances
@ LEVUNW has the largest bias
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Emprical resutls for real data Il
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