Discussion of sampling approach in big data

Big data discussion group at MSCS of UIC

Outline

- 2 The framework
- Bias and variance
- Approximate computation of leverage
- 5 Empirical evaluation

Mainly based on Ping Ma, Michael Mahoney, Bin Yu (2015), *A statistical perspective on algorithmic leveraging*, Journal of Machine Learning Research, 16, 861-911

Sampling in big data analysis

- One popular approach
- Choose a small portion of full data
- One possible way: uniform random sampling
- "Worst-case" may perform poorly

Leveraging approach

- Data-dependent sampling process
- Least-square regression (Avron et al. 2010, Meng et al. 2014)
- Least absolute deviation and quantile regression (Clarkson et al. 2013, Yang et al. 2013)
- Low-rank matrix approximation (Mahoney and Drineas, 2009)
- Leveraging provides uniformly superior worst-case algorithmic result
- No work addresses the statistical aspects

Summary of the results

- Based on linear model
- Analytic framework for evaluating sampling approaches
- Use Taylor expansion to approximate the subsampling estimator

Uniform approach vs leveraging approach

- Compare the biases and variance, both conditional and not unconditional
- Both are unbiased to leading order
- Leveraging approach improve the "size-scale" of the variance but may inflate the variance with small leverage scores
- Neither leveraging nor uniform approach dominates each other

New approaches

- Shrinkage Leveraging Estimator (SLEV): a convex combination of leveraging sampling probability and uniform probability
- Unweighted leveraging Estimator (LEVUNW): leveraging sampling approach with unweighted LS estimation
- Both approaches have some improvements

Outline

- Bias and variance
- Approximate computation of leverage
- 5 Empirical evaluation

Linear Model

$$y = X\beta_0 + \epsilon$$

- X is $n \times p$ matrix
- β₀ is *p* × *p*
- *ϵ* ~ *N*(0, σ²)
- Least-squared estimator: $\hat{\beta}_{ols} = (X^T X)^{-1} X^T y$

- Computation time $O(np^2)$
- Can be written as $V \Delta^{-1} U^T y$, where $X = U \Delta V^T$ (thin SVD)
- Can be solved approximately with computation time *o*(*np*²) with error bounded by *ϵ*

Leverage

- Consider $\hat{y} = Hy$, where $H = X(X^T X)^{-1} X^T$
- The *i*th diagonal element, $h_{ii} = x_i^T (X^T X)^{-1} x_i$, called the statistical leverage of the *i*th observation.

•
$$Var(e_i) = (1 - h_{ii})\sigma^2$$

- Student residual: $\frac{e_i}{\hat{\sigma}\sqrt{1-h_{ii}}}$
- *h_{ii}* has been used to qualify for the influential observations

Leverage

•
$$h_{ii} = \sum_{j=1}^{p} U_{ij}^2$$

- Exact computation time: $O(np^2)$
- Approximate computation time: $o(np^2)$

Sampling algorithm

- $\{\pi_i\}_{i=1}^n$ is a sampling distribution
- Randomly sample r > p rows of X and the corresponding elements of y, using {π_i}ⁿ_{i=1}
- Rescale each sampled row/element by $\frac{1}{(r\sqrt{\pi_i})}$ to form a weighted LS subproblem
- Solve the weighted LS subproblem, the solution denoted as $\tilde{\beta}_{\textit{wls}}$

Weighted LS subproblem

- Let S^T_X (r × n) be the sampling matrix indicating the selected samples
- Let $D(r \times r)$ be the diagonal matrix with the *i*th element being $\frac{1}{\sqrt{r\pi_k}}$ if the *k*th data is chosen
- The weighted LS estimator is

$$argmin_{\beta}||DS_{X}^{T}y - DS_{X}^{T}X\beta||$$

Weighted sampling estimators

$$\tilde{\beta}_{W} = (X^{T}WX)^{-1}X^{T}Wy$$

with $W = S_X D^2 S_X^T$ ($n \times n$ diagonal random matrix). *W* is a random matrix with $E(W_{ii}) = 1$.

Smapling approaches

- Uniform: π_i = 1/n, for all i; Uniform sampling estimator (UNIF)
- Leverage-based: $\pi_i = \frac{h_{ii}}{\sum_{i}^{n} h_{ii}} = h_{ii}/p$; Leveraging Estimator (LEV)
- Shrinkage: π_i = απ_i^{Lev} + (1 − α)π_i^{Unif}; Shrinkage leveraging estimator (SLEV)
- Unweighted leveraging: with π_i^{Lev} solving

$$argmin_{\beta}||S_X^T y - S_X^T X \beta||$$

Outline

- 4 Approximate computation of leverage
- 5 Empirical evaluation

Lemma 1

A Taylor expansion of $\tilde{\beta}_W$ around the point E(W) = 1 yields

$$\tilde{\beta}_{W} = \hat{\beta}_{ols} + (X^{T}X)^{-1}X^{T}Diag\{\hat{e}\}(w-1) + R_{w}$$

where $\hat{e} = y - X \hat{\beta}_{ols}$ and R_w is the Taylor expansion reminder

Remark: (1) when Taylor expansion is valid when $R_W = o_p(||W - 1||)$. No theoretical justification when it holds. (2) the formula does not apply to LEVUNW

Lemma 2

$$E_{W}\left[\tilde{\beta}_{W}|y\right] = \hat{\beta}_{ols} + E_{W}\left[R_{w}\right]$$
$$Var_{W}\left[\tilde{\beta}_{W}|y\right] = (X^{T}X)^{-1}\left[Diag\{\hat{e}\}Diag\{\hat{e}\}Diag\{\hat{e}\}\right]X(X^{T}X)^{-1}$$
$$+ Var_{W}\left[R_{w}\right]$$

Remark: when $E_W\left[\tilde{\beta}_W|y\right]$ is negligible, $\tilde{\beta}_W$ is approximately unbiased relative to full sample estimate $\hat{\beta}_{ols}$. The variance is inversely proportional to subsample size *r*.

A D > A D > A D > A D > A D

Lemma 2

$$E\left[\tilde{\beta}_{W}\right] = \beta_{0}$$

$$Var\left[\tilde{\beta}_{W}\right] = \sigma^{2}(X^{T}X)^{-1} + \frac{\sigma^{2}}{r}(X^{T}X)^{-1}Diag\left\{\frac{(1-h_{ii})^{2}}{\pi_{i}}\right\}X(X^{T}X)^{-1}$$

$$+ Var\left[R_{w}\right]$$

Remark: $\tilde{\beta}_W$ is unbiased to true value β_0 . The variance depends on leverage and sampling probability, and is inversely proportional to subsample size *r*.

UNIF

$$\begin{split} E_{W}\left[\tilde{\beta}_{UNIF}|y\right] &= \hat{\beta}_{ols} + E_{W}\left[R_{UNIF}\right]\\ \forall ar_{W}\left[\tilde{\beta}_{UNIF}|y\right] &= \frac{n}{r}(X^{T}X)^{-1}\left[Diag\{\hat{e}\}Diag\{\hat{e}\}\right]X(X^{T}X)^{-1}\\ &+ \forall ar_{W}\left[R_{UNIF}\right]\\ E\left[\tilde{\beta}_{UNIF}\right] &= \beta_{0}\\ \forall ar\left[\tilde{\beta}_{UNIF}\right] &= \sigma^{2}(X^{T}X)^{-1} + \frac{n}{r}(X^{T}X)^{-1}Diag\{(1-h_{ii})^{2}\}X(X^{T}X)^{-1}\\ &+ \forall ar\left[R_{UNIF}\right] \end{split}$$

Remark: (1) The variance depends on $\frac{n}{r}$, could be very large unless *r* is closed to *n*; (2) The sandwich-type expression will not be inflated by small h_{ij} .

LEV

$$\begin{split} E_{W}\left[\tilde{\beta}_{LEV}|y\right] &= \hat{\beta}_{ols} + E_{W}\left[R_{LEV}\right] \\ /ar_{W}\left[\tilde{\beta}_{LEV}|y\right] &= \frac{p}{r}(X^{T}X)^{-1}\left[Diag\{\hat{e}\}Diag\{\frac{1}{h_{ii}}\}Diag\{\hat{e}\}\right]X(X^{T}X)^{-1} \\ &+ Var_{W}\left[R_{LEV}\right] \\ E\left[\tilde{\beta}_{LEV}\right] &= \beta_{0} \\ Var\left[\tilde{\beta}_{LEV}\right] &= \sigma^{2}(X^{T}X)^{-1} + \frac{p\sigma^{2}}{r}(X^{T}X)^{-1}Diag\{\frac{(1-h_{ii})^{2}}{h_{ii}}\}X(X^{T}X) \\ &+ Var\left[R_{LEV}\right] \end{split}$$

Remark: (1) The variance depends on $\frac{p}{r}$, not sample size n; (2) The sandwich-type expression can be inflated by small h_{ii} .

•
$$\pi_i = \alpha \pi_i^{Lev} + (1 - \alpha) \pi_i^{Unif}$$

- Lemma 2 still holds
- If (1 α) is not small, variance of the SLEV does not get inflated too much
- If (1 α) is not large, variance of the SLEV has a scale of p/r
- Not only increase the small scores, but also shrinkage on large scores

LEVUNW

A Taylor expansion of $\tilde{\beta}_W$ around the point $E(W) = r\pi$ yields

$$\tilde{\beta}_{LEVUNW} = \hat{\beta}_{wls} + (X^T X)^{-1} X^T Diag\{\hat{e}_W\}(W - r\pi) + R_{LEVUNW}$$

where $\hat{\beta}_{wls} = (X^T W_0 X)^{-1} X W_0 y$ and $\hat{e}_W = y - X \hat{\beta}_{wls}$,
 $W_0 = Diag\{rh_{ii}/p\}$

LEVUNW

$$\begin{split} E_{W}\left[\tilde{\beta}_{LEVUNW}|y\right] &= \hat{\beta}_{wls} + E_{W}\left[R_{LEVUNW}\right]\\ Var_{W}\left[\tilde{\beta}_{LEVUNW}|y\right] &= (X^{T}W_{0}X)^{-1}Diag\{\hat{e}_{W}\}W_{0}Diag\{\hat{e}_{W}\}X(X^{T}W_{0}X)^{-1}\\ &+ Var_{W}\left[R_{LEVUNW}\right] \end{split}$$

Remark: for a given data set, $\tilde{\beta}_{LEVUNW}$ is approximately unbiased to $\hat{\beta}_{wls}$, but not $\hat{\beta}_{ols}$.

LEVUNW

$$\begin{split} E_{W}\left[\tilde{\beta}_{LEVUNW}\right] = &\beta_{0} \\ Var_{W}\left[\tilde{\beta}_{LEVUNW}\right] = &\sigma^{2}(X^{T}W_{0}X)^{-1}X^{T}W_{0}^{2}X(X^{T}W_{0}X)^{-1} \\ &+ (X^{T}W_{0}X)^{-1}X^{T}Diag\{I - P_{X,W_{0}}\}W_{0}Diag\{I - P_{X,W_{0}}\}X(X^{T}W_{0}X)^{-1} \\ &+ Var_{W}\left[R_{LEVUNW}\right] \end{split}$$

Remark: $\tilde{\beta}_{LEVUNW}$ is unbiased to β_0 and the variance is not inflated by small leverage

Introduction

- 2 The framework
- Bias and variance
- Approximate computation of leverage
- 5 Empirical evaluation

Approximate computation

Based on Drineas et al. (2012)

- Generate an $r_1 \times n$ random matrix \prod_1
- Generate an $p \times r_2$ random matrix \prod_2
- Compute *R*, where *R* is the thin SVD of $\prod_1 X = QR$
- Return the leverage score of $XR^{-1}\prod_2$

Computation time

For approximate choices of r_1 and r_2 , if one chooses \prod_1 to be a Hadamard-based random matrix, the the computation time is $o(np^2)$

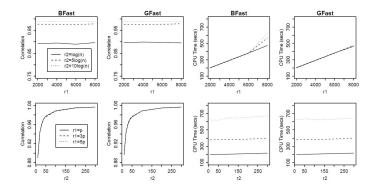
Empirical studies

- n = 20,000 and p = 1,000
 - BFast: each element of \prod_1 and \prod_2 is generated i.i.d from $\{-1,1\}$ with equal sampling
 - GFast: each element of \prod_1 and \prod_2 is generated i.i.d from $N(0, \frac{1}{p})$ and $N(0, \frac{1}{p})$
 - *n* = 20,000 and *p* = 1,000
 - $r_1 = p, 1.5p, 2p, 3p, 4p, 5p$ and $r_2 = klog(n)$ with k = 1, 2, ..., 20

Empirical studies: choose of r_1 and r_2

- With the increase of *r*₁, the correlation are not sensitive but the running time increase linearly
- With the increase of r₂, the correlation increase rapidly but the running time not sensitive
- Choose small r₁ and large r₂

Empirical studies: choose of r_1 and r_2



æ

・ ロ ト ・ 一 マ ト ・ 日 ト

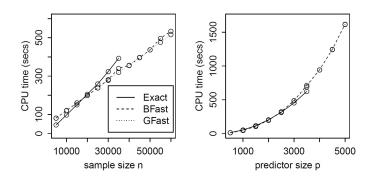
Empirical studies: computation time

- When $n \leq 20,000$, exact method takes less time
- When n > 20,000, the approximate approach has some advantage

Approximate computation of leverage

Empirical evaluation

Empirical studies: computation time



э

< □ > < □ > < □ > < □ >

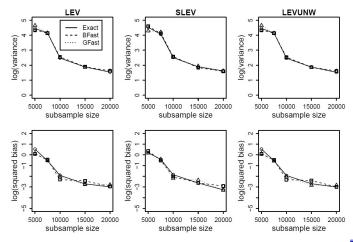
Empirical studies: estimation comparision

- Compare the bias and variance of LEV, SLEV, and LEVUNW using exact, BFast, and GFast
- The results are almost identical

- ∢ ≣ →

э

Empirical studies: estimation comparision



Outline

Introduction

- 2 The framework
- Bias and variance
- Approximate computation of leverage
- 5 Empirical evaluation

- Unconditional bias and variance for LEV and UNIF
- Unconditional bias and variance for SLEV and LEVUNW
- Conditional bias and variance of SLEV and LEVUNW
- Real data application

Synthetic data

$$y = X\beta + \epsilon$$
, where $\epsilon \sim N(0, 9I_n)$

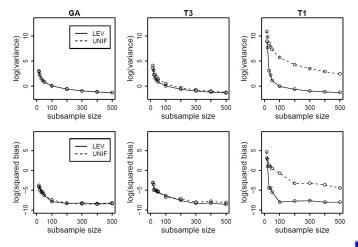
- Nearly uniform leverage scores (GA): $X \sim N(1_p, \Sigma)$, $\Sigma_{ij} = 2 \times 0.5^{|i-j|}$, and $\beta = (1_{10}, 0.11_{p-20}, 1_{10})$
- Moderately nonuniform leverage scores (T₃): X is from multivariate t-distribution with df=3
- Very nonuniform leverage scores (T₁): X is from multivariate t-distribution with df=1

LEV vs UNIF: square loss and variance

- n = 1000, p = 10, 50, 100, and repeat sampling 1000 times
 - Square loss is much smaller than variance
 - Similarly for GA
 - Less similarly for T₃
 - Very different for T₁
 - Both decrease as r increase, but slower for UNIF

Empirical evaluation

LEV vs UNIF: square loss and variance



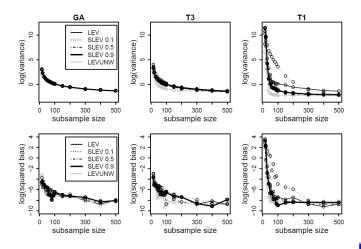
ъ

3

Improvements from SLEV and LEVUNW

- n = 1000, p = 10, 50, 100, and repeat sampling 1000 times
 - Similarly for GA
 - Less similarly for T₃
 - Different for T₁
 - SLEV with $\alpha = 0.9$ and LEVUNW have better performance

Improvements from SLEV and LEVUNW



Э

A B > A B >

Choices of α in SLEV

- n = 1000, p = 10, 50, 100, and repeat sampling 1000 times
 - T₁ data
 - 0.8 $\leq \alpha \leq$ 0.9 has beneficial effect
 - Recommend $\alpha = 0.9$
 - LEVUNW has better performance

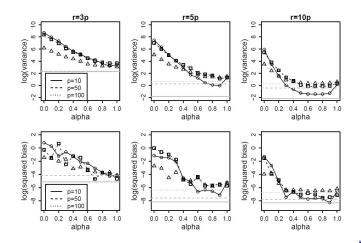
Approximate computation of leverage

< ≣ >

Э

Empirical evaluation

Choices of α in <u>SLEV</u>



Conditional bias and variance

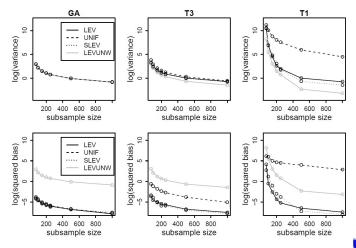
- n = 1000, p = 10, 50, 100, and repeat sampling 1000 times
 - LEVUNW is biased for $\hat{\beta}_{ols}$
 - LEVUNW has smallest variance
 - Recommend use SLEV with $\alpha = 0.9$

Ξ.

Э

Empirical evaluation

Conditional bias and variance



Real Data: RNA-SEQ data

n = 51,751 read counts from embryonic mouse stem cells

 n_{ij} denotes the counts of reads that are mapped to the genome starting at the *j*th nucleotide of the *i*th gene

•
$$y_{ij} = log(n_{ij} + 0.5)$$

- Independent variables: 40 nucleotides denoted as b_{ij,-20},, b_{ij,-19},..., b_{ij,19}.
- Linear model: $y_{ij} = \alpha + \sum_{k=-20}^{19} \sum_{h \in H} \beta_{kh} I(b_{ij,k} = h) + \epsilon_{ij}$, where $H = \{A, C, G\}$, *T* is used as baseline level.
- *p* = 121

Sampling analysis

- UNIF, LEV, and SLEV
- *r* = 2*p*, 3*p*, 4*p*, 5*p*, 10*p*, 20*p*, 50*p*
- Compare sample bias (respect to $\hat{\beta}_{ols}$) and variance
- Sampling 100 times

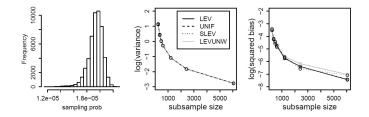
Comparison

- Relatively uniform leverage scores
- Almost identical variances
- LEVUNW has slightly larger bias

Approximate computation of leverage

Empirical evaluation

Emprical resutls for real data I



Real Data: predicting gene expression of cancer patient

- n = 5,520 genes for 46 patients.
 - Randomly select one patient's gene expression as y and remaining patients' gene expressions as predictors (p = 45)
 - Sample sizes from 100 to 5000
 - UNIF, LEV, and SLEV

Comparison

- Relatively nonuniform leverage scores
- SLEV and LEV have smaller variances
- LEVUNW has the largest bias

Empirical evaluation

Emprical resutls for real data II

