
Optimal and Efficient Crossover Designs When
Subject Effects Are Random

A. S. HEDAYAT, John STUFKEN, and Min YANG

Most studies on optimal crossover designs are based on models that assume subject effects to be fixed effects. In this article we identify
and study optimal and efficient designs for a model with random subject effects. With the number of periods not exceeding the number
of treatments, we find that totally balanced designs are universally optimal for treatment effects in a large subclass of competing designs.
However, in the entire class of designs, totally balanced designs are in general not optimal, and their efficiency depends on the ratio of the
subject effects variance and the error variance. We develop tools to study the efficiency of totally balanced designs and to identify designs
with higher efficiency.
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1. INTRODUCTION

In a crossover design, each subject in the study receives a
treatment in each of multiple periods, typically with the pri-
mary goal of comparing the effects of the various treatments.
A considerable portion of the literature on optimal and effi-
cient crossover designs addresses the question of finding good
designs for estimating treatment differences under an assumed
parametric model for given numbers of treatments, periods, and
subjects. An answer depends, of course, on the assumed model.

One assumption frequently made when considering this de-
sign question is that subject effects are fixed effects, even
though it is often more reasonable to treat them as random ef-
fects, which is typically done in the analysis. This practice has
at times been justified by a dual argument. Most of the infor-
mation for treatment differences when using a crossover design
is based on within-subject information, so the first part of the
argument goes. Hence it is important to compare designs based
on the within-subject information that they provide, which is
precisely what is accomplished by treating the subject effects
as fixed. Moreover, so the argument continues, a comparison
of designs when subject effects are random depends in general
on the unknown subject effects variance, or at least on its size
relative to the error variance. Not only does this lead to more
complicated expressions (possibly with limited gains), but also
the size of this variance is typically unknown.

But how efficient are designs that are optimal for fixed sub-
ject effects when the subject effects are really random? Which
designs are optimal when subject effects are random, and how
does this change with the relative size of the subject effects vari-
ance? This article studies these questions, about which little is
known.

Optimality of crossover designs when subject effects are
fixed has been studied by many researchers over the last three
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decades, including Hedayat and Afsarinejad (1975, 1978),
Cheng and Wu (1980), Kunert (1983, 1984), Hedayat and
Zhao (1990), Stufken (1991), Matthews (1994), Kushner (1997,
1998), Afsarinejad and Hedayat (2002), Kunert and Stufken
(2002), Hedayat and Yang (2003, 2004, 2005), and Hedayat
and Stufken (2003). Additional references have been given by
Stufken (1996) and Jones and Kenward (2003).

But subjects in the study may often be viewed as represent-
ing a larger population of interest from which they were more
or less randomly selected. The subject effects are then more ap-
propriately treated as random effects. There are relatively few
optimality results for this problem. Mukhopadhyay and Saha
(1983) showed that some of the optimality results of Hedayat
and Afsarinejad (1978), Magda (1980), and Cheng and Wu
(1980) for crossover designs for a model with fixed subject ef-
fects remained valid when the subject effects were assumed to
be random. Jones, Kunert, and Wynn (1992) obtained additional
results for the same setup. But the number of periods in these re-
sults is at least equal to the number of treatments, and moreover,
some of the results are over restricted classes of designs. Laska
and Meisner (1985) obtained optimal two-treatment crossover
designs given arbitrary within-subject covariance. Carrière and
Reinsel (1993) showed that strongly balanced two-period de-
signs that are uniform on the periods are universally optimal for
treatment effects in the entire class of designs. This also holds
when subject effects are fixed (as noted in Hedayat and Zhao
1990).

As already alluded to, if the subject effects are random, then
an optimal design can depend on the size of the subject effects
variance relative to the error variance. Whether this is actually
the case depends on the number of periods, p, and the number of
treatments, t, in which we are interested, as well as on the class
of competing designs. We study and identify efficient designs as
a function of the ratio of the two variance components for what
is arguably the most important case, namely p ≤ t. In doing this,
we model the mean response using period effects, treatment ef-
fects, and first-order carryover effects. Details about the model
assumptions are given in Section 2, along with basic notation.
Preliminary results appear in Section 3; main results, in Sec-
tion 4. A brief discussion is provided in Section 5, and most of
the technical tools for the results in Section 4 are given in the
Appendix.
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The class of totally balanced designs, introduced by Kunert
and Stufken (2002) for a different model, turns out to play an
important role in our considerations. In a large class of compet-
ing designs, defined in Section 4, totally balanced designs turn
out to be universally optimal for treatment effects, regardless
of the relative size of the subject effects variance. In the entire
class of designs, a totally balanced design can be optimal or
highly efficient, but this depends on t and p, on the number of
subjects n, and on the size of the subject effects variance rel-
ative to the error variance. Section 4 provides tools to unravel
these mysteries.

2. THE RESPONSE MODEL

In a crossover design, each of n subjects is used on p ≥ 2 oc-
casions, called periods, for the purpose of evaluating and study-
ing t ≥ 2 treatments. For given t, n, and p, we denote the class of
all such designs by �t,n,p. For a continuous response Y , a pos-
sible model with random subject effects can be written as

E(Ydks) = µ + αk + τd(k,s) + γd(k−1,s),

var(Ydks) = σ 2
β + σ 2, (1)

cov
(
Ydk1s1,Ydk2s2

) =
{

σ 2
β if s1 = s2 and k1 �= k2

0 if s1 �= s2.

Here Ydks denotes the response from subject s in period k to
which treatment d(k, s) was assigned by design d ∈ �t,n,p,
k = 1, . . . ,p, and s = 1, . . . ,n. Furthermore, µ is the general
mean, αk is the kth period effect, τd(k,s) is the (direct) treatment
effect of treatment d(k, s), and γd(k−1,s) is the (first-order) car-
ryover or residual effect of treatment d(k − 1, s) that subject s
received in the previous period (by convention γd(0,s) = 0). Fi-
nally, σ 2

β is the subject effects variance, and σ 2 is the error vari-
ance.

Writing the np × 1 response vector as Yd = (Yd11,Yd21, . . . ,

Ydpn)
′, we can write model (1) in matrix notation as

E(Yd) = 1npµ + Pα + Tdτ + Fdγ ,
(2)

var(Yd) = σ 2(In ⊗ (Ip + θJp)
)
,

where θ = σ 2
β/σ 2. Here α = (α1, . . . , αp)

′, τ = (τ1, . . . , τt)
′,

γ = (γ1, . . . , γt)
′, P = 1n ⊗ Ip, and Td and Fd denote the

treatment and carryover incidence matrices. In presenting this
model, we use ⊗ to denote the Kronecker product. We denote
σ−2 var(Yd) by V, which, from (2), depends on the unknown
variance components only through θ . Thus var(Yd) = σ 2V,
where V = In ⊗ (Ip + θJp).

When using a crossover design, everything possible should
be done to avoid carryover effects. But if it is not clear that
this can indeed be accomplished, then the possible carryover ef-
fects should be modeled. Although the approach used here has
come under some scrutiny (see, e.g., Fleiss 1989; Senn 2002),
a model with first-order carryover effects is a simple, popular
model. Even though hardly anyone would argue that this model
is correct for any application, it is useful for many applications
and is generally preferable to ignoring carryover effects when
they exist. The information matrix Cd for τ under model (2)
can now be expressed as

Cd = T′
dV−1/2

× pr⊥([
V−1/21np

∣∣ V−1/2P
∣∣ V−1/2Fd

])
V−1/2Td, (3)

where pr⊥(X) = I − pr(X) and pr(X) = X(X′X)−X′.
Two extreme cases are worth mentioning. The case where

θ = 0 corresponds to the situation of no subject effects. It is
seen easily that limθ→0 Cd = T′

dpr⊥([1np|P|Fd])Td , which
would indeed be precisely the information matrix for τ if we
were to ignore subject effects. Conceptually, in this case we
may think of the subjects as carbon copies of each other.

The other extreme case corresponds to θ = ∞. It is not hard
to show that

lim
θ→∞ Cd = T′

dpr⊥([1np|P|U|Fd]
)
Td,

where U = In ⊗ 1p. This limit is precisely the information ma-
trix that we would have obtained had we treated subject effects
as fixed. In this case we can view the subjects as being so differ-
ent that each subject represents its own universe rather than all
subjects representing a common population. Thus letting θ vary
between the two extremes spans the spectrum between ignoring
subject effects and using fixed subject effects.

3. PRELIMINARY TOOLS

Using a seminal contribution by Kiefer (1975), a design d∗
in �t,n,p is universally optimal in a subclass � if d∗ belongs
to the subclass, maximizes the trace of Cd over �, and has a
completely symmetric information matrix Cd∗ . A closed-form
expression for the trace of Cd may not be available, however,
making a direct maximization of the trace infeasible. To cir-
cumvent this problem, we use a strategy that has been proven
successful elsewhere. It consists of two steps: (1) For any de-
sign d in �t,n,p or in a subclass of interest, find a manageable
upper bound for the trace of Cd (which may depend on d),
and (2) find a design d∗ in the class of interest that maximizes
the upper bound, for which the upper bound coincides with the
trace of Cd∗ and for which Cd∗ is completely symmetric. If such
a design d∗ exists (and there is no guarantee that it will), then it
is universally optimal in the class under consideration. Even if
there is no such design, just finding a design that maximizes the
upper bound will help provide a lower bound for the efficiency
of any existing design.

In pursuing this strategy, we start with a lemma (see the App.
for a proof ) that provides an upper bound for Cd in the Loewner
ordering, which is obtained by ignoring period effects.

Lemma 1. Under model (2), for any crossover design d,

Cd ≤ T′
dV−1/2pr⊥(

1np
∣∣ V−1/2Fd

)
V−1/2Td, (4)

with equality if T′
dP = T′

d1np1′
p/p.

Designs that are uniform on periods, which means that all
treatments are equally replicated for each period, are examples
of designs that satisfy the condition T′

dP = T′
d1np1′

p/p.
Using Lemma 1, we now obtain a relatively simple and

achievable upper bound for Tr(Cd) as well as conditions that
imply equality. We use the following notation:

q11(d) = Tr
(
T′

dV−1/2pr⊥(1np)V−1/2Td
)
,

q12(d) = Tr
(
T′

dV−1/2pr⊥(1np)V−1/2Fd
)
, (5)

q22(d) = Tr
(
pr⊥(1t)F′

dV−1/2pr⊥(1np)V−1/2Fd
)
.
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Theorem 1. For any design d ∈ �t,n,p, we have that

Tr(Cd) ≤ q11(d) − q12(d)2

q22(d)
. (6)

Equality holds in (6) if the following conditions are true:

(a) T′
dP = T′

d1np1′
p/p.

(b) Each of the three matrices T′
dV−1/2pr⊥(1np)V−1/2Td ,

T′
dV−1/2pr⊥(1np)V−1/2Fd , and F′

dV−1/2pr⊥(1np)V−1/2Fd is
completely symmetric.

Proof. With N = t!, let S1 = It,S2, . . . ,SN denote all t × t
permutation matrices. By Lemma 1 and proposition 1 of Kunert
and Martin (2000a), we have that

N∑

i=1

S′
iCdSi ≤

(
N∑

i=1

S′
iT

′
dV−1/2pr⊥(1np)V−1/2TdSi

)

−
(

N∑

i=1

S′
iT

′
dV−1/2pr⊥(1np)V−1/2FdSi

)

×
(

N∑

i=1

S′
iF

′
dV−1/2pr⊥(1np)V−1/2FdSi

)−

×
(

N∑

i=1

S′
iF

′
dV−1/2pr⊥(1np)V−1/2TdSi

)

. (7)

Equality in (7) holds if equality holds in our Lemma 1 and in
proposition 1 of Kunert and Martin (2000a). The two conditions
in the statement of Theorem 1 ensure that these equalities hold.

The four matrices in parentheses on the right side of (7) are
all completely symmetric. Using the qij’s defined just before
Theorem 1, it follows that

N∑

i=1

S′
iT

′
dV−1/2pr⊥(1np)V−1/2TdSi = Nq11(d)

t − 1
pr⊥(1t),

N∑

i=1

S′
iT

′
dV−1/2pr⊥(1np)V−1/2FdSi = Nq12(d)

t − 1
pr⊥(1t), (8)

N∑

i=1

S′
iF

′
dV−1/2pr⊥(1np)V−1/2FdSi = Nq22(d)

t − 1
pr⊥(1t) + zJt

for some z. It now follows easily from (7) and (8) that

Tr(Cd) = 1

N
Tr

(
N∑

i=1

S′
iCdSi

)
≤ q11(d) − q12(d)2

q22(d)
.

Theorem 1 requires some additional discussion. The three
matrices in condition (b) in the statement of the theorem de-
pend on the value of θ . If the complete symmetry of these ma-
trices holds for just one particular value of θ , rather than for
a range of θ -values, then the theorem will not be very useful
for identifying optimal designs. We then might be able to find
an optimal design for a particular value of θ , but because, in
practice we will not know the value of θ , this is not very help-
ful. Fortunately, there are designs d for which the matrices in
condition (b) of Theorem 1 are completely symmetric for any
value of θ , while at the same time meeting the requirement in
condition (a).

To see this, we note that the matrix V−1/2pr⊥(1np)V−1/2,
which shows up repeatedly in condition (b), can be rewritten
using some algebra as

V−1/2pr⊥(1np)V−1/2

= 1

1 + θp
[pr⊥(1n) ⊗ pr(1p)] + pr⊥(U), (9)

where, as before, U = In ⊗ 1p. Hence if T′
dV−1/2pr⊥(1np) ×

V−1/2Td is completely symmetric for two values of θ ∈ [0,∞],
then it is completely symmetric for all values of θ in this inter-
val. A similar statement applies with one or both matrices Td
replaced by Fd . Hence, to check whether a design satisfies con-
dition (b) in Theorem 1 for all θ , we merely need to check that
it satisfies the condition for two values of θ . We select two con-
venient values of θ to do this:

θ = ∞: T′
dpr⊥(U)Td,T′

dpr⊥(U)Fd, and F′
dpr⊥(U)Fd

must all be completely symmetric

and

θ = 0: T′
dpr⊥(1np)Td,T′

dpr⊥(1np)Fd, and F′
dpr⊥(1np)Fd

must all be completely symmetric.

Adding condition (a) of Theorem 1 to the mix, it is now not
hard to see that any design with the following properties will
satisfy conditions (a) and (b) in Theorem 1 for all θ :

• The design is uniform on the periods.
• Considering the design as a block design with the subjects

as the blocks, the design is a balanced block design.
• After deleting the last period of the design and again con-

sidering the subjects as the blocks, the design is still a bal-
anced block design (but now with blocks of size p − 1).

• Throughout the design, the number of times that treat-
ment i is immediately preceded by treatment i′ in a treat-
ment sequence is independent of the choice of i and i′,
i′ �= i.

• For any treatment i, when considering the subjects that re-
ceive this treatment in the last period, the other t − 1 treat-
ments must be equally replicated over these subjects.

The totally balanced designs defined by Kunert and Stufken
(2002) satisfy all of these properties.

4. OPTIMAL AND EFFICIENT DESIGNS WHEN p ≤ t

For given t, n, and p, our main goal is to identify and charac-
terize the structure of optimal and efficient designs in the entire
class of designs �t,n,p. Of course, answers may depend on the
value of θ , and we would also like to discover how the answer
changes as θ changes.

The problem of identifying optimal designs in this entire
class turns out to be more difficult than we can handle. There-
fore, we adopt the strategy of identifying optimal designs in two
very large subclasses and developing bounds for the efficiency
of these designs in the entire class �t,n,p. The two subclasses
that we study are defined as follows:

• �1 = �1
t,n,p: The subclass of �t,n,p consisting of all de-

signs in which each treatment is replicated n/t times in the
last period.
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• �2 = �2
t,n,p: The subclass of �t,n,p consisting of all de-

signs in which each treatment is replicated n/t times in the
last period and in which no treatment is immediately pre-
ceded by itself in any of the treatment sequences of the
design.

The restrictions that define these two subclasses are used
solely for technical reasons, but they are very mild. It would
not be at all surprising that a design that is universally optimal
in �1 is also universally optimal in �t,n,p. We also note that
although it may seem redundant to study �2 if we are able to
identify optimal designs in the larger subclass �1, an appealing
property of �2 is, as we show, that it allows designs that are
universally optimal irrespective of the value of θ . In our delib-
erations, we pay special attention to the important case where
p = t.

4.1 Optimal Designs in �2
t, n, p

If p ≤ t, then using a design that assigns to each subject a
sequence of p distinct treatments is often appealing. Any such
design in which each treatment appears equally often in the last
period belongs to the class �2, which also contains many de-
signs that contain sequences that repeat treatments ( just not in
consecutive periods). The optimal designs identified in Theo-
rem 2 (see the App. for the outline of a proof ) do not repeat
treatments for a subject and are optimal irrespective of the value
of θ , including the limiting case θ = ∞, which corresponds to
fixed subject effects.

Theorem 2. For given t, n, and p, p ≤ t, a design d∗ is uni-
versally optimal for τ in �2

t,n,p under model (2), irrespective of
the value of θ , if d∗ satisfies the two conditions stated in The-
orem 1 and is equally replicated, and if each treatment appears
no more than once for each subject.

A totally balanced design for p ≤ t (Kunert and Stufken
2002) satisfies all of the conditions in Theorem 2 and is there-
fore universally optimal for τ in �2 for any θ . In particular,
when p = t, we conclude that balanced uniform designs are op-
timal.

Example 1. When t = 4, n = 12, and p = 3, design d1 is
universally optimal for τ in �2

4,12,3,

d1:
3 4 2 4 1 3 2 4 1 3 1 2
1 1 1 2 2 2 3 3 3 4 4 4
2 3 4 1 3 4 1 2 4 1 2 3

.

Example 2. When t = 5, n = 20, and p = 3, design d2 is
universally optimal for τ in �2

5,20,3,

d2:
1 2 3 4 5 4 3 2 1 5 1 3 5 2 4 2 5 3 1 4
5 1 2 3 4 5 4 3 2 1 4 1 3 5 2 4 2 5 3 1
2 3 4 5 1 3 2 1 5 4 3 5 2 4 1 5 3 1 4 2

.

4.2 Optimal and Efficient Designs in �1
t, n, p and �t, n, p

When we lift the constraint for designs in �2 that a treat-
ment sequence cannot repeat treatments in consecutive peri-
ods, totally balanced designs are generally no longer optimal.
How efficient are totally balanced designs in �1, and what is
the structure of optimal designs in this class? How does this

change when θ changes? And how efficient are these designs in
the entire class �t,n,p?

Theorem 3 (see the App. for the outline of the proof ) identi-
fies the structure of optimal designs in �1 for a given θ . More
importantly, it provides an attainable upper bound for Tr(Cd)

for any design d in the subclass. For fixed t, n, p, and θ , we

use z1 to denote the nearest integer to n(p−1)(θ2+pθ+1)

t(pθ−θ+1)2 .

Theorem 3. For given t, n, p, and θ , p ≤ t, design d̂ is univer-
sally optimal for τ in the subclass �1

t,n,p if it satisfies the two
conditions stated in Theorem 1 and is equally replicated, and if
any treatment appears no more than once for any subject, ex-
cept that z1 subjects receive the same treatment in period p as
in period p − 1. Moreover, Tr(Cd̂) = f(t,n,p,θ)(z1), where

f(t,n,p,θ)(z) = n(p − 1) + n(t − p) − 2tθz

t(1 + pθ)

− (n(p − 1)(tθ + 1) − z(tpθ − tθ + t))2

t2(1 + pθ)2
[
n(p − 1)(1 − 1

tp − tpθ+p−1
tp(1+pθ)

)
] .

As a function of θ , z1 is either constant (if p = 2) or strictly
decreasing (if p ≥ 3). Hence z1 will take values from its maxi-
mum of n(p − 1)/t when θ = 0 to its minimum of n/t(p − 1)

when θ = ∞. So for p ≥ 3, efficient designs in �1 will tend to
have more subjects that receive the same treatment in periods
p − 1 and p for small values of θ than for large values of θ . Be-
cause θ → ∞ corresponds to the fixed subject effects model,
this implies that the optimal design when assuming fixed sub-
ject effects has the smaller number of subjects that receive the
same treatment in periods p − 1 and p.

If a design d satisfies all of the conditions in Theorem 3,
except that it uses the same treatment in periods p − 1 as p
for zd subjects, say, rather than for z1 subjects, then de-
sign d has a completely symmetric information matrix with
Tr(Cd) = f(t,n,p,θ)(zd). A lower bound for the efficiency of this
design in �1 may be computed as f(t,n,p,θ)(zd)/f(t,n,p,θ)(z1). In
particular, a totally balanced design that was seen to be uni-
versally optimal for any θ in �2 has an efficiency of at least
f(t,n,p,θ)(0)/f(t,n,p,θ)(z1) in �1.

Identifying the structure of universally optimal designs be-
comes difficult when considering the entire class �t,n,p. But
Theorem 4 presents an upper bound for Tr(Cd) in this class,
which can then be used to compute lower bounds for the ef-
ficiency of any design under consideration. We do not know
whether this upper bound for Tr(Cd) can actually be attained.
(A proof of Thm. 4, along the lines of the proof for Thm. 3, can
be found in Hedayat, Stufken, and Yang 2005.)

To formulate the result, let �y� be the largest integer less than
or equal to y. We define

�(t,n,p)

=






np

⌊
n(4p2 − 4p + 1 − t)

4tp

⌋
, when t ≤ 2p − 1

np

⌊
n(p − 1)2

p(t − 1)

⌋
, when t > 2p − 1.

(10)

We also use z0 to denote the nearest integer to
n2p(p−1)θ2+[n2p(p−1)+t(p−1)�(t,n,p)]θ+t�(t,n,p)

ntp(pθ−θ+1)2 .
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Figure 1. Efficiencies of Design d1 in Ω1
t,n,p and Ω t,n,p ( sub-

class; entire class).

Theorem 4. For given t, n, p, and θ , p ≤ t, we have that for
any design d ∈ �t,n,p, Tr(Cd) ≤ g(t,n,p,θ)(z0), where

g(t,n,p,θ)(z)

= n(p − 1) + n(t − p) − 2tθz

t(1 + pθ)

− [n2p(p − 1)θ + �(t,n,p) − np(pθ − θ + 1)z]2

n3p2(p − 1)(1 + pθ)2(1 − 1
tp − tpθ+p−1

tp(1+pθ)
)

.

(11)

In particular, we can now conclude that a totally balanced
design d∗ has an efficiency of at least f(t,n,p,θ)(0)/g(t,n,p,θ)(z0)

in the entire class �t,n,p.
Figures 1 and 2 show the efficiency lower bounds for the to-

tally balanced designs d1 (in �1
4,12,3 and �4,12,3) and d2 (in

�1
5,20,3 and �5,20,3) as functions of θ . These figures clearly

show that the bounds for �1 and � are close for these de-
signs, which we know to be universally optimal in �2. That
these bounds are so close is a reflection of how close f (z1) and
g(z0) are. We also see that there is more potential for finding
better designs when θ is small than for large θ , which is con-
sistent with the earlier observation concerning the monotonic-
ity of z1 as a function of θ . The conclusions from considering
these two designs agree with those from other designs that we
considered.

Figure 2. Efficiencies of Design d2 in Ω1
t,n,p and Ω t,n,p ( sub-

class; entire class).

4.3 Efficient Designs When p = t

When p = t, optimal crossover designs have been exten-
sively studied for the model with fixed subject effects. Bal-
anced uniform designs (BUDs), which belong to the class of
totally balanced designs when p = t, have played a pivotal
role in some of these studies. Kunert (1984) and Hedayat and
Yang (2003, 2004) showed that BUDs are universally optimal
in �t,n,t when n is not too large compared with t. But Kunert
(1984) already observed that BUDs do not remain optimal if n/t
is large. In that case, more efficient designs can be obtained by
assigning to some subjects the same treatment in periods t − 1
and t. Hedayat and Yang (2004) showed that designs suggested
by Stufken (1991), which assign to n/t(t − 1) subjects the same
treatment in the last two periods, are now universally optimal
in the entire class �t,n,t. Nevertheless, under the fixed-effects
model, BUDs remain efficient in the entire class even when they
are not optimal.

Because z1 in Theorem 3 is a decreasing function of θ if
p ≥ 3, we can expect that the efficiency of BUDs is not as good
for model (2) as for the model with fixed subjects effects. The
efficiency bound is a function of θ and is largest for θ = ∞
(which corresponds to the fixed-effects model) and smallest for
θ = 0 (which assumes that subjects are carbon copies of each
other). But how small can it get, and how does it change with θ?
Should we consider alternative designs?

The efficiency bound for a BUD can be computed as
f(t,n,t,θ)(0)/g(t,n,t,θ)(z0) in the entire class. Figure 3 provides
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Figure 3. Efficiencies of Balanced Uniform Design in the Entire Class
( 3; 4; 5; 6).

a graphical presentation of the results of these computations for
t = 3 through 6 and n = 2t as a function of θ . The efficiencies
are not very good for θ near 0, especially for smaller t, but
become quite acceptable for most purposes when θ increases.
A similar graph for n = 100t would look virtually the same as
Figure 3.

We now take a closer look at a particular case: t = p = 3 and
n = 36. Typically, we will not know θ , so that we cannot com-
pute z1 of Theorem 3. (We might have some idea about θ from
past experience and could base our choice on that.) But, based
on this theorem, we know that the value of z1 for this particu-
lar case will be between 6 and 24. Therefore, we compare five
designs, all of which use the following two smaller designs as
building blocks:

a1:
1 2 3 1 2 3
3 1 2 2 3 1
2 3 1 3 1 2

and a2:
1 2 3 1 2 3
3 1 2 2 3 1
3 1 2 2 3 1

.

For i = 3–7, let design di be obtained by using each sequence
in a1 for 9 − i subjects and each sequence in a2 for i − 3 sub-
jects. Designs d3–d7, all of which belong to �3,36,3, satisfy the
two conditions in Theorem 1 and have completely symmetric
information matrices. They assign to 0, 6, 12, 18, and 24 sub-
jects the same treatment in the last two periods. Design d3 is a
balanced uniform design, and design d4 is the universally op-
timal design for the fixed-effects model proposed by Stufken
(1991). Note that, by Theorem 3, designs d4, d5, d6, and d7

Figure 4. Efficiencies of d3–d7 in Ω t = 3, n = 36, p = 3 ( d3; d4;
d5; d6; d7).

are universally optimal in �1
t=3,n=36,p=3 when θ ≥ 23.3743,

1.2114 ≤ θ ≤ 1.5486, .3123 ≤ θ ≤ .3982, and θ ≤ .0212.
Figure 4 shows how the efficiency bounds for these five de-

signs change with θ under the random subject effects model.
As expected from the results in the previous sections, design d3
(the BUD) is dominated by design d4 (Stufken’s design) and
also by design d5.

If θ could be small (say, <1) then design d6 would be a good
choice. It has a high efficiency for small θ , and its curve does
not drop off as rapidly for larger θ as that of design d7. If θ was
expected to be larger, then designs d4 and d5 would be good
choices.

5. DISCUSSION AND FUTURE RESEARCH

We have shown that totally balanced designs are universally
optimal for treatment effects in a large class of designs, irre-
spective of the value of θ , the ratio of the subject effects vari-
ance and the error variance. This class, �2, contains many
designs that have strong practical appeal for the case p ≤ t.
Nevertheless, in the entire class of designs, or even in the sub-
class �1, totally balanced designs are not optimal, and which
design is optimal depends on the value of θ . Optimal designs
in �1 include some treatment sequences that use the same treat-
ment in period p − 1 as in period p. For example, the designs
proposed by Stufken (1991), which where shown to be uni-
versally optimal for the case of fixed subjects effects (θ = ∞)
by Hedayat and Yang (2004), generally outperform totally bal-
anced designs.
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Nevertheless, as shown by the tools provided in this article
totally balanced designs are highly efficient in most situations.
The only possible exception is for very small values of θ , when
optimal designs require more treatment sequences that repeat
a treatment in the last two periods than for larger values of θ .
This follows from Theorem 3 and the observation that z1 is a
decreasing function of θ .

Thus an important message of this article is that designs that
are “good” when subject effects are fixed are generally also
good when subject effects are random. For those who have
already used designs that are efficient under the fixed sub-
jects effects model, this message has no practical consequences.
Nevertheless, this article makes this message precise and pro-
vides tools for evaluating these and other designs under the ran-
dom subject effects model given in (1).

There are other situations in which one could study the pre-
cise implications of treating subject effects as random. This in-
cludes models in which error terms are correlated (see, e.g.,
Kunert and Martin 2000b) and the problem of comparing test
treatments to a control (see, e.g., Hedayat and Yang 2005).
It is likely that here, too, the impact of random subject effects
is limited for the design choice, but a precise analysis of this is
currently not available. Other topics requiring more considera-
tion, for both fixed and random subject effects, include identi-
fying optimal or efficient crossover designs for categorical data
and/or in the presence of covariates.

APPENDIX: PROOFS

Proof of Lemma 1

From the expression in (3), we have that

Cd = T′
dV−1/2pr⊥

(
V−1/21np

∣
∣ V−1/2Fd

)
V−1/2Td

− T′
dV−1/2pr

(
pr⊥

(
V−1/21np

∣
∣ V−1/2Fd

)
V−1/2P

)

× V−1/2Td. (A.1)

Because V−1/21np is a multiple of 1np, (4) follows immediately.
Equality holds if and only if

T′
dV−1/2pr⊥

(
V−1/21np

∣∣ V−1/2Fd
)
V−1/2P = 0. (A.2)

When T′
dP = T′

d1np1′
p/p, there are matrices A, B, and C such that

P = 1
p−1 (A+B), (1np|Fd)′B = 0, T′

dB = 0, and (V−1/21np|V−1/2 ×
Fd)C = V−1/2A (see Hedayat et al. 2005 for details). This implies that

T′
dV−1/2pr⊥

(
V−1/21np

∣
∣ V−1/2Fd

)
V−1/2P

= 1

p − 1
T′

dV−1/2pr⊥
(
V−1/21np

∣
∣ V−1/2Fd

)
V−1/2B

= 1

p − 1
T′

dB = 0. (A.3)

For i, j = 1, . . . , t, s = 1, . . . ,n, and k = 1, . . . ,p, we use the follow-
ing notation for a design d ∈ �t,n,p:

• ndis, the number of times that d assigns treatment i to subject s
• ñdis, the number of times that this happens in the first p − 1 peri-

ods
• ldik , the number of times that d assigns treatment i to period k
• mdij, the number of times in the treatment sequences of d that

treatment i is immediately preceded by treatment j
• rdi, the replication of treatment i in d
• r̃di, the replication of treatment i in the first p − 1 periods of d.

Proposition A.1. For any design d, the quantities q11(d), q12(d),
and q22(d) defined in (5) are equal to

q11(d) = np − θ

1 + pθ

t∑

i=1

n∑

s=1

n2
dis − 1

np(1 + pθ)

t∑

i=1

r2
di,

q12(d) =
t∑

i=1

mdii − θ

1 + pθ

t∑

i=1

n∑

s=1

ndis̃ndis

− 1

np(1 + pθ)

t∑

i=1

rdĩrdi, (A.4)

q22(d) = n(p − 1)(1 − 1/tp) − θ

1 + pθ

t∑

i=1

n∑

s=1

ñ2
dis

− 1

np(1 + pθ)

t∑

i=1

r̃2
di.

Proof. Using the expressions in (5) and rewriting the expression
in (9) as

V−1/2pr⊥(1np)V−1/2

= In ⊗
(

Ip − θ

1 + pθ
Jp

)
− 1

np(1 + pθ)
Jnp, (A.5)

the result follows after lengthy but straightforward algebra.

Proof of Theorem 2

Let d∗ be a design as in the statement of the theorem. The result fol-
lows if Cd∗ is completely symmetric and its trace maximizes Tr(Cd)

over all designs in �2
t,n,p. Because d∗ satisfies the two conditions in

Theorem 1, by Lemma 1 and Theorem 1, Cd∗ is completely symmet-
ric, and its trace is equal to the upper bound in (6). Hence, using Propo-
sition A.1, we merely need to show that d∗ maximizes

np − θ

1 + pθ

t∑

i=1

n∑

s=1

n2
dis − 1

np(1 + pθ)

t∑

i=1

r2
di

−
(

θ

1 + pθ

t∑

i=1

n∑

s=1

ndis̃ndis + 1

np(1 + pθ)

t∑

i=1

rdĩrdi

)2

×
{

n(p − 1)(1 − 1/tp)

− θ

1 + pθ

t∑

i=1

n∑

s=1

ñ2
dis − 1

np(1 + pθ)

t∑

i=1

r̃2
di

}−1

(A.6)

over all d ∈ �2
t,n,p. It is clear that (A.6) is maximized if

t∑

i=1

n∑

s=1

n2
dis,

t∑

i=1

r2
di,

t∑

i=1

n∑

s=1

ñ2
dis,

t∑

i=1

r̃2
di,

t∑

i=1

n∑

s=1

ndis̃ndis, and
t∑

i=1

rdĩrdi

are all minimized. It can be verified that d∗ minimizes these terms;
thus the conclusion follows.

Proof of Theorem 3

Let d̂ be a design as in the statement of the theorem. That Cd̂ is
completely symmetric and that its trace is equal to the upper bound
in (6) follows as in the previous proof. Based on Proposition A.1, it
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remains to be shown that d̂ maximizes

np − θ

1 + pθ

t∑

i=1

n∑

s=1

n2
dis − 1

np(1 + pθ)

t∑

i=1

r2
di

−
( t∑

i=1

mdii − θ

1 + pθ

t∑

i=1

n∑

s=1

ndis̃ndis

− 1

np(1 + pθ)

t∑

i=1

rdĩrdi

)2

×
{

n(p − 1)(1 − 1/tp) − θ

1 + pθ

t∑

i=1

n∑

s=1

ñ2
dis

− 1

np(1 + pθ)

t∑

i=1

r̃2
di

}−1

over �1
t,n,p. Using the definition of d̂, it is easy to verify that

∑t
i=1

∑n
s=1 n2

d̂is
= np + 2z1,

∑t
i=1 r2

d̂i
= n2p2/t,

∑t
i=1 md̂ii = z1,

∑t
i=1

∑n
s=1 nd̂is̃nd̂is = n(p − 1) + z1,

∑t
i=1 rd̂ĩrd̂i = n2p(p − 1)/t,

∑t
i=1

∑n
s=1 ñ2

d̂is
= n(p − 1), and

∑t
i=1 r̃2

d̂i
= n2(p − 1)2/t. By sim-

ple calculation, we can now verify that Tr(Cd̂) = f(t,n,p,θ)(z1). Thus
the result follows if we can show that Tr(Cd) ≤ f(t,n,p,θ)(z1) for any
design d ∈ �1

t,n,p. This can be shown by distinguishing between the
three cases xd ≤ n(p − 1)/t, n(p − 1)/t < xd < n, and xd ≥ n (see
Hedayat et al. 2005 for details).

[Received December 2004. Revised September 2005.]
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