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Hedayat and Yang earlier proved that balanced uniform designs in the entire class of crossover designs based on t treatments, n subjects,
and p D t periods are universally optimal when n · t .t ¡ 1/=2. Surprisingly, in the class of crossover designs with t treatments and p D t

periods, a balanced uniform design may not be universally optimal if the number of subjects exceeds t .t ¡ 1/=2. This article, among other
results, shows that (a) a balanced uniform design is universally optimal in the entire class of crossover designs with p D t as long as n is not
greater than t .t C 2/=2 and 3 · t · 12; (b) a balanced uniform design with n D 2t , t ¸ 3, and p D t is universally optimal in the entire class
of crossover designs with n D 2t and p D t ; and (c) for the case where p · t , the design suggested by Stufken is universally optimal, thus
completing Kushner’s result that a Stufken design is universally optimal if n is divisible by t .p ¡ 1/.
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1. INTRODUCTION

In many scienti� c studies, each subject is used in p ¸ 2 occa-
sions or periods for the purpose of evaluatingand studying t ¸ 2
treatments. In these types of studies, each subject is exposed to
a sequence of p treatments. Such a design is called a crossover
design. We denote the class of all such designs based on t treat-
ments and n subjects each used in p periods by Ät;n;p . The
study of optimality and ef� ciency of these designs has a history
of at least 27 years; for a sample of results in this area, see the
works by Hedayat and Afsarinejad (1975, 1978), Cheng and
Wu (1980), Kunert (1983, 1984), Jones and Kenward (1989),
Stufken (1991), Hedayat and Zhao (1990), Carrière and Rein-
sel (1993), Matthews (1994), Kushner (1998), Afsarinejad and
Hedayat (2002), Kunert and Stufken (2002), Hedayat and Yang
(2003), and Hedayat and Stufken (2003). See the excellent ex-
pository review article by Stufken (1996) for additional refer-
ences. Throughout this article, a design is called “universally
optimal” if it is universally optimal for estimating contrasts in
direct treatment effects.

A design d 2 Ät ;n;p is said to be a balanced uniform de-
sign if in its n sequences (1) no treatment is immediately pre-
ceded by itself, and each treatment is immediately followed by
each other treatment equally often; (2) each treatment appears
equally often for each subject; and (3) each treatment appears
equally often in each period. A necessary condition for the ex-
istence of a balanced uniform design in Ät ;n;t is that n D ¸t for
some positive integer ¸. According to Higham (1998), the class
Ät ;n;t contains a balanced uniform design when either n is an
even multiple of t or t can be written as a product of two pos-
itive integers each larger than 1. Under the traditional model
(see Sec. 2), Street, Eccleston, and Wilson (1990) showed by
a computer search that a balanced uniform design in Ä3;6;3

is A-optimal for estimating direct treatment effects. However,
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until now it was unknown whether a balanced uniform design
is universally optimal in Ä3;6;3. In earlier work (Hedayat and
Yang 2003)we generalizeda result of Kunert (1984)and proved
that when p D t , a balanced uniform design is universally opti-
mal in Ät ;n;p when n · t .t ¡ 1/=2. We also observed that the
preceding result is of no help in identifying a universally op-
timal design in Ä3;6;3, Ä4;8;4, and Ä4;12;4, although balanced
uniform designs exist in those classes.

Kushner (1998) provided necessary and suf� cient conditions
for a universally optimal design under approximate theory, and
showed that some of those universally optimal deigns under ap-
proximate theory are also universally optimal under exact the-
ory. But balanceduniform designs are not covered by Kushner’s
results.

For p · t , our knowledge about optimal designs for direct
treatment effects in Ät ;n;p was rather limited before Stufken
(1991) proved that a particular design (described in Sec. 4)
not necessarily a balanced uniform design, is universally op-
timal for direct treatment effects within the subset of designs
in Ät ;n;p, whose � rst p ¡ 1 periods form a balanced incom-
plete blocks (BIB) design with block size p ¡ 1. Later, Kushner
(1998) proved that when n is divisible by t .p ¡ 1/, a Stufken
design is universally optimal in the entire class Ät ;n;p. Note
that when t D p, the design is a balanced uniform design when
n · .t2 ¡ t/=2, but not when n > .t2 ¡ t/=2.

Unfortunately, a balanced uniform design with p D t may
not be universally optimal in Ät ;n;p when n > t .t ¡ 1/=2. As
an example, there is a balanceduniform design in Ä3;36;3 that is
not universally optimal. Therefore, it is of both theoretical and
practical interest to � nd out the universal optimality status of a
balanced uniform design when the number of subjects is larger
than t .t ¡ 1/=2. We prove that, fortunately, a balanced uniform
design in Ät ;n;t is universally optimal as long as the number
of subjects is not greater than t .t C 2/=2 and 3 · t · 12. Thus,
for example, a balanced uniform design in Ä4;12;4 is universally
optimal. We also show that the design by Stufken (1991), when
it exists, is universally optimal in the entire class Ät;n;p .

2. RESPONSE MODEL

Although several statistical models have been introduced in
the literature for the purpose of modeling the data collected
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under crossover designs, in this article we use the most fre-
quently used model in the literature, namely the traditional ho-
moscedastic, additive, � xed-effects model introduced formally
by Hedayat and Afsarinejad (1975),

Ydks D ¹ C ®k C ¯s C ¿d.k;s/ C ½d.k¡1;s/ C eks;

k D 1; : : : ;p; s D 1; : : : ; n; (1)

where Ydks denotes the response variable observed on subject s

in period k to which treatment d.k; s/ was assigned by design d .
In this model ¹ is an overall mean, ®k is the effect due to pe-
riod k, ¯s is the effect due to subject s, ¿d.k;s/ is the direct effect
for treatment d.k; s/, and ½d.k¡1;s/ is the carryover or residual
effect of treatment d.k ¡ 1; s/ on the response observed on sub-
ject s in period k. We take ½d.0;s/ D 0, meaning that there is
no carryover effect for a response in the � rst period, and the
eks’s are uncorrelated normally distributed error variables with
mean 0 and common variance ¾ 2 .

In model (1) we assume that the subject effects are � xed. The
main reason for this is that at the design stage we want a design
that provides optimal within-subject information. If there is rel-
atively large variability between subjects and we have only a
small number of subjects, then the within-subject information
is the primary information that we will get. A good family of
examples is phase II clinical trials for studying pharmacokinetic
parameters. However, we shouldmention that when the subjects
are randomly selected from a large population of interest, it is
common to consider subject effects as random instead of � xed
when analyzing the data. Under these circumstances, it is then
natural to explore the optimality and the ef� ciency status of the
optimal crossover designs under random effects for the subjects
in the model. Clearly, the relative advantagesof the latter analy-
sis depend on the relationship between the error variance and
the variance of random subject effects. We conjecture that the
design that is optimal under the � xed subject effect model will
be ef� cient under the random subject effect model.

Throughout the article, for each design d we adopt the no-
tation ndis , endis , ldik , mdij , rdi , and erdi to denote the number
of times that treatment i is assigned to subject s, the number of
times that this happens in the � rst p ¡ 1 periods, the number
of times that treatment i is assigned to period k, the number of
times that treatment i is immediately preceded by treatment j ,
the total replication of treatment i in its n sequences, and the
total replicationof treatment i limited to the � rst p ¡ 1 periods.
We further de� ne zd to be the sum over all i and s of all positive
xdis D ndis ¡ 1.

In matrix notation, we can write model (1) as

Yd D ¹1 C P® C U¯ C Td¿ d C Fd½d C e; (2)

where Yd D .Yd11; Yd21; : : : ; Ydpn/0, ® D .®1; : : : ; ®p/0 , ¯ D
.¯1; : : : ; ¯n/0, ¿ d D .¿1; : : : ; ¿t /

0, ½d D .½1; : : : ; ½t/
0, e D .e11;

²21; : : : ; ²pn/0, P D 1n Ip , U D In 1p , Td D .T0
d1; : : : ;T0

dn/0,
and Fd D .F0

d1; : : : ;F0
dn/0. Here Tds denotes for the p £ t

period-treatment incidence matrix for subject s under design d

and Fds D LTds with the p £ p matrix L de� ned as
³

01£.p¡1/ 0

I.p¡1/£.p¡1/ 0.p¡1/£1

´
:

The information matrix for direct treatment effects, Cd , is
equal to

Cd D T0
d pr?.[PjUjFd]/Td ;

where pr?.X/ D I ¡ X.X0X/¡X0 . From the proof of proposi-
tion 4.1 of Kunert (1984), we have

Cd · T0
d pr?.U/Td ¡ T0

d pr?.U/Fd

£
¡
F0

d pr?.U/Fd

¢¡
F0

d pr?.U/Td : (3)

In the context of matrices, if A and B are two matrices, we
say that A · B if B ¡ A is a nonnegative de� nite matrix.
The diagonal elements for T0

d pr?.U/Td , T0
d pr?.U/Fd , and

F0
d pr?.U/Fd at position .i; i/ are rdi ¡ 1

p

Pn
sD1 n2

dis , mdii ¡
1
p

Pn
sD1 ndisendis , anderdi ¡ 1

p

Pn
sD1 en2

dis . The off-diagonal ele-

ments for T0
d pr?.U/Fd and F0

d pr?.U/Fd at position .i; j/ are
mdij ¡ 1

p

Pn
sD1 ndisendj s and ¡ 1

p

Pn
sD1endisendj s .

As we show in Section 3, inequality (3) can help us � nd the
achievable upper bound of Tr.Cd/. As a result, we will be able
to identify the universally optimal designs.

3. OPTIMALITY OF BALANCED UNIFORM DESIGN
WHEN p D t

Let d¤ be a balanced uniform design in Ät ;n;t . Under
model (1), from theorem 4.3 of Cheng and Wu (1980), Cd¤ is a
completely symmetric matrix. Therefore, by an optimality tool
discovered by Kiefer (1975), if we can show that Tr.Cd¤/ is
maximized in Ät ;n;t , then we can conclude that design d¤ is
universally optimal in Ät ;n;t . Indeed, we can show that the trace
of Cd¤ is maximum as long as n · t .t C 2/=2 and 3 · t · 12.

Before presenting our results, we need the following use-
ful lemmas. The � rst lemma can be derived by using a similar
methodologyas in lemma 5.1 of Kushner (1997).

Lemma 1. For any design d 2 Ät ;n;p, we have the inequality:

Tr.Cd/ · q11.d/ ¡
q2

12.d/

q22.d/
:

Here,

q11.d/ D np ¡ 1
p

nX

sD1

tX

iD1

n2
dis ;

q12.d/ D
tX

iD1

mdii ¡ 1
p

nX

sD1

tX

iD1

ndisendis ;

and

q22.d/ D n.p ¡ 1/

³
1 ¡ 1

tp

´
¡ 1

p

nX

sD1

tX

iD1

en2
dis :

Proof. Let S1 D It ;S2; : : : ; SN ; where N D t!, is the set of
all t £ t permutation matrices representing the permutations of
f1;2; : : : ; tg. Also let Ai D pr?.U/TdSi and Di D pr?.U/FdSi ,
1 · i · N . It is easy to check that A0

iAi D S0
i.T

0
d pr?.U/Td /Si ,

A0
iDi D S0

i.T
0
d pr?.U/Fd/Si , D0

iDi D S0
i.F

0
d pr?.U/Fd/Si , and

S0
iSi D I. Then, by inequality (3) and proposition 1 of Kunert
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and Martin (2000), which generalized lemma 5.1 of Kushner
(1997), we have

NX

iD1

S0
iCd Si ·

NX

iD1

S0
i

¡
T0

d pr?.U/Td ¡ T0
d pr?.U/Fd

£
¡
F0

d pr?.U/Fd

¢¡
F0

d pr?.U/Td

¢
Si

·
NX

iD1

S0
i

¡
T0

d pr?.U/Td

¢
Si

¡

Á
NX

iD1

S0
i

¡
T0

d pr?.U/Fd

¢
Si

!

£

Á
NX

iD1

S0
i

¡
F0

d pr?.U/Fd

¢
Si

!¡

£

Á
NX

iD1

S0
i

¡
F0

d pr?.U/Td

¢
Si

!

: (4)

Therefore, using the de� nition of Si , we observe that

NX

iD1

S0
i

¡
T0

d pr?.U/Td

¢
Si ;

NX

iD1

S0
i

¡
T0

d pr?.U/Fd

¢
Si ;

and

NX

iD1

S0
i

¡
F0

d pr?.U/Fd

¢
Si

are completely symmetric matrices. Now, by direct calcula-
tions, we can obtain the stated result,that is,

Tr.Cd/ · q11.d/ ¡
q2

12.d/

q22.d/
:

The following lemma follows directly from the proof of the-
orem 1 of Hedayat and Yang (2003).

Lemma 2. Suppose that d 2 Ät ;n;t and t > 2. If Tr.Cd / >

Tr.Cd¤/, then 0 < zd < 2n
t .t¡1/ , where zd is de� ned above (2).

Lemma 3. Suppose that d 2 Ät ;n;t , t > 2 and n · t .t ¡ 1/. If
Tr.Cd / > Tr.Cd¤/, then d is uniform on all subjects except one
in which the treatments in the � rst p ¡ 1 periods are distinct
and the treatments in both the .p ¡ 1/st and pth periods are
identical.

Proof. Lemma 2 implies that zd D 1. Consequently,d is uni-
form on all subjects except one, in which only one treatment,
say 1, appears twice and the remaining treatments appear at
most once. Suppose that the last two periods of that subject
do not both contain treatment 1; then two possibilities can oc-
cur for the subject in which treatment 1 appears twice: (a) the
treatment in the pth period is not 1, or (b) the treatment in the
pth period is 1, but the treatment in the .p ¡1/st period is not 1.

For case (a), we have q11.d/ D n.t ¡ 1/ ¡ 2
t , jq12.d/j ¸

.n¡1/.t¡1/C1
t , and q22.d/ D n.t ¡ 1/.1 ¡ 1

t ¡ 1
t2 / ¡ 2

t , where

q11.d/, q12.d/, and q22.d/ are as de� ned in Lemma 1. Apply-
ing Lemma 1 and noting that Tr.Cd¤/ D n.t ¡ 1/ ¡ n.t¡1/

t2¡t¡1 , we
have

Tr.Cd¤/ ¡ Tr.Cd /

¸ n.t ¡ 1/ ¡
n.t ¡ 1/

t2 ¡ t ¡ 1
¡ n.t ¡ 1/

C 2
t

C [..n ¡ 1/.t ¡ 1/ C 1/=t]2

n.t ¡ 1/.1 ¡ 1=t ¡ 1=t2/ ¡ 2=t

¸ 2
t

C [.n ¡ 1/.t ¡ 1/ C 1]2

n.t ¡ 1/.t2 ¡ t ¡ 1/
¡

n.t ¡ 1/

t2 ¡ t ¡ 1

¸
2
t

C
2.n ¡ 1/

n.t2 ¡ t ¡ 1/
C

.n ¡ 1/2.t ¡ 1/

n.t2 ¡ t ¡ 1/
¡

n.t ¡ 1/

t2 ¡ t ¡ 1

D 2.n ¡ 1/.t ¡ 1/ C t .t ¡ 1/ ¡ 2
nt .t2 ¡ t ¡ 1/

> 0:

Thus we obtain Tr.Cd/ · Tr.Cd¤/, a contradiction.
For case (b), we have q11.d/ D n.t ¡ 1/ ¡ 2

t , jq12.d/j D
n.t¡1/C1

t , and q22.d/ D n.t ¡ 1/.1 ¡ 1
t

¡ 1
t2 /. By a similar strat-

egy as for (a), we can again discover that Tr.Cd / · Tr.Cd¤/,
a contradiction.

Theorem 1. A balanced uniform design in Ät ;n;t is univer-
sally optimal for any 4 · t · 12 when n · t .t C 2/=2.

Proof. The t and n in the theorem satisfy the condition
n · t .t ¡ 1/ in Lemma 3. Therefore, if any design d in this
class satis� es Tr.Cd/ > Tr.Cd¤/, then d must satisfy the con-
dition stated in Lemma 3. Without loss of generality, let treat-
ment 1 appear in the .p ¡ 1/st and pth periods for the � rst
subject in d . Let li denote the number of times that treatment
i; i D 1; : : : ; t; appears in the last period of any subject except
for the � rst subject. Thus,

Pt
iD1 li D n ¡ 1.

Let S1 D It ;S2; : : : ; SN ; with N D .t ¡ 1/!, be the set of
all t £ t permutation matrices representing the permutations
of f1;2; : : :; tg leaving 1 unchanged. By a similar methodol-
ogy as in the proof of Lemma 1, we have the same inequal-
ity (4), except the de� nitions of N and Si ; i D 1; : : : ;N , are
different. Then, by utilizing the de� nition of Si , we observe
that

PN
iD1 S0

i.T
0
d pr?.U/Td /Si ,

PN
iD1 S0

i.T
0
d pr?.U/Fd/Si , andPN

iD1 S0
i.F

0
d pr?.U/Fd /Si have the following form:

³
a f J1£.t¡1/

cJ.t¡1/£1 .b ¡ e/I.t¡1/£.t¡1/ C eJ.t¡1/£.t¡1/

´
;

with different values for a , b, c, e, and f for these three
matrices. Note that c D f for

PN
iD1 S0

i.T
0
d pr?.U/Td/Si andPN

iD1 S0
i.F

0
d pr?.U/Fd /Si . It can be shown that forPN

iD1 S0
i.T

0
d pr?.U/Td/Si ,

a D N

Á

rd1 ¡ 1
p

nX

sD1

n2
d1s

!

D N

³
n C 1 ¡

n C 3
t

´

and

b D
N

t ¡ 1

tX

iD2

Á

rdi ¡ 1
p

nX

sD1

n2
dis

!

D
N

t

¡
n.t ¡ 1/ ¡ 1

¢
I
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for
PN

iD1 S0
i.T

0
d pr?.U/Fd/Si ,

a D N

Á
md11 ¡ 1

p

nX

sD1

nd1send1s

!
D N

³
1 ¡

n C 1 ¡ l1

t

´

and

b D
N

t ¡ 1

tX

iD2

Á

mdii ¡ 1
p

nX

sD1

ndisendis

!

D ¡
N.nt ¡ 2n C l1/

t .t ¡ 1/
I

and for
PN

iD1 S0
i.F

0
d pr?.U/Fd/Si ,

a D N

Á
erd1 ¡ 1

p

nX

sD1

en 2
d1s

!

D N.n ¡ l1/

³
1 ¡ 1

t

´
;

b D
N

t ¡ 1

tX

iD2

Á
erdi ¡ 1

p

nX

sD1

en 2
dis

!

D
N.nt ¡ 2n C l1/

t ¡ 1

³
1 ¡ 1

t

´
;

c D
N

t ¡ 1

tX

iD2

Á

¡ 1
p

nX

sD1

end1sendis

!

D ¡
N.n ¡ l1/.t ¡ 2/

t .t ¡ 1/
;

and

e D
N

.t ¡ 1/.t ¡ 2/

tX

iD2

tX

j 6Di;j 6D1

Á

¡ 1
p

nX

sD1

endisendjs

!

D ¡
N.nt ¡ 3n C 2l1/

t .t ¡ 1/
:

Let L be the following 1 £ t vector:
³

.n ¡ l1/.t ¡ 2/
p

.t ¡ 1/.n.t ¡ 3/ C 2l1/
;

r
n.t ¡ 3/ C 2l1

t ¡ 1
; : : : ;

r
n.t ¡ 3/ C 2l1

t ¡ 1

´
:

Then we have
NX

iD1

S0
i

¡
F0

d pr?.U/Fd

¢
Si D NB ¡

N

t
L0L · NB;

where B is a t £ t diagonal matrix with diagonal elements

.n ¡ l1/
n.t3 ¡ 4t2 C 3t C 1/ C .t2 ¡ 2/l1

t .t ¡ 1/[n.t ¡ 3/ C 2l1]
;

n.t2 ¡ 2t ¡ 1/ C .t C 1/l1

t .t ¡ 1/
; : : : ;

n.t2 ¡ 2t ¡ 1/ C .t C 1/l1

t .t ¡ 1/
:

By the facts that
PN

iD1 S0
i.F

0
d pr?.U/Fd/Si · NB and

10 PN
iD1 S0

i.T
0
d pr?.U/Fd/Si D 0, we derive the following in-

equality from inequality (4):

N Tr.Cd/ · Tr

Á
NX

iD1

S0
i

¡
T0

d pr?.U/Td

¢
Si

!

¡ Tr

"Á
NX

iD1

S0
i

¡
T0

d pr?.U/Fd

¢
Si

!

.NB/¡

Á
NX

iD1

S0
i

¡
F0

d pr?.U/Td

¢
Si

!#

· N

µ
n.t ¡ 1/ ¡ 2

t

¶

¡ N
[n.t ¡ 3/ C 2l1].t ¡ n C l1 ¡ 1/2

.n ¡ l1/[n.t3 ¡ 4t2 C 3t C 1/ C .t2 ¡ 2/l1]

¡ N
.nt ¡ 2n C l1/2

.t ¡ 1/[n.t2 ¡ 2t ¡ 1/ C .t C 1/l1]
: (5)

Because 0 · l1 · n ¡ 1, simple counting indicates that we have
1,216 different combinations for .t; n; l1/. We wrote a sim-
ple computer program to conclude that for these 1,216 cases,
Tr.Cd/ < Tr.Cd¤/ D n.t ¡ 1/ ¡ n.t¡1/

t2¡t¡1
. Now we can use the

tool discovered by Kiefer (1975) and reach the conclusion.

From Theorem 1, we know that a balanced uniform design
in Ä4;8;4 is universally optimal. And from our earlier work
(Hedayat and Yang 2003), we know that a balanced uniform
design in Ät;2t;t is universally optimal when t ¸ 5, so Ä3;6;3 is
the only class of designs among Ät ;2t ;t for t ¸ 3 for which we
do not know whether a balanced uniform design is universally
optimal. The following theorem will settle this question.

Theorem 2. A balanced uniform design, d¤, in Ä3;6;3 is uni-
versally optimal.

Proof. Suppose that design d in Ä3;6;3 satis� es Tr.Cd/ >

Tr.Cd¤/. By Lemma 3, d must be uniform on all subjects except
one, say the � rst subject, in which the two treatments in the � rst
two periods are distinct and the treatment in the third period is
identical to the treatment in the second period. Without loss of
generality, let the sequence of treatments in the � rst subject be
.2;1; 1/0. We show that, contrary to the assumption, Tr.Cd/ <

Tr.Cd¤/.
Note that inequality (5) is still valid for the case where

t D 3 and n D 6. By a direct calculation, we can � nd that
Tr.Cd/ > Tr.Cd¤ / implies l1 D 0, where l1 denotes the num-
ber of times in which treatment 1 appears in the last period
of any subject except the � rst subject. We now consider the
structure of the sequences in d . The sequence .2; 1;1/0 ap-
pears only once in d , and no other sequence in d can terminate
with treatment 1. For the remaining four sequences in d , sup-
pose that .1;2; 3/0 appears x1 times, .1;3; 2/0 appears x2 times,
.2;1; 3/0 appears x3 times and .3; 1;2/0 appears x4 times with
x1 C x2 C x3 C x4 D 5. Using the right-hand side in inequal-
ity (3) and noting that for d , Tr.T0

d pr?.U/Td/ D 34=3,

T0
d pr?.U/Fd D

0

B@

¡ 4
3

1¡x1C2x3
3

2x4¡x2
3

x1 C x4 ¡ 2 ¡ 1Cx1Cx3
3

2x2¡x4
3

x2 C x3 ¡ 5
3

2x1¡x3
3 ¡ x2Cx4

3

1

CA ;

and

F0
d pr?.U/Fd D

0

B@

4 ¡ 1Cx1Cx3
3 ¡ x2Cx4

3

¡ 1Cx1Cx3
3

2.1Cx1Cx3/
3 0

¡ x2Cx4
3 0 2.x2Cx4/

3

1

CA ;

we can directly calculate an upper bound for Tr.Cd/ as a func-
tion of x1, x2, x3, and x4. Because x1 C x2 C x3 C x4 D 5, we
have in a total of 56 combinations of .x1; x2; x3; x4/ to con-
sider. By applying inequality (3) and writing a simple computer
program, we can directly verify that Tr.Cd/ < Tr.Cd¤ / for all
these 56 combinations, a contradiction.
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4. UNIVERSAL OPTIMALITY WHEN THE NUMBER
OF PERIODS IS NO MORE THAN THE NUMBER

OF TREATMENTS

Unfortunately, not all balanced uniform designs are univer-
sally optimal. For example, Kunert (1984) showed that if t is
� xed and n is allowed to increase, then some balanced uniform
designs are not universally optimal in Ät ;n;t . To cite one such
example, consider the designs in Ä3;36;3. This class contains a
balanceduniform design that is not universallyoptimal. Instead,
Kushner (1998) has shown that the design by Stufken (1991) is
universally optimal in this class. Although both designs have
completely symmetric information matrices, Stufken’s (1991)
design has a trace of 58, whereas the balanced uniform design
has a trace of 57.6. Therefore, an important question in this area
is what design, if any, is universally optimal if a balanced uni-
form design is not optimal or does not exist. In this section we
prove that the class of designs of Stufken (1991), which are not
balanced, are universally optimal in Ät;n;p . Our result extends
a result of Stufken (1991), who proved the universal optimality
of his designs in a subclass of designs whose � rst p ¡ 1 peri-
ods form BIB designs with block size p ¡ 1. Our result also
extends a result of Kushner (1998) showing that if n is divisible
by t .p ¡ 1/, then the design of Stufken is universally optimal
in Ät ;n;p. We � rst introduce the design suggested by Stufken.

Let ±¤ denote the nearest integer to n.pt¡t¡1/
t .p¡1/ . The design of

Stufken satis� es the following conditions:

a. The design is uniform on the periods.
b. When restricted to the � rst p ¡ 1 periods, the collectionof

truncated sequences form a BIB design with block size p ¡ 1.
c. In the last period, ±¤ subjects receive a treatment that was

not assigned to them in any of the previous periods, whereas
other subjects receive the same treatment as in period p ¡ 1.

d. For i 6D j , mij ¡
Pn

sD1 ndisendj s=p is independent of
i and j .

e. For i 6D j ,
Pn

sD1 ndisndj s is independentof i and j .

Now we are ready to present our result concerning the design
of Stufken.

Theorem 3. The design of Stufken (1991), when it exists, is
universally optimal in Ät;n;p .

Proof. Let d¤ be the design of Stufken.From Stufken (1991),
Cd¤ is a completely symmetric matrix. Thus we need only
show that Tr.Cd¤/ D maxd2Ät;n;p Tr.Cd/. From (4.1) in Stufken
(1991),

Tr.Cd¤/

D n.p ¡ 1/ ¡ 2.n ¡ ±¤/

p
¡

t .p ¡ 1/±¤2

np.pt ¡ t ¡ 1/

D max
±

³
n.p ¡ 1/ ¡ 2.n ¡ ±/

p
¡

t .p ¡ 1/±2

np.pt ¡ t ¡ 1/

´
; (6)

where ± is a nonnegative integer. Because
Pn

sD1

Pt
iD1 ndis D

np, at most np of the ndis ’s are greater than 0 and others are 0.
Without loss of generality, we can rename these np possible
positive ndis ’s as a1; : : : ; anp . Then, we have

Pnp
jD1 aj D np

and
Pn

sD1

Pt
iD1 n2

dis D
Pnp

jD1 a2
j . Therefore, zd will be the sum

of all positive aj ¡ 1, and thus ¡zd will be the sum of all nega-
tive aj ¡1, which means that zd of aj ’s are 0 among a1; : : : ; anp

and the others must be greater than 0. Thus we can assume
that

Pn
sD1

Pt
iD1 n2

dis D
Pnp¡zd

jD1 a2
j subject to

Pnp¡zd

j D1 aj D np,
where aj ¸ 1. It can be veri� ed that the minimum value ofPnp¡zd

j D1 a2
j is

¡.np ¡ zd /

µ
np

np ¡ zd

¶2

C .np C zd/

µ
np

np ¡ zd

¶
C np: (7)

Here [ np
np¡zd

] refers to the greatest integer that is less than

or equal to np
np¡zd

. When zd < np
2 , we have [ np

np¡zd
] D 1, and

therefore min
Pn

sD1

Pt
iD1 n2

dis D np C 2zd . When zd ¸ np
2 , no-

tice that .np ¡ zd/[ np
np¡zd

] · np and [ np
np¡zd

] ¸ 2, and thus
min

Pn
sD1

Pt
iD1 n2

dis ¸ 2np.
By Lemma 1, we have Tr.Cd / · q11.d/ for any design d .

We can verify that when zd ¸ n, Tr.Cd / · Tr.Cd¤/. In fact,
when zd ¸ np

2 , q11.d/ D np ¡ 1
p

Pn
sD1

Pt
iD1 n2

dis · np ¡ 2n.
On the other hand, by letting ± D 0 in (6), we observe that
Tr.Cd¤/ ¸ n.p ¡ 1/ ¡ 2n

p , so Tr.Cd/ · Tr.Cd¤/. When n ·
zd <

np
2 , q11.d/ · n.p ¡ 1/ ¡ 2zd

p , and then Tr.Cd/ · Tr.Cd¤/.
Now we assume that zd < n. We have q11.d/ · n.p ¡ 1/ ¡

2zd
p , and it is easy to verify that maximum value of q22.d/ is

n.p ¡ 1/
tp¡t¡1

tp . For q2
12.d/, we notice that

Pn
sD1

Pt
iD1 ndis £

endis D
Pn

sD1

Pt
iD1 n2

dis ¡
Pn

sD1 n¤
d .s/, where n¤

d.s/ D ndis if
treatment i is assigned to subject s in the last period. Similar
to the argument that we made in the previous two paragraphs,
there are only np ¡ zd of ndis ’s that are positive, and we can re-
name these np¡zd positivendis ’s as a1; : : : ; anp¡zd . Therefore,Pn

sD1

Pt
iD1 n2

dis ¡
Pn

sD1 n¤
d.s/ is equivalent to

Pnp¡zd

jD1 a2
j ¡

Pn
j D1 aj subject to

Pnp¡zd

j D1 aj D np, where aj ¸ 1 is an in-
teger, j D 1; : : : ; np ¡ zd . We claim that the minimum value
of

Pnp¡zd

jD1 a2
j ¡

Pn
jD1 aj is reached when aj is either 1 or 2,

j D 1; : : : ; n and the remaining aj ’s are all 1. Otherwise, there
are only two competing alternatives:

1. Suppose some of aj ’s are not 1 when j D n C 1; : : : ;

np ¡ zd , say, anC1 > 1. Then one or more of the aj ’s
must be 1 when j D 1; : : : ; n, say, a1 D 1, becausePnp¡zd

jD1 aj D np. By exchanging the values of anC1 and
a1 and keeping the others unchanged, we can obtain a
smaller value for

Pnp¡zd

jD1 a2
j ¡

Pn
jD1 aj .

2. Suppose that all of the aj ’s are 1 when j D n C 1; : : : ;

np ¡ zd and that there exists an aj that is not 1 or 2 when
j D 1; : : : ; n. Then one of the aj ’s (j D 1; : : : ; n) must
be 1, because

Pnp¡zd

jD1 aj D np. Without loss of general-
ity, we assume that a1 D 1 and a2 D · > 2. By changing
a1 to 2 and a2 to · ¡ 1 and keeping the remaining ai’s un-
changed, we can easily verify that the latter case produces
a smaller value for

Pnp¡zd

jD1 a2
j ¡

Pn
jD1 aj .

So the minimum value of
Pnp¡zd

jD1 a2
j ¡

Pn
jD1 aj is np ¡

nCzd . On the other hand,
Pt

iD1 mdii · zd , and thus 1
p

Pn
sD1 £

Pt
iD1 ndisendis ¡

Pt
iD1 mdii ¸ .p ¡ 1/.n ¡ zd/=p > 0. Conse-

quently, q2
12.d/ ¸ .p ¡ 1/2.n ¡ zd/2=p2 .

By Lemma 1, we have

Tr.Cd/ · n.p ¡ 1/ ¡ 2zd

p
¡

t .p ¡ 1/.n ¡ zd /2

np.tp ¡ t ¡ 1/
: (8)

Finally, by inequalities (6) and (8), we have Tr.Cd / ·
Tr.Cd¤/.
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5. DISCUSSION AND FUTURE RESEARCH

The combination of results established in Theorems 1 and 2
tells us that if we want to test t treatments based on a crossover
design with n subjects each to be exposed to a sequence of
p.D t/ treatments, then under model (1), a balanced uniform
crossover design is universally optimal as long as 3 · t · 12
and n · t .t C 2/=2. In particular, this implies that a balanced
uniform crossover design with n D 2t , t D p ¸ 3 is universally
optimal. In practical applications, it would be highly desirable
if we could remove the upper bound on n and keep the universal
optimalityof a balanced crossover design. Unfortunately, this is
not the case. Indeed, we know that a balanced uniform design
may lose its universal optimalityas n gets large—a very surpris-
ing result by itself. A possible remedy for such cases is to search
for the correspondingStufken design, because we know that the
Stufken design will be universally optimal regardless of the size
of n. But there are two problems here. First, the Stufken design
may not exist for the given t and n. Second, if the nonexistence
of the Stufken design cannot be ruled out, then, due to heavy
combinatorialdemand on the Stufken design, its construction is
generally very dif� cult. For example, consider the case where
t D p D 3 and there are no more than n D 36 subjects. To have
a balanced uniform design or the Stufken design in this range
of n, we may need to limit n to be 6, 12, 18, 24, 30, or 36. For
these values of n, we know that a balanced uniform crossover
design with n D 6 exists that is universally optimal based on
the foregoing result. We also know that the Stufken design with
n D 36 exists and thus is universally optimal. But although we
know that balanced uniform crossover designs for n D 12, 18,
24, and 30 exist, we do not know whether these designs are
universally optimal. Can we construct the Stufken designs for
n D 12, 18, 24, 30?

Another issue meriting attention and research concerning
crossover designs is deciding whether the subject effects should
be � xed or random. We gave an argument in support of � xed
subject effects after we introduced model (1). If we are not
sure about the � xed or random nature of the subject effect, then
can we construct a model robust crossover design for our prob-
lem? Before tackling this dif� cult problem, perhaps we should
see how ef� cient optimal crossover designs under � xed effects
will be if we analyze the data under the random subject model.
Clearly, the relative advantages of such an analysis depend on
the relationship between the error variance and the variance of
the random subject effect.

[Received May 2002. Revised November 2003.]
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