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Measurements of agreement are needed to assess the acceptability of a new or generic process, methodology, and formulation in areas of
laboratory performance, instrument or assay validation, method comparisons, statistical process control, goodness of � t, and individual
bioequivalence. In all of these areas, one needs measurements that capture a large proportion of data that are within a meaningful
boundary from target values. Target values can be considered random (measured with error) or � xed (known), depending on the situation.
Various meaningful measures to cope with such diverse and complex situations have become available only in the last decade. These
measures often assume that the target values are random. This article reviews the literature and presents methodologies in terms of
“coverage probability.” In addition, analytical expressions are introduced for all of the aforementioned measurements when the target
values are � xed and when the error structure is homogenous or heterogeneous (proportional to target values). This article compares the
asymptotic power of accepting the agreement across all competing methods and discusses the pros and cons of each. Data when the
target values are random or � xed are used for illustration. A SAS macro program to compute all of the proposed methods is available
for download at http://www.uic.edu/ Q hedayat/.
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1. INTRODUCTION

Measurements of agreement are needed to assess the accept-
ability of a new or generic process, methodology, and for-
mulation in areas of laboratory performance, instrument or
assay validation, method comparisons, statistical process con-
trol, goodness of � t, and individual bioequivalence. Examples
include the agreement of laboratory measurements collected
in various laboratories, the agreement of a newly developed
method with a gold standard method, the agreement of manu-
facturing process measurements with speci� cations, the agree-
ment of observed values with predicted values, and the agree-
ment in bioavailability of a new or generic formulation with a
commonly used formulation. In all of these areas, one needs
measurements that capture a large proportion of data that are
within a meaningful boundary from target values. Examples
of target values include mean, gold standard, quality control
speci� cation, predicted, and common formulation values. Tar-
get values can be considered random (measured with error) or
� xed (known), depending on the situation. There are also sit-
uations in which one is interested in comparing two methods
without a designated gold standard or target values.

When the agreement measurements show evidence of lack of
agreement, we need to address the sources of the de� ciencies.
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When there is a disagreement between the two marginal distri-
butions, the source is de� ned as constant and/or scale “shift,”
or lack of “accuracy.” When there is a disagreement due to
large within-sample variation, the source is de� ned as lack of
“precision.”

The question of assessment of agreement has received con-
siderable attention in the literature. Cohen (1960, 1968) dis-
cussed this problem in the context of categorical data. Bland
and Altman (1986) proposed a simple and meaningful graph-
ical approach for assessing the agreement between two clin-
ical measurements. In a series of articles, Lin (1989, 1992,
1997, 2000) and Lin and Torbeck (1998) examined this prob-
lem critically in the framework of method reproducibility and
suggested a few measures and studied their properties.

In the context of bioequivalence, similar studies have been
reported by Anderson and Hauck (1990), Sheiner (1992),
Holder and Hsuan (1993), Schall and Luus (1993), Schall
(1995), Schall and Williams (1996), and Lin (2000). In
the context of goodness of � t, Vonesh, Chinchilli, and Pu
(1996) and Vonesh and Chinchilli (1997) have modi� ed Lin’s
approach for choosing models that have better agreement
between the observed and the predicted values.

The article is organized as follows. In Section 2 we brie� y
discuss existing methods and add analytical solutions for these
methods when target values are � xed. In Section 3 we propose
methods in terms of coverage probability (CP). In Section 4
we compare the power of accepting the agreement among all
competing methods, and in Section 5 we perform a simulation
study to examine the � nite-sample performance of the meth-
ods. In Section 6 we present two examples based on real data,
one when the target values are random and one when the tar-
get values are � xed. We discuss general extension problems
and future studies in Section 7, followed by a conclusion in
Section 8.
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2. METHODS

2.1 Mean Squared Deviation

2.1.1 When the Target Values are Random. A meaning-
ful statistic to measure the agreement of observations (Y ) with
their target values (X) has been the mean squared deviation
(MSD). Let D D Y ƒ X; then

MSD D …2 D E4D25 D E4Y ƒ X520 (1)

We assume that the joint distribution of Y and X has � nite
second moments with means Œy and Œx, variances ‘ 2

y and ‘ 2
x ,

and covariance ‘ yx. Next, note that (1) can be expressed as

…2 D 4Œy
ƒ Œx52 C‘ 2

y
C‘ 2

x
ƒ 2‘ yx1 (2)

and the sample counterpart of MSD can be computed as

e2 D 4 Ny ƒ Nx52 C s2
y

C s2
x

ƒ 2syx1

where Ny1 Nx1 s2
y 1 s2

x , and syx represent the usual sample based on
n paired observations on 4y1 x5 and each with divisor n.

The bootstrap method has been proposed for inference
based on the MSD estimate for individual bioequivalence
(Schall and Luus 1993). Lin (2000) showed that W D ln4e25

has an asymptotic normal distribution with mean — D ln4…25

and variance

‘ 2
W

D 261 ƒ 4Œx
ƒ Œy5

4=e47

n ƒ 2
0 (3)

For lesser bias of estimating — and ‘ 2
W , we use Qe2 to estimate

…2, where

Qe2 D 1
nƒ 1

nX

iD1

4yi
ƒ xi5

20 (4)

Throughout the article, we use n ƒ 1, n ƒ 2, or n ƒ 3 instead
of n in the denominator for lesser bias with smaller sample
size, based on results of the simulation study in Section 5.

2.1.2 When the Target Values are Fixed. When X is
� xed, we consider 84yi

—xi5 — i D 11 : : : 1 n9 as observations in a
random sample from the model

Y D ‚0
C ‚1X C eY 0 (5)

Here eY is the residual error with mean 0 and variance ‘ 2
e .

The familiar quantities b0, b1, s2
e , and r should be used as the

estimators for ‚0, ‚1, ‘ 2
e , and �.

We compute E4Y ƒ X52 for each xi by model (5) and then
take the average across xi . Therefore, the MSD becomes

…—X
2 D 4Œy— Nx ƒ Nx52 C s2

x41 ƒ ‚15
2 C‘ 2

e 1 (6)

where ŒY — Nx D ‚0 C ‚1 Nx. The MSD estimate remains the same
as in the case where X is random, except that the variance of
W becomes smaller. It can be shown that (3) is replaced by

‘ 2
W —X D 2

nƒ 2

³
1ƒ

64Œy— Nx ƒ Nx52 C s2
x41 ƒ ‚15

272

…—X
4

´
0 (7)

For variance estimation, we proceed as usual.

2.2 Concordance Correlation Coef’ cient

2.2.1 When the Target Values are Random. Lin (1989,
1992) presented another measurement, the concordance cor-
relation coef� cient (CCC), for measuring agreement (repro-
ducibility) between two methods. The MSD in (2) can be stan-
dardized as a correlation coef� cient to yield the CCC denoted
by �c,

�c
D 1 ƒ …2

…2—� D 0
D 2‘ yx

‘ 2
y

C‘ 2
x

C 4Œy
ƒ Œx52

0

Here …2

…2 —�D0
is the ratio of the mean square of within-sample

total deviation and the total deviation. The mean square of
the within-sample total deviation contains the within-sample
variance and the bias square. The mean square of the total
deviation contains the largest possible variance among non-
negative correlated samples and the bias square. The CCC
can be written as the product of the accuracy and the preci-
sion coef� cients �c

D �a�. The accuracy coef� cient is �a
D

2
šC1=šC“2 1 where “2 D 4ŒyƒŒx52

‘ y‘ x
and š D ‘ y

‘ x
. Here the marginal

distributions of Y and X are equal (i.e., both means and vari-
ances are equal) if and only if the accuracy coef� cient is 1.
The precision coef� cient is the Pearson correlation coef� cient.

The CCC translates the MSD into a correlation coef� cient
that measures the agreement along the identity line, in which
a value of 1 represents a perfect agreement 4Y D X5, a value
of ƒ1 represents a perfect disagreement 4Y D ƒX5, and a
value of 0 represents no agreement. The sample counterpart
of CCC is given as

rc
D 2rsysx

s2
y

C s2
x

C 4 Ny ƒ Nx52
0

Lin (1989) showed that Z D 05 ln 1Crc

1ƒrc

¢
has an asymptotic

normal distribution with mean

† D tanhƒ14�c5 D 05 ln

³
1 C �c

1 ƒ �c

´
1

where tanhƒ14¢5 is the inverse hyperbolic tangent function. Its
variance is

‘ 2
Z

D 1
nƒ2

µ
41ƒ�25�2

c

41ƒ�2
c5�

2
C 2“241ƒ�c5�

3
c

41ƒ�2
c5

2�
ƒ “4�4

c

241ƒ�2
c5

2�2

¶
0 (8)

2.2.2 When the Target Values are Fixed. When X is
� xed, under (5), the CCC is computed in the same way as in
the case when X is random. However, the variance of the Z

transformation of the CCC estimate becomes smaller,

‘ 2
Z—X D �2

c41ƒ�25

4nƒ25�241ƒ�2
c5

2

µ
�2

c“
2š C4�c�š ƒ152

C 1

2
�2

cš
241ƒ�25

¶

D �2
c41ƒ�25

4nƒ25�241ƒ�2
c5

2

�2
c6‚0

C4‚1
ƒ15 Nx72

s2
x

C4�c‚1
ƒ152 C �2

c‚
2
141ƒ�25

2�2
0 (9)
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2.3 Precision and Accuracy

When agreement measurements show evidence of lack of
agreement, we need to address the sources of the de� ciencies.
It is important to know whether the de� ciencies are coming
from the large within-sample variation (imprecision) or from
the shift in marginal distributions (inaccuracy). The former
would become a variance reduction exercise, which typically
is more cumbersome than the latter. The latter most likely is
a calibration problem. The CCC has meaningful components
of precision 4�5 and accuracy 4�a5. In a way, the precision
squared is in the same scale as accuracy, where 0 represents no
agreement and 1 represents perfect agreement. The inference
on � when X is random has been routinely used for decades.
However, the inference on � when X is � xed is not known to
be addressed in the literature. To develop a large-sample infer-
ence for �, we can simply let “ D 0, š D 1, and �c

D � in (8)
and (9) when X is random and � xed. Thus asymptotic vari-
ance of the Z transformation of r is 1

nƒ3
when X is random,

and 1
nƒ3

41 ƒ �2

2
5 when X is � xed.

We now present the inference on �a. Let the accuracy esti-
mate be

ca
D 2

u2 C v C 1=v
1

where u2 D 4 Nyƒ Nx52

sysx
and v D sy

sx
. Then the logit function of ca

is L D ln4 ca

1ƒca
5. The random variable L has an asymptotic

normal distribution with mean

å D ln
± �a

1 ƒ �a

²

and variance (Robieson 1999)

‘ 2
L

D �2
a “24š C 1=š ƒ2�5C �2

a 4š 2 C1=š2 C 2�25=2 C 41C�254�a“2 ƒ15

4n ƒ 2541ƒ �a52
0

When X is � xed (known), the foregoing variance estimate
becomes smaller,

‘ 2
L—X D “2š� 2

a 41ƒ �25C 41ƒ š�a5241ƒ �45=2
4n ƒ 2541ƒ �a52

D 6‚0 C 4‚1 ƒ15 Nx72� 2
a 41ƒ�25=s2

x
C 41 ƒ‚1�a=�5241ƒ �45=2

4n ƒ2541ƒ �a52
0

2.4 Total Deviation Index

An intuitively clear measurement of agreement is a mea-
sure that captures a large proportion of data within a pre-
determined boundary from target values. In other words, we
want the probability of the absolute value of D less than the
boundary, Š, to be large. For example, consider the agree-
ment assessment between the digital instrument used at home
and the manual instrument used in a hospital for measuring
diastolic blood pressure. In this case, a widely acceptable cri-
terion is that at least 90% of the digital observations must
be within 10 mmHg measured from the manual instrument.
There are two approaches to measure agreement. We can � x
the predetermined Š value (10 mmHg in this example), com-
pute the coverage probability � (CP), and compare this CP
with the predetermined probability level (90% in this exam-
ple). We can also � x the predetermined CP value, compute

the Š value, and compare this Š value with the predetermined
boundary (10 mmHg in this example). In Section 3 we present
the method for estimating � for a given Š. In this section we
present the method for estimating Š for a given � .

Assuming that the distribution of D is normal with mean
Œd

D Œy
ƒŒx and variance‘ 2

d
D‘ 2

y
C‘ 2

x
ƒ2‘ yx , the proportion

of the population with —D— (absolute difference) less than Š,
Š > 0, becomes

� D Pr 4D2 < Š25 D �2

µ
Š2111

Œ2
d

‘ 2
d

¶
1

where �24¢5 is the cumulative noncentral chi-squared distribu-
tion with 1 degree of freedom and noncentrality parameter

Œ2
d

‘ 2
d

.
This noncentrality parameter is the relative bias squared. The
total deviation index (TDI) for measuring the boundary Š is
de� ned as

TDI D
s

�24ƒ15

µ
� 111

Œ2
d

‘ 2
d

¶
1 (10)

where �24ƒ15
4¢5 is the inverse function of �24¢5. Infer-

ence based on estimate of this TDI is intractable. Accord-
ing to Chebyshev’s inequality, this probability has a lower
bound of

Pr 4D2 < Š25 > 1ƒ …2

Š2
0

Therefore, the lower bound of the Š2 value is proportional
to …2, the MSD, in (2). Lin (2000) suggested using the TDI
to approximate the value of Š that yields P4D2 < Š25 D � ,
which is

TDI� D Š�
D êƒ1

³
1 ƒ 1ƒ �

2

´
—…—1 (11)

where êƒ14¢5 is the inverse cumulative normal distribution and
— ¢ — is the absolute value. This can be estimated by replacing
… in (11) with Qe in (4). Lin (2000) showed that the approxi-
mation is good under the following conditions: � D 075 and
Œ2

d

‘ 2
d

µ 1
2
1� D 080 and Œ2

d

‘ 2
d

µ 81� D 085 and Œ2
d

‘ 2
d

µ 21� D 090

and
Œ2

d

‘ 2
d

µ 1, and � D 099 and
Œ2

d

‘ 2
d

µ 1
2
. We may then use the

sample counterpart and perform statistical inference in the
same way as shown in Section 2.1 on MSD through
the asymptotic normality of W D ln4 Qe25 when X is either ran-
dom or � xed. Note that when X is � xed, we would compute
the Š2

� for each xi by model (5) and take the average across
xi. The square root of this average is equivalent to (11).

The TDI� is proportional to the square root of the MSD
and is intuitively much clearer than the MSD. It is the 100�

percentile of the absolute difference of paired observations.
The TDI� is similar in concept to the prediction limit, and its
con� dence limit is similar in concept to the tolerance limit for
capturing individual observations. The difference is that the
boundary is set to deviate from target values, instead of from
the mean.
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2.5 Intraclass Correlation Coef’ cient

The intraclass correlation coef� cient ( ICC) (Fisher 1925)
in its original form is the ratio of between-sample variance
and the total variance (between- and within-sample) to mea-
sure precision under the model of equal marginal distribu-
tions. However, when the marginal distributions are not equal
(inaccuracy), the ICC captures the deviations and considers
those as imprecision. In contrast, the Pearson correlation coef-
� cient ignores the inaccuracy component, and the CCC could
segregate inaccuracy from imprecision. The ICC is closely
related to the CCC. The subtle difference is that the ICC value
remains the same when some pairs of yi and xi are inter-
changed, whereas the CCC does not. Unlike the CCC, the ICC
does not have meaningful components of accuracy and preci-
sion. For these reasons, we prefer to use CCC. However, we
expect the performance of the ICC and the special forms that
have evolved to be very similar to that of CCC.

3. COVERAGE PROBABILITY

In this section we present a method to compute � for
a given Š. When the target values are considered random,
Anderson and Hauck (1990) proposed using this method to
assess individual bioequivalence. They used nonparametric
counting and inference for the assessment. Schall (1995) later
advocated such a proposal through the normal distribution,
and proposed using bootstrap estimation for inference. From
(11), one can also approximate � for a given Š. Here we
have � Š

û 1ƒ 261 ƒ ê4Š=—…—57 D �24Š2=…2115. Like the TDI,
the approximation is subject to the restriction of reasonable
relative bias squared values. This section provides the exact
parametric estimation through the normal distribution and pro-
vides the asymptotic variance analytically for inference when
the target values are random or � xed.

3.1 When the Target Values are Random

Consider the problem of assessment of agreement when D

is from the normal distribution with mean Œd and variance ‘ 2
d .

Then the coverage probability for a given Š, as discussed in
Section 2.4, is

CPk
D � k

D Pr4—Y ƒ X— < Š5

D �2

³
Š21 11

Œ2
d

‘ 2
d

´

D ê
hŠ ƒ Œd

‘ d

i
ƒ ê

hƒŠ ƒ Œd

‘ d

i
1 (12)

where ê4¢5 is the cumulative normal distribution function. The
estimates of Œd and ‘ 2

d are OŒd
D Ny ƒ Nx and s2

d
D n

nƒ3
4s2

y
C s2

x
ƒ

2syx5. Furthermore, OŒd and s2
d are independent. Consequently,

an estimator of CPŠ can be taken to be

pŠ
D ê

µ
Š ƒ OŒd

sd

¶
ƒ ê

µƒŠ ƒ OŒd

sd

¶
0

Next, we can use the � rst-order approximation to compute
E4pŠ5, and V4pŠ5,

pŠ
D ê

³
Š ƒ Œd

‘ d

´
ƒ 1

‘ d

”

³
Š ƒ Œd

‘ d

´
4 OŒd

ƒ Œd5

ƒ Š ƒ Œd

‘ 2
d

”

³
Š ƒ Œd

‘ d

´
4sd

ƒ‘d5 ƒ ê

³ƒŠ ƒ Œd

‘ d

´

C 1
‘ d

”

³ƒŠ ƒ Œd

‘ d

´
4 OŒd

ƒ Œd5

ƒ Š C Œd

‘ 2
d

”

³ƒŠ ƒ Œd

‘ d

´
4sd

ƒ‘ d5

C O64 OŒd
ƒ Œd527C O64sd

ƒ‘d527

C O64 OŒd
ƒ Œd54sd

ƒ‘ d571

where ”4x5 is the density function of standard normal distri-
bution and limx!0

O4x5

x
< ˆ.

Therefore, it is clear that

E4pŠ5 D � Š
C O

³
1
n

´
1

and V 4pŠ5 becomes

‘ 2
p

D 1
n ƒ 3

(µ
”

³ƒŠ ƒ Œd

‘d

´
ƒ ”

³
Š ƒ Œd

‘d

´¶2

C 1

2

µ
Š ƒ Œd

‘d

”

³
Š ƒ Œd

‘d

´
C Š C Œd

‘d

”

³ƒŠ ƒ Œd

‘d

´¶2
)

C O

³
1
n2

´
0 (13)

Because CPŠ is bounded by 0 and 1, it is better to use
the logit transformation for inference. Let T D ln pŠ

1ƒpŠ

¢
. Its

asymptotic mean is ’ D ln �Š

1ƒ� Š

¢
, and its asymptotic variance

is ‘ 2
T

D ‘ 2
p

� 2
Š41ƒ�Š52 .

3.2 When the Target Values are Fixed

Consider the problem of assessment of agreement when tar-
get values X are � xed. If in model (5) we further assume that
eY has the normal distribution with mean 0 and variance ‘ 2

e ,
then the coverage probability of the ith observation is

� Ši
D Pr4—yi

ƒ xi
— < Š5

D ê
hŠ ƒ ‚0 ƒ 4‚1 ƒ 15xi

‘ e

i

ƒ ê
hƒŠ ƒ ‚0

ƒ 4‚1
ƒ 15xi

‘ e

i
0 (14)

We de� ne the overall coverage probability as

� Š—X D 1
n

nX

iD1

� Ši0 (15)

Suppose that we have a random sample 84yi1 xi5 — i D
11 : : : 1 n9 and that ‚01 ‚11 and ‘ 2

e are estimated by b01 b1,
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and s2
e ; then b0 and b1 are independent of se. Here we use

s2
e

D n
nƒ3

41 ƒ r25s2
y . An estimate of � Ši is

pŠi
D ê

µ
Š ƒ b0 ƒ 4b1 ƒ 15xi

se

¶
ƒ ê

µƒŠ ƒ b0 ƒ 4b1 ƒ 15xi

se

¶
1

and an estimate of � Š—X is

pŠ—X D 1
n

nX

iD1

pŠi0

By the same method as in Section 3.1, it can be shown that

E4pŠ—X5 D � Š—X C O

³
1
n

´
1

and that the asymptotic variance of pŠ—X is

‘ 2
p—X D 1

nƒ 3

C2
0

n2
C 4C0

Nx ƒ C15
2

n2s2
x

C C2
2

2n2
0 (16)

Here

C0 D
nX

iD1

µ
”

³ƒŠ ƒ ‚0 ƒ 4‚1 ƒ 15xi

‘ e

´

ƒ ”

³
Š ƒ ‚0

ƒ 4‚1
ƒ 15xi

‘ e

´¶
1

C1 D
nX

iD1

µ
”

³ƒŠ ƒ ‚0 ƒ 4‚1 ƒ 15xi

‘ e

´

ƒ ”

³
Š ƒ ‚0 ƒ 4‚1 ƒ 15xi

‘ e

´¶
xi1

and

C2 D
nX

iD1

µƒŠ ƒ ‚0 ƒ 4‚1 ƒ 15xi

‘ e

”

³ƒŠ ƒ ‚0 ƒ 4‚1 ƒ 15xi

‘ e

´

ƒ Š ƒ ‚0 ƒ 4‚1 ƒ 15xi

‘ e

”

³
Š ƒ ‚0 ƒ 4‚1 ƒ 15xi

‘ e

´¶
0

The logit transformation is again used for inference, and the
corresponding expression is the same as in Section 3.1.

3.3 Sectional Coverage Probability

In certain situations, agreement requirements might be dif-
ferent for certain sections of an analytical range. For example,
in measuring a clinical marker for cancer cells, there might
be a threshold value for which certain therapies would be pre-
scribed when the marker value exceeds the threshold value.
Therefore, we might require stricter agreement criteria near
the threshold window. Suppose that the analytical range in the
interval of a to b can be classi� ed into m sections based on
the gold standard method. Then the section di becomes

di
D ai

ƒ aiƒ11 i D 1121 : : : 1 m1

where a0
D a1 ai > aiƒ11 am

D b, and ai values are prespeci� ed.
For di , an acceptable form of agreement would mean that
Y should largely lie inside an interval of length 2Ii centered
around X. Under this assumption, we need to consider the
sectional coverage probability. For this purpose, the integrated

sectional coverage probability ( ISCP) between Y and X over
those intervals is de� ned as

ISCP D � I
D

Pm
iD1 diPr6—Y ƒ X— < Ii7

b ƒ a
0 (17)

This coverage probability involves only the distribution of D D
Y ƒ X for both random and � xed X, which for the purpose
of this article is assumed to have a normal distribution with
parameters Œd and ‘ 2

d . Thus (17) becomes

� I
D

Pm
iD14ai

ƒ aiƒ15
h
ê

±
IiƒŒd

‘ d

²
ƒ ê

±
ƒIiƒŒd

‘d

²i

b ƒ a
0 (18)

The estimator of � I , denoted by pI , is obtained by substituting
OŒd and sd for Œd and ‘ d in (18). By the same method as in
Section 3.1, it can be shown that pI is a consistent estimator
of � I with asymptotic variance

‘ 2
pI

D 1
n4b ƒ a52
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Again, the logit transformation should be used for inference.

3.4 Proportional Error Case

In practice, both Y and X are usually positive-valued vari-
ables. However, Y

X
has a bounded variance. Here we evalu-

ate the proportion change 4 Y
X

5 rather than absolute difference
4Y ƒX5, because the error is proportional to the measurement.
Let 100ˆ% represent the percent change between Y and X.
A simpli� ed approach in this case is to assume that ln Y and
ln X have a bivariate normal distribution. Thus the probability
that Y lies in the interval X

1Cˆ
to X41C ˆ5 is given by

CPˆ
D � ˆ

D Pr

µ
X

1C ˆ
< Y < X41C ˆ5

¶

D Pr

µ
1

1C ˆ
<

Y

X
< 1C ˆ

¶

D Pr6— ln Y ƒ ln X— < ln41C ˆ570

Let D D ln Y ƒ ln X and Š D ln41 C ˆ5. Then all algorithms
of the previous section can be applied to the logs to obtain
CPŠ and TDI� . Here the TDI� is a percent,

TDI� % D 100ˆ� % D 1004eŠ� ƒ 15%0

In this proportional error case, we should also compute the
CCC and MSD from the log transformation of the data.

4. ASYMPTOTIC POWER

In this section we investigate the asymptotic power of
accepting agreement among estimates of MSD, CCC, and CP.
Inference based on TDI can be assessed through MSD. There-
fore, the asymptotic power of the estimate of TDI is the same
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as that of MSD. For comparison, we must establish a common
agreement criteria. We say that Y and X are in agreement if
“2 < “2

0 , 1
š0

< š < š0, and � > �0 where “01š0, and �0 are
prespeci� ed values. We refer to these as null values. We com-
pute the chance of declaring agreement under the alternative
values at “2 D “2

1 1š D š1, and � D �1. We refer to these as
power. In addition, let the null and alternative values of ‘y‘ x

be ‘ y0‘ x0 and ‘y1‘x1, and let h D ‘ y0‘ x0

‘ y1‘ x1
. Let the null and alter-

native values of Œy
ƒ Œx be Œy0 ƒ Œx0 and Œy1 ƒ Œx1. Further-

more, let sign0 be positive when Œy0 ƒ Œx0 ¶ 0 and negative
otherwise, and let sign1 be positive when Œy1

ƒ Œx1 ¶ 0 and
negative otherwise.

4.1 When the Target Values are Random

Let the corresponding log MSD, Z value of CCC, and logit
CP values evaluated at “2 D “2

m1š D šm, and � D �m1 m D
01 1, be

—m
D ln4…2

m51

†m
D ln

³
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where
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The asymptotic variances of W 1Z, and T statistics evaluated
at “2

m1šm, and �m become

‘ 2
Wm

D ƒm

n ƒ 2
1

‘ 2
Zm

D ‡m

n ƒ 2
1

and
‘ 2

Tm
D –m

nƒ 3
0

The regions for declaring agreement by using W 1Z, and T at
the � signi� cance level are

W µ —0
ƒ êƒ141ƒ �5‘W 01

Z ¶ †0
C êƒ141 ƒ �5‘Z01

and
T ¶ ’0 C êƒ141 ƒ �5‘T 00

The asymptotic powers of accepting agreement at “2 D
“2

11 š D š1, and � D �1 by using W1 Z, and T are
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The required sample sizes yielding the same power 1 ƒ ‚ by
using W 1Z, and T are
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We do not show the asymptotic power and sample size for
precision and accuracy here; one can easily follow the same
principles for precision and accuracy.

4.2 When the Target Values are Fixed

When X is � xed, we simply use Nx and s2
xm in place of

Œxm and ‘ 2
xm. Equations (14), (7), (9), and (16) are evaluated

at both the null and alternative values to obtain the � xed X

equivalents of equations (20), (21), (22), and (23).

4.3 Comparisons of Asymptotic Powers

The above powers and sample sizes for TDI (MSD) and CP
when X is random and for TDI when X is � xed depend on
the value of h D ‘ y0‘x0

‘ y1‘x1
. To compare these powers, we assume

that h D 1.
The power of CP depends on the choice of Š. We let

Š D 105‘ d012‘ d01205‘d0 when X is random and Š D ‘ e01
105‘ e012‘ e0 when X is � xed. We let “0

D 0151š0
D 1015,
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and �0
D 081 091 0951 099 and evaluate the power at “1

D
005 and 0101š1 D 1005 and 1010, and �1 D tanh6tanhƒ14�05 C
017 and tanh6tanhƒ14�05C 0257. The null hypotheses correspond
to a 15% location shift per 4‘ y‘ x51=2 and a 15% scale shift for
various precision values. These null hypotheses are compared
to alternatives with two levels of improved precision, location,
and scale shifts. The ranges were chosen so that most power
values are in the broad range of 02 to 099. When X is � xed,
from model (5) we let X D ƒ110, and 1. We let Y have val-
ues equally distributed among the three levels of X values. We
let ‚1 D �š1 ‚0 D 4“2s2

xš51=2, and ‘ 2
e

D s2
xš241ƒ�25 for the

corresponding “1š , and � values in the null and alternative
cases.

Table 1 presents the asymptotic powers among TDI, CCC,
and CP when X is random and � xed for n D 30 and � D
005. The results indicate that the asymptotic powers of TDI,
CPŠ11CPŠ2, and CPŠ3 are in general quite similar whenever X

is random or � xed. Therefore, the choice of Š has little impact
on the power.

The asymptotic power of CCC is inferior to that of TDI
(MSD) in all test cases when X is random or � xed. Presum-
ably, the estimation for the denominator of the CCC increases
the noise. Therefore, for statistical inferences, CP and TDI
are always preferable to CCC, especially with normally dis-
tributed data. However, in the case of a higher correlation coef-
� cient (.99) when X is � xed, the CCC has a similar power.
Regardless of the fact that the power performance is not very
appealing, the CCC, precision, and accuracy remain as useful
descriptive tools.

5. SIMULATION

For statistical inference based on any of the foregoing agree-
ment measurement estimates, we would replace the param-
eters with their sample counterparts in the respective variance
expressions. To assess the asymptotic normality and power of
the methods, we performed two Monte Carlo simulations for
X when random and � xed. In each simulation, we examined
two cases: one case representing the null hypothesis and the
other representing the alternative hypothesis. For comparison,
we selected the same cases as shown in Table 1. The simula-
tions also attempted to cover those CP, CCC, precision, and
accuracy values near their boundaries.

For the simulation when X is random, paired samples were
generated from each of the following bivariate normal distri-
bution cases:

1. The null hypothesis case with mean (01510), variance
(1015, 1=1015), and correlation �0. Here “0 D 015 and š0 D
1015.

2. The alternative hypothesis case with mean (01, 0), vari-
ance (101, 1=101), and correlation tanh[tanhƒ14�0

C 0257. Here
“1 D 01, š1 D 101, and h D 1.

For the simulation when X is � xed, we generated uni-
variate normal samples, with equal sample size among the
X D ƒ11 011 values. We let ‚1 D �š , ‚0 D 4“2s2

xš51=2, and
‘ 2

e
D s2

xš241 ƒ �25 under (5) for the corresponding “1 š , and
� values in the following null and alternative cases:

1. The null hypothesis case with “0
D 015, š0

D 1015, and
correlation �0.

2. The alternative hypothesis case with “1
D 01, š1

D 101,
and correlation �1

D tanh6tanhƒ14�0
C 0257.

In each of the these random and � xed cases, we let �0
D 095

and 099. The samples generated correspond to n D 15, n D 30,
and n D 60. We have a total of 24 situations: 2 cases by 2
levels of precision by 3 levels of sample size for X when
random and when � xed. For each situation, 5,000 runs were
performed. Tables 2–5 present the simulation results for cases
where X is random and � xed. In all of these tables, the fourth
column presents the theoretical value of precision, accuracy,
CCC, TDI, and CP for the null and alternative hypotheses.

To assess the robustness of each agreement statistics esti-
mate, in each run, we calculated estimates of the respective
transformation of precision (Z), accuracy (logit), CCC (Z),
TDI09 (ln MSD), CPŠ1, and CPŠ3 (logit). The Š1 and Š3 values
correspond with those in Table 1. The mean and standard devi-
ation of each estimate based on 5,000 runs were computed.
The respective antitransformation of each mean estimate is
reported in the � fth column. Comparisons between the fourth
and � fth columns were used to assess the robustness of the
estimates. The standard deviation of each estimate is reported
in the sixth column (“Std of estimate”). The mean of the stan-
dard deviation estimate of each estimate based on 5,000 runs
was also computed. This is reported in the seventh column
(“Mean of std”). Comparisons between the sixth and seventh
columns were used to assess the robustness of the variance
estimates.

To assess the asymptotic normality for the signi� cance level
(case 1) and power (case 2) of each estimate at � D 005,
for each run we computed the proportion of each estimate
among 5,000 runs that falls into the respective rejection region
(accepting agreement) in Section 4. These proportions are
reported in the eighth column (“Proportions in reject region”).
The proportions in case 1 represent the signi� cance level while
the proportions in case 2 represent the power of accepting case
2 against the null hypothesis of case 1 at � D 005. For com-
parison, the corresponding theoretical probabilities are shown
in the last column.

For point estimates, the results showed that all but the pre-
cision estimates are robust (i.e., have little bias) for all 24 situ-
ations in this study, even when n D 15. The precision estimate
performs well when X is random, but tends to overestimate
when X is � xed and the sample size is smaller.

For standard deviation estimates, there was practically no
discrepancy between the sixth and seventh columns in all sit-
uations. For signi� cance level and power, the results showed
that all but the precision estimates are accurate for all 24 situ-
ations in this study, even when n D 15. The precision estimate
performs well when X is random, but tends to reject more
often due to overestimates when X is � xed and the sample
size is smaller. The power of the CCC estimate tends to be
larger in the simulation study than its theoretical value.

6. EXAMPLES

This section presents two examples based on real data. One
example compares the agreement of two instruments in mea-
suring blood counts in human samples, and the other com-
pares the agreement of an assay to measure factor VIII against
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Table 1. Asymptotic Power of Accepting the Agreement, Where Š1 D 1.5‘ d0 ,Š2 D 2‘ d0, and Š3 D 2.5‘ d0 (Random); Š1 D‘ e0, Š2 D 1.5‘ e0 , and
Š3 D 2‘ e0 (Fixed); and “0 D .15,š0 D 1.15,n D 30, and � D .05

Random Fixed

�0 “1 š1 �1 TDI CCC CPŠ1 CPŠ2 CPŠ3 TDI CCC CPŠ1 CPŠ2 CPŠ3

.80 .05 1.05 .8332 .2601 .1936 .3128 .3258 .3330 .3905 .2623 .4246 .4468 .4625
.8614 .5149 .3666 .5781 .5916 .5986 .6609 .5120 .6793 .6947 .7048

1.10 .8332 .2368 .1783 .2854 .2975 .3043 .2981 .2357 .3294 .3488 .3627
.8614 .4798 .3432 .5451 .5592 .5667 .5589 .4815 .5875 .6070 .6197

.10 1.05 .8332 .2341 .1787 .2822 .2946 .3017 .3586 .2399 .3920 .4141 .4300
.8614 .4757 .3421 .5413 .5562 .5645 .6238 .4786 .6459 .6637 .6756

1.10 .8332 .2126 .1643 .2564 .2677 .2743 .2702 .2144 .2993 .3178 .3313
.8614 .4417 .3196 .5082 .5235 .5320 .5201 .4477 .5510 .5721 .5863

.90 .05 1.05 .9174 .3752 .2644 .4379 .4513 .4574 .5209 .4008 .5512 .5706 .5828
.9318 .6478 .4551 .6931 .7017 .7054 .7771 .6763 .7794 .7869 .7914

1.10 .9174 .3217 .2286 .3805 .3933 .3991 .3928 .3438 .4264 .4468 .4601
.9318 .5815 .4060 .6362 .6467 .6514 .6585 .6203 .6766 .6910 .6996

.10 1.05 .9174 .3155 .2290 .3738 .3880 .3958 .4553 .3437 .4873 .5090 .5239
.9318 .5738 .4026 .6298 .6430 .6506 .7145 .6086 .7240 .7374 .7464

1.10 .9174 .2679 .1968 .3200 .3328 .3398 .3333 .2900 .3647 .3849 .3992
.9318 .5082 .3562 .5700 .5846 .5927 .5872 .5495 .6110 .6303 .6434

.95 .05 1.05 .9589 .5814 .4117 .6323 .6391 .6391 .7259 .6291 .7357 .7431 .7454
.9662 .8146 .6112 .8239 .8243 .8228 .9036 .8522 .8882 .8854 .8829

1.10 .9589 .4712 .3321 .5302 .5386 .5390 .5560 .5234 .5836 .5979 .6042
.9662 .7134 .5202 .7441 .7475 .7467 .7851 .7734 .7860 .7909 .7924

.10 1.05 .9589 .4585 .3293 .5182 .5326 .5397 .6131 .5102 .6313 .6486 .6595
.9662 .7020 .5089 .7356 .7468 .7532 .8249 .7532 .8153 .8234 .8290

1.10 .9589 .3588 .2598 .4164 .4296 .4355 .4390 .4058 .4684 .4881 .5006
.9662 .5894 .4211 .6399 .6535 .6608 .6730 .6555 .6836 .7001 .7110

.95 .05 1.05 .9918 .9936 .9486 .9787 .9726 .9675 .9993 .9985 .9963 .9923 .9870
.9933 .9989 .9813 .9902 .9866 .9839 .9999 .9998 .9986 .9965 .9937

1.10 .9918 .9270 .8388 .9118 .8982 .8830 .9805 .9796 .9705 .9630 .9514
.9933 .9697 .9186 .9502 .9401 .9301 .9951 .9951 .9867 .9824 .9763

.10 1.05 .9918 .9241 .7875 .9099 .9195 .9220 .9856 .9711 .9676 .9692 .9640
.9933 .9712 .8702 .9544 .9598 .9612 .9966 .9923 .9848 .9858 .9828

1.10 .9918 .7201 .5880 .7376 .7493 .7496 .8803 .8658 .8702 .8689 .8598
.9933 .8240 .6957 .8249 .8376 .8402 .9473 .9413 .9243 .9246 .9230

NOTE: h D 1 for TDI and CP when X is random, and for TDI when X is ’ xed.

known target values in test tubes (in vitro). The former is the
constant error case when X is random, and the latter is the
proportional error case when X is � xed.

6.1 Constant Error When the Target
Values are Random

Diaspirin crosslinked hemoglobin (DCLHb) is a solution
containing oxygen-carrying hemoglobin. The solution was cre-
ated as a blood substitute to treat acute trauma patients and to
replace blood loss during surgery. Measurements of DCLHb
in patient’s serum after infusion are routinely performed using
a Sigma instrument. A method of measuring hemoglobin
called the HemoCue photometer was modi� ed to reproduce
the Sigma instrument DCLHb results. To validate this modi-
� ed method, serum samples from 299 patients over the ana-
lytical range of 50–2000 mg/dL were collected. DCLHb val-
ues of each sample were measured simultaneously with the
HemoCue and Sigma methods. Agreement was de� ned as
having at least 90% of pair observations over the analytical
range of 50–2000 mg/dL within 150 mg/dL of each other
and a within-sample total deviation not more than 15% of the

total deviation. This translates into a least acceptable CCC of
09775 41 ƒ 01525.

Figure 1 presents the plot of HemoCue versus Sigma mea-
surements of DCLHb. The plot indicates that the within-
sample error is relatively constant across the clinical range.
The plot also indicates that the HemoCue accuracy is excel-
lent and that the precision is adequate.

Table 6 presents the agreement statistics and the appropri-
ate 95% upper or lower con� dence limits. The CCC estimate
is .9866, which means that the within-sample total deviation
is about 11.6% of the total deviation. The CCC one-sided
lower con� dence limit is .9838, which is greater than .9775.
The precision estimate is .9867 with a one-sided lower con-
� dence limit of .9839. The accuracy estimate is .9999 with a
one-sided lower con� dence limit of .9989. The MSD estimate
is 6,007 with a one-sided upper con� dence limit of 6,875.
The TDI09 estimate is 127.5 mg/dL, which means that 90%
of HemoCue observations were within 127.5 mg/dL of their
target values. The one-sided upper con� dence limit for TDI09
is 136.4 mg/dL, which is less than 150 mg/dL. Finally, the
CP150 estimate is .9463, which means that 94.6% of HemoCue
observations are within 150 mg/dL of their target values. The
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Table 2. Results of the Simulation Study When X is Random for Moderate Precision

Sample Theoretical Mean of Std of Mean of Proportion in Theoretical
Case size Statistics value estimate estimate std reject region probability

Precision .9500 .9531 02848 02887 .0590 005
Accuracy .9794 .9767 09218 09669 .0498 005

TDI .6200 .6213 03696 03804 .0486 00515 CCC .9304 .9248 02531 02437 .0364 005
CPŠ1 .8303 .8143 05971 06098 .0474 005
CPŠ3 .9789 .9765 102977 102469 .0596 005

Precision .9500 .9516 01913 01925 .0548 005
Accuracy .9794 .9783 06448 06391 .0558 005

TDI .6200 .6209 02607 02616 .0532 005H0 30 CCC .9304 .9280 01727 01690 .0354 005
CPŠ1 .8303 .8220 04017 04096 .0492 005
CPŠ3 .9789 .9776 08381 08353 .0592 005

Precision .9500 .9506 01314 01325 .0528 005
Accuracy .9794 .9788 04324 04375 .0518 005

TDI .6200 .6211 01799 01825 .0488 00560 CCC .9304 .9290 01188 01186 .0368 005
CPŠ1

.8303 .8267 02789 02837 .0482 005
CPŠ3

.9789 .9785 05775 05786 .0550 005
Precision .9662 .9685 02824 02887 .1926 01777
Accuracy .9905 .9892 100575 101993 .1736 02554

TDI .4843 .4848 03756 03841 .3250 0356815 CCC .9571 .9539 02552 02505 .2084 02594
CPŠ1 .9220 .9132 08592 08286 .3088 04347
CPŠ3 .9969 .9965 200338 109178 .3486 04682

Precision .9662 .9673 01901 01925 .2952 02786
Accuracy .9905 .9901 07743 07884 .2890 03744

TDI .4843 .4856 02610 02634 .5712 05894H1 30 CCC .9571 .9555 01734 01739 .3764 04211
CPŠ1 .9220 .9180 05679 05577 .5534 06399
CPŠ3 .9969 .9967 103489 102914 .5946 06608

Precision .9662 .9669 01327 01325 .4744 04513
Accuracy .9905 .9904 05293 05310 .5088 05575

TDI .4843 .4831 01825 01838 .8626 0851660 CCC .9571 .9566 01230 01221 .6442 06613
CPŠ1 .9220 .9192 03817 03840 .8434 08573
CPŠ3 .9969 .9967 08922 08868 .8604 08613

NOTE: “0 D 0151š0 D 10151 �0 D 095; “1 D 011š1 D 1011�1 D 09662.

one-sided lower con� dence limit for CP150 is .9276, which is
greater than .9. The agreement between HemoCue and Sigma
is acceptable with excellent accuracy and adequate precision.
The relative bias squared is estimated to be .003, and so the
approximation of TDI should be excellent.

6.2 Proportional Error When the Target
Values are Fixed

A study was designed to evaluate Dade International’s
reagent test system for clottable factor VIII (FV III) assay.
The FVIII assay involved measuring modi� ed activated par-
tial thromboplastin time (APTT) with varying dilutions of
plasma and speci� c factor-de� cient substrate. Using a refer-
ence plasma of known FVIII activity, a standard curve was
prepared. The dilution scheme of the standard curve started
at either 1:5 or 1:10, and serial dilutions were prepared until
the target values were reached. The percent of FVIII activity
present in plasma was determined by the degree of correc-
tion of the APTT. The reagent test system consisted of Dade
actin-activated cephaloplastin reagent and Dade factor assay
reference plasma. The target values were 3%18%1 38%191%,
and 108%. Each level was assayed for six FVIII observations
starting at 1:5 and 1:10. One FVIII value started at 1:5 at the
91% target value was missing.

Figure 2 presents the results started at 1:5, and Figure 3
presents the same at 1:10 for the plots of observed FVIII
assay results versus targeted values in log2 scale. Note that
in Figure 2, four 3% and two 2% were observed at the tar-
get value of 3%. Circles at the target value of 8% represents
duplicate readings of 8%, 9%, and 10%. Duplicate readings
of 45% were observed at target values of 38%. Also note that
in Figure 3, four 5% and two 4% were observed at the target
value of 3%, three 11% and two 12% were observed at the
target value of 8%, duplicate readings of 49% were observed
at target values of 38%, and duplicate readings of 124% were
observed at target values of 91%. The plots indicate that the
within-sample error was relatively constant across the target
values in log scale. The precision was good for both, but the
accuracy was not as good for the assay started at 1:10.

The client de� ned an acceptable agreement as having 80%
of FVIII assay values over the analytical range of 3%–108%
within 50% from the target percentage values. The client also
wanted, in log scale due to proportional error by dilution, the
within-sample total deviation to be not more than 15% of the
total deviation. This translated into a least acceptable CCC of
09775. Table 7 presents the agreement statistics and their 95%
upper or lower con� dence limits for the assays started at 1:5
and 1:10.
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Table 3. Results of the Simulation Study When X is Random for High Precision

Sample Theoretical Mean of Std of Mean of Proportion in Theoretical
Case size Statistics value estimate estimate std reject region probability

Precision .9900 .9907 02820 02887 .0618 005
Accuracy .9794 .9774 05252 05086 .0390 005

TDI .4098 .4104 03567 03592 .0558 00515 CCC .9696 .9671 02176 02108 .0320 005
CPŠ1 .7600 .7448 05103 05373 .0462 005
CPŠ3 .9590 .9563 100542 100348 .0624 005

Precision .9900 .9903 01893 01925 .0568 005
Accuracy .9794 .9784 03556 03486 .0440 005

TDI .4098 .4116 02490 02465 .0520 005H0 30 CCC .9696 .9683 01472 01455 .0350 005
CPŠ1 .7600 .7545 03472 03606 .0462 005
CPŠ3 .9590 .9586 06958 06934 .0672 005

Precision .9900 .9902 01301 01325 .0554 005
Accuracy .9794 .9790 02434 02432 .0436 005

TDI .4098 .4103 01724 01721 .0544 00560 CCC .9696 .9691 01005 01016 .0394 005
CPŠ1 .7600 .7571 02483 02483 .0500 005
CPŠ3 .9590 .9587 04875 04750 .0632 005

Precision .9933 .9938 02831 02887 .1986 01788
Accuracy .9905 .9897 05879 05753 .3690 04594

TDI .2965 .2978 03636 03664 .5166 0548115 CCC .9839 .9826 02235 02205 .3704 04400
CPŠ1 .9031 .8957 07845 07728 .4778 05949
CPŠ3 .9959 .9957 200080 108336 .5410 06382

Precision .9933 .9936 01898 01925 .3096 02807
Accuracy .9905 .9902 03924 03908 .6678 07043

TDI .2965 .2969 02494 02518 .8270 08240H1 30 CCC .9839 .9834 01531 01521 .6696 06957
CPŠ1 .9031 .8998 05075 05166 .8182 08249
CPŠ3 .9959 .9958 102364 102190 .8500 08402

Precision .9933 .9934 01301 01325 .4782 04548
Accuracy .9905 .9904 02772 02730 .9138 09218

TDI .2965 .2968 01743 01758 .9850 0979760 CCC .9839 .9837 01074 01065 .9124 09231
CPŠ1 .9031 .9018 03539 03564 .9834 09697
CPŠ3 .9959 .9959 08481 08397 .9898 09691

NOTE: “0 D 0151š0 D 10151�0 D 099; “1 D 011š1 D 1011�1 D 09933.

For the results started at 1:5, the CCC was estimated to
be 09917, which means that the within-sample total devia-
tion is about 901% of the total deviation. The one-sided lower
con� dence limit was 09875, which is greater than 09775. The
precision was estimated to be 09942 with a one-sided lower
con� dence limit of 09908, the accuracy was estimated to be
09975 with a one-sided lower con� dence limit of 09935, and
the MSD was estimated to be 00356 with a one-sided upper
con� dence limit of 00549 (both at log scale). The TDI08% was
estimated to be 2703%, which means that 80% of observations
were within a 2703% change from the target values (percentage
of percentage values). The one-sided upper con� dence limit
was 35%, which is less than 50%. Finally, the CP50% was esti-
mated to be 09653, which means that 9605% of observations
were within a 50% change from target values. The one-sided
lower con� dence limit was 08921, which is greater than 08.
The agreement between the FVIII assay and the actual con-
centration was acceptable, with good precision and accuracy.
The relative bias squared was estimated to be 0009, so that the
approximation of TDI should be excellent.

For the results started at 1:10, the CCC was estimated to be
09669, which means that the within-sample total deviation is
about 1802% of the total deviation. The one-sided lower con� -
dence limit was 09584, which is less than 09775. The precision
was estimated to be 09947 with a one-sided lower con� dence

limit of 09917, the accuracy was estimated to be 09721 with a
one-sided lower con� dence limit of 09638, and the MSD was
estimated to be 01308 with a one-sided upper con� dence limit
of 01677 (both at log scale). The TDI08% was estimated to be
5809%, which means that 80% of observations were within
a 5809% change from the target percentage values. The one-
sided upper con� dence limit was 6900%, which is greater than
50%. Finally, the CP50% was estimated to be 07016, which
means that 7002% of the observations were within a 50%
change from the target values. The one-sided lower con� dence
limit was 05898, which is less than 08. The agreement between
the FVIII assay and actual concentration was not acceptable
with good precision and mediocre accuracy. The relative bias
squared was estimated to be 30747, so the approximation of
TDI should be acceptable.

7. DISCUSSION AND FUTURE STUDY

7.1 Agreement Measurements Summary

Under the normal or log-normal distribution, each of the
agreement measurements (MSD, CCC, TDI, and CP) basically
measures the same information but from different perspec-
tives. Note that the asymptotic variances of MSD, CCC, preci-
sion, and accuracy were derived from the covariance matrix of
the sample moments, in which the normality assumption was
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Table 4. Results of the Simulation Study When X is Fixed for Moderate Precision

Sample Theoretical Mean of Std of Mean of Proportion in Theoretical
Case size Statistics value estimate estimate std reject region probability

Precision .9500 .9597 02106 02126 .1282 005
Accuracy .9794 .9800 08585 08914 .0670 005

TDI .6339 .6320 03751 03706 .0546 00515 CCC .9304 .9351 01740 01710 .0760 005
CPŠ1 .8302 .8191 06109 06066 .0504 005
CPŠ3 .9339 .9305 09218 08825 .0594 005

Precision .9500 .9543 01417 01422 .0992 005
Accuracy .9794 .9797 05895 05878 .0662 005

TDI .6339 .6359 02564 02569 .0516 005H0 30 CCC .9304 .9322 01189 01189 .0670 005
CPŠ1 .8302 .8222 03996 04044 .0486 005
CPŠ3 .9399 .9305 05856 05840 .0552 005

Precision .9500 .9525 00959 00980 .0792 005
Accuracy .9794 .9796 04019 04011 .0650 005

TDI .6339 .6327 01779 01800 .0496 00560 CCC .9304 .9317 00823 00832 .0612 005
CPŠ1 .8302 .8276 02761 02811 .0484 005
CPŠ3 .9339 .9331 04014 04060 .0546 005

Precision .9662 .9730 02115 02099 .4034 02357
Accuracy .9905 .9904 09707 101114 .2094 02824

TDI .4843 .4822 03732 03754 .3896 0426415 CCC .9571 .9602 01779 01774 .4654 04076
CPŠ1 .9285 .9235 08696 08562 .3696 04537
CPŠ3 .9841 .9837 104270 103586 .4078 05052

Precision .9662 .9692 01407 01403 .5204 04028
Accuracy .9905 .9906 07395 07750 .3494 04141

TDI .4843 .4862 02596 02600 .6340 06730H1 30 CCC .9571 .9581 01229 01232 .6828 06555
CPŠ1 .9285 .9238 05703 05677 .6226 06836
CPŠ3 .9841 .9830 09098 08926 .6498 07110

Precision .9662 .9678 00980 00966 .7380 06548
Accuracy .9905 .9906 04951 04975 .5750 06093

TDI .4843 .4844 01843 01821 .9060 0908860 CCC .9571 .9577 00876 00862 .9154 08987
CPŠ1 .9285 .9267 04012 03951 .9026 09006
CPŠ3 .9841 .9837 06344 06205 .9104 09023

NOTE: “0 D 0151š0 D 10151 �0 D 095; “1 D 011š1 D 1011�1 D 09662.

used, even though the point estimates do not depend on the
normality assumption. None of the methods proposed in this
article is expected to be robust against outliers and/or large
deviation from normality.

The interpretation of MSD is dif� cult to understand. The
TDI is desirable as an alternative because of its straightforward
interpretation. The CP is the most intuitively clear approach;
it mirrors the information provided by the TDI. Both TDI and
CP depend on the normality assumption and offer better power
for inference than the CCC. The CP would have dif� culty dis-
criminating among instruments or assays that have excellent
agreement, all because the CP values would be very close to
1. In this case, the TDI can be used to discriminate among
these.

When a meaningful clinical range is known and the study is
conducted over that range, the CCC offers a meaningful geo-
metric interpretation and is unit free. Furthermore, the accu-
racy and precision components of the CCC offer more insight.
Therefore, the CCC, accuracy, and precision remain very use-
ful tools. Note that when Y and X are not linearly related, the
CCC will capture the total deviation. However, it will treat the
nonlinear deviation as imprecision rather than inaccuracy.

The CCC, ICC, and Pearson correlation coef� cient depend
largely on the analytical range and the intrasample variation.

This property makes sense when we want to assess agree-
ment over the range of all potential outcomes. Good agree-
ment over a small range of measurements (e.g., at low concen-
tration only) can not be extrapolated to infer good agreement
over a larger range of measurements (e.g., at higher concen-

Figure 1. HemoCue (Vertical) and Sigma Readings (Horizontal) on
Measuring DCLHb.
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Table 5. Results of the Simulation Study When X is Fixed for High Precision

Sample Theoretical Mean of Std of Mean of Proportion in Theoretical
Case size Statistics value estimate estimate std reject region probability

Precision .9900 .9919 02010 02059 .1200 005
Accuracy .9794 .9795 03690 03599 .0586 005

TDI .4190 .4256 02923 03013 .0456 00515 CCC .9696 .9707 01342 01311 .0702 005
CPŠ1 .7534 .7473 04232 04527 .0520 005
CPŠ3 .8879 .8880 06513 06695 .0632 005

Precision .9900 .9910 01364 01373 .1048 005
Accuracy .9794 .9795 02556 02529 .0566 005

TDI .4190 .4214 02030 02059 .0492 005H0 30 CCC .9696 .9703 00932 00922 .0660 005
CPŠ1 .7534 .7514 02899 03011 .0538 005
CPŠ3 .8879 .8888 04337 04421 .0634 005

Precision .9900 .9905 00943 00946 .0872 005
Accuracy .9794 .9795 01773 01784 .0558 005

TDI .4190 .4199 01410 01434 .0500 00560 CCC .9696 .9700 00648 00651 .0630 005
CPŠ1 .7534 .7527 02010 02065 .0536 005
CPŠ3 .8879 .8885 02963 03020 .0610 005

Precision .9933 .9947 02021 02053 .4276 02509
Accuracy .9905 .9906 04564 04379 .6090 06351

TDI .2965 .2993 03165 03198 .6960 0745215 CCC .9839 .9847 01494 01450 .7802 07236
CPŠ1 .9101 .9109 07608 07546 .7250 07165
CPŠ3 .9809 .9832 103544 102804 .7614 07437

Precision .9933 .9940 01381 01369 .5596 04276
Accuracy .9905 .9906 03104 03079 .8886 08730

TDI .2965 .2984 02172 02205 .9482 09473H1 30 CCC .9839 .9842 01020 01022 .9664 09413
CPŠ1 .9101 .9096 04879 04944 .9556 09243
CPŠ3 .9809 .9817 08371 08259 .9644 09230

Precision .9933 .9937 00945 00943 .7766 06853
Accuracy .9905 .9906 02169 02166 .9942 09874

TDI .2965 .2968 01554 01542 .9992 0998560 CCC .9839 .9841 00732 00721 .9994 09982
CPŠ1 .9101 .9106 03422 03397 .9992 09954
CPŠ3 .9809 .9816 05759 05643 .9992 09933

NOTE: “0 D 0151š0 D 10151�0 D 099; “1 D 01š1 D 1011�1 D 09933.

tration). However, caution must be taken when using these
correlation coef� cients. Comparisons among these coef� cients
are meaningful only when the clinical study ranges are simi-
lar. Ranges by different units can be compared as long as they
have similar clinical interpretations.

7.2 Categorical Data

The CP has long been used in categorical data by summing
the diagonal elements of the joint probability matrix based on
assigning subjects’ scores to two raters. Cohen (1960) pro-
posed using the kappa coef� cient to correct for the probabil-
ity of agreement by chance. Cohen (1968) later improved the

Table 6. Agreement Statistics and Their Con’ dence Limits
for Example 1

Statistics Estimate 95% Con’ dence limit Allowance

CCC 09866 09838 09775
Accuracy 09999 09989
Precision 09867 09839
MSD 61007 61875
TDI09 12705 13604 150
CP150 09463 09276 09

NOTE: Relative bias squared was estimated to be .003 (µ1; see sec. 2.4).

Figure 2. Observed FVIII Assay Results (Vertical, %) Versus Targeted
Values (Horizontal, %) Started at 1:5.

kappa coef� cient by assigning different weights according to
the degree of disagreements. Interestingly, CCC becomes the
weighted kappa proposed by Cohen (1968). Therefore, we can
use the CCC for categorical data in most situations (Robieson
1999; King and Chinchilli 2001).
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Figure 3. Observed FVIII Assay Results (Vertical, %) Versus Targeted
Values (Horizontal, %) Started at 1:10.

7.3 More General Cases

This article provides a systematic treatment of modeling
agreement measurement methodology based on the most basic
bivariate model when X is random and on the regression
model when X is � xed. When X is random, the model does
not allow us to assess agreement among repeated estimates
of the target method. Therefore, it is not known whether any
mediocre agreement between two methods may have resulted
from imprecision in the target method. In an individual bioe-
quivalence ( IBE) study, measures of the bioavailability are
recorded when a patient is given a test formulation twice (T1

and T2) and a reference formulation twice (R1 and R2) by a
four-period crossover design (Schall and Williams 1996). The
current FDA guideline is based on the absolute and relative
measures of E4T ƒ R52 ƒ E4R1

ƒ R25
2. The denominator of

the relative measure is E4R1 ƒ R25
2.

The many gold standard assays include immunoassays or
enzyme assays, which are imprecise. The methodologies and
designs used in an IBE study should be adopted for imprecise

Table 7. Agreement Statistics and Their Con’ dence Limits
for Example 2

Statistics Estimate 95% Con’ dence limits Allowance

Started at 1:5
CCC 09917 09875 09775
Accuracy 09975 09935
Precision 09942 09908
MSD 00356 00549
TDI08% 270347 350010 50
CP50% 09653 08921 08

Started at 1:10
CCC 09669 09584 09775
Accuracy 09721 09638
Precision 09947 09917
MSD 01308 01677
TDI08% 580949 690007 50
CP50% 07016 05898 08

NOTE: Relative bias squared was estimated to be 0009 for the assay started at 1:5 and 30747
for the assay started at 1:10 (µ8; see sec. 2.4).

assays. More importantly, to prove that a new method is better
than a gold standard method, one should adopt the four-period
design and principles used in the IBE study. Here we would
be in a position to demonstrate an acceptable E4T ƒ R52 and
further that E4T1

ƒT25
2 < E4R1

ƒR25
2. We would then trans-

late the measurement into CCC, precision, accuracy, TDI, and
CP for better interpretation. Our future articles will address
those more general cases.

When assessing the agreement coef� cients, there might be
situations where some other controllable factors could be
present. For example, in a four period crossover bioequiva-
lence study, treatment-order effects might be present. In these
situations, we can eliminate these effects by � tting a mixed-
effects model with these � xed effects and a random subject
effect in the model. Then the methods presented here can
be applied asymptotically by letting Y and X represent the
respective residuals computed from the model.

Chinchilli Martel, Kumanyka, and Lloyd (1996) extended
Lin’s CCC to repeated-measures designs by using a weighted
CCC. The CCC on multiple raters with robust estimates has
been studied by King and Chinchilli (2001). For more gen-
eral approaches, the use of generalized estimating equations
(GEEs) possibly could be used to model the functions of the
agreement coef� cients. Barnhart and Williamson (2001) used
GEEs to model CCC with good results. They used three esti-
mating equations, one to model location sums, one to model
the sums of squares, and one to model the cross-products with
Z transformation of CCC values computed from functions of
the foregoing. Potentially, GEEs also can be used to model
MSD, TDI, and CP. This approach is � exible enough to allow
comparisons of multiple agreement coef� cients in the pres-
ence of some explanatory covariates. Such an approach would
allow us to compare, for example, the agreements of two com-
peting methods (A and B) with a gold standard method (C)
or, in other words, to compare the agreement of A and C to
the agreement of B and C . Thus GEE will � t nicely into the
framework of an IBE study for comparing the agreement of T
and R relative to the agreement of R1 and R2, while control-
ling for period and order effects.

8. CONCLUSION

We have summarized various methods for assessing the
agreement among individual paired samples when X is ran-
dom or � xed and when error is constant or proportional.
We suggest using CCC, TDI, and CP to summarize the agree-
ment results. These offer the same information from differ-
ent perspectives. In addition, the coef� cients of accuracy and
precision should also accompany the results to identify the
sources of any disagreement. When we are con� dent that the
data have normal or lognormal distribution, inference should
be based on TDI and CP for better power of accepting
the agreement. We plan to provide more general approaches
regarding all of the above in the future.

For convenience, a validated SAS macro is provided at
http://www.uic.edu/ hedayat/ that computes the estimates
and con� dence limits for CCC, precision, accuracy, TDI, and
CP. We can specify when X is random or � xed and the error
is constant or proportional, along with the con� dence level,
CCC, CP, and TDI allowances. The program also generates

http://www.uic.edu/%7Ehedayat/
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the agreement plot of Y versus X with the identity line under
a customized scale.

[Received December 2000. Revised July 2001.]
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