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The adaptive design strategy is a feasible approach for optimal designs in dose-finding
studies, where the information matrices usually depend on the unknown parameters.
Focusing on three pharmacodynamics sigmoid Emax models, we derive the corresponding
simple formats of the adaptive optimal designs regardless of the optimality criteria or
parameters of interest. An algorithm for deriving a specific adaptive optimal design is
developed. A simulation study comparing the adaptive optimal designs and the uniform
designs is also performed.
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1. Introduction

Dose-finding studies are an indispensable part of the drug discovery processes. Poor estimation of drug effective levels
may have a direct impact on drug development. The accuracy of estimation depends on how the data is collected, i.e., the
design of experiments. An optimal/efficient design can save time, money, and energy, so it is important to develop the
optimal/efficient designs for a variety of possible situations.

Although there exists a vast literature on optimal designs for linear models, less is known about optimal designs for
nonlinear models, especially some nonlinear modeled dose-finding studies. Perhaps the main reason is the nonlinearity. The
dose-response models are nonlinear in general, which makes the optimal designs rather complicated. While linear models
are all of the form EðyÞ ¼ Xβ, there is no simple canonical form for nonlinear models and the mathematics tends to become
more difficult for nonlinear models. In addition, optimal designs depend on the parameters of interest as well as optimality
criteria. Each different combination may need different approaches of deriving optimal designs. On the other hand, the
Fisher information matrices for nonlinear models depend on the unknown parameters. Thus, the challenge in designing an
experiment for such a model is that one is looking for the best design with the aim of estimating the unknown parameters,
and yet one has to know the parameters to find the best design. One way to solve this problem is the “locally” optimal
design, which is based on the “best guess” of the unknown parameters (Chernoff, 1953). Hereafter, the word “locally” is
omitted for simplicity.

How can we get the reliable “best guess”? The practical way is adaptive designs. An initial experiment is used to gather
some information about the unknown parameters. The preliminary estimates can then serve as the “best guess” on which
the next stage design can be based on. In the second stage, the question then becomes how to add more design points in an
optimal fashion, such that the combination of the existing design and the new added design is optimal/efficient according to
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some optimality criteria. The observations from the initial and second stage designs are used to obtain new estimation of
parameters. If a third stage design is needed, the new estimates obtained from previous two stages’ designs can serve as the
“best guess”. The process can be carried on to the next stage in the similar fashion.

Adaptive optimal designs have been proved to be efficient. In a simulation study, Maloney et al. (2007) showed that
adaptive designs perform extremely well both when prior information is accurate and inaccurate. Zamuner et al. (2010)
showed that an adaptive optimal design can provide an efficient experimental design for receptor occupancy studies using
positron emission tomography. While adaptive optimal designs continue to gain popularity in biopharmaceutical
applications, there is lack of theoretical and systematic work in this field. Dragalin et al. (2007) studied three sigmoid
Emax models. Focusing on D-optimality, they proposed a procedure of deriving adaptive designs. Their procedure selected
the dose levels from the set of all available dose levels which determined in the early phase of drug development. The dose
levels are selected by optimizing the sensitivity function. Leonov and Miller (2009) studied a slightly simplified Emax model.
Once new dose levels are selected, the next dose level is to optimize a new sensitivity function, which is adjusted by adding
the previous selected dose levels to the existing design. Also, there are Minimax and Bayesian approaches, which were well
developed in the design literature through years. The Minimax approach constructs optimal designs with respect to the
minimize the partial maximum variance criterion introduced by Elfving (1959), it has been discussed by many authors (see
e.g. Murty, 1971; Torsney and López-Fidalgo, 1995; Krafft and Schaefer, 1995 or Dette and Studden, 1994). The Bayesian
design approaches specify probability-measure on the parameters and select any design maximizing the expected value of
some function of the information matrix. Chaloner and Verdinelli (1995) gave an review paper on Bayesian experimental
design, the vast literature on Bayesian design approaches has been introduced in that review paper. Like the sensitivity
function approaches, Minimax and Bayesian design approaches may not be the best for a finite number of steps.

As we mentioned before, optimal designs depend on the function of parameters that we are interested in and the chosen
optimality criterion. There are many combinations of parameters of interest and optimality criteria. Although we may be
able to derive a strategy for a specific combination, this may not be feasible for the practical use of adaptive optimal designs.
In this paper, focusing on three different sigmoid Emax models studied in Dragalin et al. (2007), we are targeting on a general
strategy of deriving adaptive optimal designs regardless of parameters of interest or optimality criteria. Specifically, we
derive simple formats of adaptive optimal designs regardless of the optimality criteria or parameters of interest. In addition,
we propose an algorithm of deriving a specific optimal design. Utilizing this algorithm, we perform a simulation study,
which compares the adaptive optimal designs with uniform designs. It demonstrates that the adaptive optimal designs are
highly efficient.

For the lay-out of the remainder of the paper, three pharmacodynamics sigmoid Emax models as well as their
corresponding information matrices are introduced in Section 2. The formats of the adaptive optimal designs are presented
in Section 3. In Section 4, the algorithm is introduced followed by the simulation study. Section 5 is a short discussion.
2. The models and information matrices

The sigmoid Emax model in pharmacodynamics is to characterize the concentration-response curve (see e.g., Holford and
Sheiner, 1981; MacDougall, 2006). This is a logistic model with the mean of the response at a given dose x is

ηðx; θÞ ¼ θ1þðθ2�θ1Þ
xθ4

xθ4 þθθ43
ð2:1Þ

Here, θ1 is the minimummean response; θ2 is the maximum mean response; θ3 is the ED50, it is the dose at which the 50% of
the maximum mean effect is attained; θ4 is the slope parameter, which describes the steepness of the curve. Here θ24θ1
and θ340. If the θ4 is larger, the curve is steeper.

We study the same three models as those in Dragalin et al. (2007)
Model 1. Y �Nðηðx; θÞ; s2Þ with s2 constant.
Model 2. Y �Nðηðx; θÞ; s2ðx; θÞÞ with s2ðx; θÞ ¼ λ2½ηðx; θÞ�2. The coefficient of variation is constant and equals to λ.
Model 3. Y has a Gamma distribution with the shape parameter α and scale parameter β, where α¼ 1=λ2 and β¼ λ2ηðx; θÞ.

With this parametrization, EðYÞ ¼ ηðx; θÞ, VðYÞ ¼ λ2η2ðx; θÞ, and the coefficient of variation is constant and equals to λ.
The corresponding Fisher information matrices have been derived by Dragalin et al. (2007). We reproduce the

information matrices here using a slightly different format. An exact design can be presented as fðxi;niÞ; i¼ 1;…; kg, where
ni is the number of subjects assigned to design point xi. With n denoting the total number of subjects, we have that ∑ini ¼ n.
Since finding an exact optimal design is often a difficult problem, the corresponding approximate design, in which ni=n is
replaced by ωi, is considered. Thus a design can be denoted by ξ¼ fðxi;ωiÞ; i¼ 1;…; kg, where ωi40 and ∑iωi ¼ 1. By
standard methods, the information matrix for θ under each of the three models has the same format: IξðθÞ ¼∑k

i ωiIðxi; θÞ,
where Iðxi; θÞ is the information matrix at the single point xi. The expression of Iðx; θÞ depends on the model we choose.

We first compute the expression of ∂ηðx; θÞ=∂θ. Let c¼ ðx=θ3Þθ4 then

∂ηðx; θÞ
∂θ

¼ 1
1þc

;
c

1þc
;
θ4ðθ1�θ2Þc
θ3ð1þcÞ2

; �ðθ1�θ2Þc lnðcÞ
θ4ð1þcÞ2

" #T
: ð2:2Þ
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For Model 1, when variance, s2, is known (not a design parameter), Iðx; θÞ can be written as

Iðx; θÞ ¼ 1
s2

∂ηðx; θÞ
∂θ

∂ηðx; θÞ
∂θT

� �
: ð2:3Þ

When s2 is unknown, Iðx; θÞ can be written as

Iðx; θ; s2Þ ¼ 1
s2

∂ηðx; θÞ
∂θ

∂ηðx; θÞ
∂

θT 0

0
1

2s2

0
BB@

1
CCA: ð2:4Þ

For Model 2, when the coefficient of variation, λ, is known (not a design parameter), Iðx; θÞ can be written as

Iðx; θÞ ¼ 2λ2þ1
λ2

1
η2ðx; θÞ

∂ηðx; θÞ
∂θ

∂ηðx; θÞ
∂θT

� �
: ð2:5Þ

When λ is unknown, Iðx; θÞ can be written as

Iðx; θ; λÞ ¼

2λ2þ1
λ2

1
η2ðx; θÞ

∂ηðx; θÞ
∂θ

∂ηðx; θÞ
∂θT

� �
2

ληðx; θÞ
∂ηðx; θÞ

∂θ
2

ληðx; θÞ
∂ηðx; θÞ
∂θT

2
λ2

0
BBB@

1
CCCA ð2:6Þ

For Model 3, when the coefficient of variation, λ, is known (not a design parameter), Iðx; θÞ can be written as

Iðx; θÞ ¼ 1
λ2

1
η2ðx; θÞ

∂ηðx; θÞ
∂θ

∂ηðx; θÞ
∂θT

� �
: ð2:7Þ

Whenλis unknown, the Fisher information matrix for a single point x is

Iðx; θ; λÞ ¼

1
λ2

1
η2ðx; θÞ

∂ηðx; θÞ
∂θ

∂ηðx; θÞ
∂θT

� �
0

0 � 4
λ2

1
λ2

� 1
λ4
ψ

1
λ2

� �� �
0
BBB@

1
CCCA: ð2:8Þ

where ψ is the trigamma function.
3. Structure of optimal designs

As we discuss earlier, optimal designs depend on the optimality criteria and the parameters of interest. It is unlikely that
we could find a design which is best among all criteria and any parameters of interest. However, it is well-known that, for
two designs ξ1 and ξ2, if the information matrix of ξ1 ðIðξ1ÞÞ dominates that of ξ2, i.e., Iðξ1ÞZ Iðξ2Þ under the Loewner
ordering, then ξ1 is not inferior to ξ2, regardless of the choices of criteria or parameters of interest. If we can identify a
subclass of designs with a simple format, so that for any given design ξ outside of the subclass, there exists a design ξn in that
subclass with Iξn Z Iξ, then we can focus on the designs in that subclass. This will greatly simplify the searching of optimal
designs both analytically and numerically.

This approach can be directly applied to adaptive experiments. In an adaptive design, the next stage design depends on
the estimation of parameters from the previous stages, which are random variables. Thus the new added design points are
also random variables. They are conditionally independent (given specific values of parameters estimation) rather than
independent. It is in general very complicated, perhaps even impossible, to derive the explicit form of the true information
matrix. Silvey (1980) suggested to use the working information matrix computed by ignoring the dependence instead of the
true information matrix. Such strategy is commonly used in the adaptive design literature. If ξ1 denotes the design used so
far and ξ2 is the design to be used at the next stage, then the total information matrix is Iξ1 þ Iξ2 . Since the first matrix is fixed,
if for any given design ξ2, there exists a design ξn2 in that subclass with Iξn2 Z Iξ2 , then we have Iξ1 þ Iξn2 Z Iξ1 þ Iξ2 . Therefore, we

can again focus on the designs in that subclass. We can implement this strategy by considering the structure of the
information matrix.

For a nonlinear regression model, suppose the information matrix of a design ξ¼ fðωi; xiÞ; i¼ 1;…;ng can be written as

IξðθÞ ¼ PðθÞ ∑
n

i ¼ 1
ωiCðθ; ciÞ

 !
PðθÞT : ð3:1Þ
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Here PðθÞ is a matrix that depends on θ only and

Cðθ; ciÞ ¼

Ψ11ðciÞ Ψ12ðciÞ … Ψ1pðciÞ
Ψ12ðciÞ Ψ22ðciÞ … Ψ2pðciÞ

⋮ ⋮ ⋱ ⋮
Ψ1pðciÞ Ψ2pðciÞ … ΨppðciÞ

0
BBBB@

1
CCCCA; ð3:2Þ

where ci is a function xi and θ and ciA ½A;B�. Rename all linear independent Ψ lt , 1r lrtrp to Ψ1;…;Ψ k such that (i) Ψ k is
one of Ψ ll, 1r lrp and (ii) there is no Ψ lt ¼ Ψ k for lot. If there exists a design ~ξ ¼ fð ~ωj; ~xjÞ; j¼ 1;…; ~ng, such that

∑
n

i
ωiΨ lðciÞ ¼ ∑

~n

j
~ω jΨ lð~cjÞ; l¼ 1;…; k�1 ð3:3Þ

and

∑
n

i
ωiΨ kðciÞo ∑

~n

j
~ω jΨ kð~cjÞ; ð3:4Þ

then clearly IξðθÞr I ~ξ ðθÞ.
For any design ξ, how can we find ~ξ with a simple format? Yang (2010) gives a sufficient condition for deriving such a

subclass of designs. Assume that (i) Ψ1;…;Ψ k are infinitely differentiable; (ii) f l;l has no zero value on [A,B]. Here, f l;t ,
1rtrk; tr lrk are defined as follows:

f l;tðcÞ ¼
Ψ ′

lðcÞ; t ¼ 1; l¼ 1;…; k
f l;t�1ðcÞ

f t�1;t�1ðcÞ

� �
′; 2rtrk; tr lrk:

8><
>: ð3:5Þ

The computations of f l;t can be viewed as the following lower triangular matrix.

f 1;1 ¼Ψ ′
1

f 2;1 ¼Ψ ′
2 f 2;2 ¼

f 2;1
f 1;1

� �′

f 3;1 ¼Ψ ′
3 f 3;2 ¼

f 3;1
f 1;1

� �′

f 3;3 ¼
f 3;2
f 2;2

� �′

f 4;1 ¼Ψ ′
4 f 4;2 ¼

f 4;1
f 1;1

� �′

f 4;3 ¼
f 4;2
f 2;2

� �′

f 4;4 ¼
f 4;3
f 3;3

� �′

⋮ ⋮ ⋮ ⋮ ⋱

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

The (tþ1)th column is obtained from the tth column. The lth ðlZtþ1Þ element of the (tþ1)th column is the derivative of
the ratio between the lth and the tth element of the tth column.

Let FðcÞ ¼∏k
l ¼ 1f l;lðcÞ, cA ½A;B�. Yang (2010) showed that for any given design ξ, there exists a design ~ξ, such that Iξr I ~ξ .

Here, the number of support points of ~ξ depends on different situations. We refer readers to Theorem 2 of Yang (2010) for
details.

With this approach, we are ready to present our first result.

Theorem 1. Under Model1, i.e., normal linkage models with constant variance s2, in the continuous design space [A, B], for an
arbitrary design ξ, there exists a design ~ξ with at most four support points such that IξðθÞr I ~ξ ðθÞ regardless of s2 being known or
unknown.

Proof. Because of the structures of information matrices (2.3) and (2.4), it is clear that if the conclusion holds when variance
is known, then the same conclusion also holds when variance is unknown. So we only consider the case when variance is
known. By some routine algebra, the Fisher information matrix, (2.3), can be written as (3.1) with

PðθÞ ¼ 1
s

0 1 0 0
1 �1 0 0

0
θ4ðθ1�θ2Þ

θ3
�θ4ðθ1�θ2Þ

θ3
0

0 0 0 �θ1�θ2
θ4

0
BBBBBBB@

1
CCCCCCCA

ð3:6Þ
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and

Cðθ; ciÞ ¼

1
1

1þci

1
ð1þciÞ2

ci log ðciÞ
ð1þciÞ2

1
1þci

1
ð1þciÞ2

1
ð1þciÞ3

ci log ðciÞ
ð1þciÞ3

1
ð1þciÞ2

1
ð1þciÞ3

1
ð1þciÞ4

ci log ðciÞ
ð1þciÞ4

ci log ðciÞ
ð1þciÞ2

ci log ðciÞ
ð1þciÞ3

ci log ðciÞ
ð1þciÞ4

c2i log
2ðciÞ

ð1þciÞ4

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: ð3:7Þ

Here, ci ¼ ðxi=θ3Þθ4 . Let Ψ1ðcÞ ¼ 1=ð1þcÞ4, Ψ2ðcÞ ¼ 1=ð1þcÞ3, Ψ3ðcÞ ¼ c log ðcÞ=ð1þcÞ4, Ψ4ðcÞ ¼ 1=ð1þcÞ2, Ψ5ðcÞ ¼ c log ðcÞ
=ð1þcÞ3, Ψ6ðcÞ ¼ 1=1þc, Ψ7ðcÞ ¼ c log ðcÞ=ð1þcÞ2, and Ψ8ðcÞ ¼ c2 log 2ðcÞ=ð1þcÞ4. We can verify that the corresponding
f 1;1 ¼ �4=ð1þcÞ5, f 2;2 ¼ 3

4, f 3;3 ¼ 3cþ1=3c2, f 4;4 ¼ 4cð3cþ2Þ=ð3cþ1Þ2, f 5;5 ¼ ð9c3þ15c2þ7cþ1Þ=c2ð3cþ2Þ2, f 6;6 ¼ 9cð3cþ2Þ
=ð9c2þ6cþ1Þ, f 7;7 ¼ ð3cþ1Þ=3c2, and f 8;8 ¼ 2=3c2. Notice that c40, which implies that FðcÞo0. Thus the conclusion follows
by Theorem 2 of Yang (2010). □

Although the information matrices of Model 2, (2.5) and (2.6), are similar to their counterparts of Model 1, the additional
term, 1=η2ðx; θÞ, makes it difficult to study the properties of fll and F(c) due to their cumbersome expression. Dette and Melas
(2011) generalized Yang (2010)'s result and their result could address this issue. They showed that if one of the following
conditions holds

f1;Ψ1;…;Ψ k�1g and f1;Ψ1;…;Ψ k�1;Ψ kg form Chebyshev systems; ð3:8Þ

or

f1;Ψ1;…;Ψ k�1g and f1;Ψ1;…;Ψ k�1; �Ψ kg form Chebyshev systems; ð3:9Þ

then for any arbitrary design ξ, there exists ~ξ, such that (3.3) and (3.4) hold. Consequently, Iξr I ~ξ . The format of ~ξ depends on
the situation and has the same format as that in the preceding approach. In fact, FðcÞ40 for all cA ½A;B� is a sufficient
condition that (3.8) holds while FðcÞo0 for all cA ½A;B� is a sufficient condition that (3.9) holds.

Following Karlin and Studden (1966), f1;Ψ1;…;Ψ k�1;Ψ kg is a Chebyshev system if

1 1 … 1
Ψ1ðz0Þ Ψ1ðz1Þ … Ψ1ðzkÞ

⋮ ⋮ ⋱ ⋮
Ψ kðz0Þ Ψ kðz1Þ … Ψ kðzkÞ

���������

���������
ð3:10Þ

is strictly positive whenever Arz0oz1o⋯ozkrB.
Clearly, the sign of (3.10) remains fixed if we multiply each function of f1;Ψ1;…;Ψ k�1;Ψ kg by a positive function, say G.

For some problems, it is more convenient to study the Chebyshev system property of fG;GΨ1;…;GΨ k�1;GΨ kg instead of that
of f1;Ψ1;…;Ψ k�1;Ψ kg.
Theorem 2. Under Model 2, i.e., normal linkage models with constant coefficient of variation λ, in the continuous design space
[A,B], for an arbitrary design ξ, there exists a design ~ξ with at most four support points such that IξðθÞr I ~ξ ðθÞ regardless λ being
known or unknown.
Proof. We first consider the case when λ is known. By some routine algebra, the Fisher information matrix, (2.5), can be
written as (3.1) with

PðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ2þ1

λ2

s
0 1 0 0
1
θ2

�θ1
θ2

0 0

0
θ4ðθ1�θ2Þ

θ3
�θ4ðθ1�θ2Þ

θ3
0

0 0 0 �θ1�θ2

0
BBBBBBBBB@

1
CCCCCCCCCA

ð3:11Þ
θ4
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and

Cðθ; ciÞ ¼

1
1

θ1þθ2ci

1
ð1þciÞðθ1þθ2ciÞ

ci log ðciÞ
ð1þciÞðθ1þθ2ciÞ

1
θ1þθ2ci

1
ðθ1þθ2ciÞ2

1
ð1þciÞðθ1þθ2ciÞ2

ci log ðciÞ
ð1þciÞðθ1þθ2ciÞ2

1
ð1þciÞðθ1þθ2ciÞ

1
ð1þciÞðθ1þθ2ciÞ2

1
ð1þciÞ2ðθ1þθ2ciÞ2

ci log ðciÞ
ð1þciÞ2ðθ1þθ2ciÞ2

ci log ðciÞ
ð1þciÞðθ1þθ2ciÞ

ci log ðciÞ
ð1þciÞðθ1þθ2ciÞ2

ci log ðciÞ
ð1þciÞ2ðθ1þθ2ciÞ2

c2i log
2ðciÞ

ð1þciÞ2ðθ1þθ2ciÞ2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: ð3:12Þ

Here, ci ¼ ðxi=θ3Þθ4 . It can be shown that 1=ð1þcÞðθ1þθ2cÞ is a linear combination of 1=ðθ1þθ2cÞ2 and 1=ð1þcÞðθ1þθ2cÞ2. Let
Ψ1ðcÞ ¼ 1=ð1þcÞ2ðθ1þθ2cÞ2, Ψ2ðcÞ ¼ 1=ð1þcÞðθ1þθ2cÞ2, Ψ3ðcÞ ¼ c log ðcÞ=ð1þcÞ2ðθ1þθ2cÞ2, Ψ4ðcÞ ¼ 1=ðθ1þθ2cÞ2, Ψ5ðcÞ ¼
c log ðcÞ=ð1þcÞðθ1þθ2cÞ2, Ψ6ðcÞ ¼ 1=ðθ1þθ2cÞ, Ψ7ðcÞ ¼ c log ðcÞ=ð1þcÞðθ1þθ2cÞ, and Ψ8ðcÞ ¼ c2 log 2ðcÞ=ð1þcÞ2ðθ1þθ2cÞ2. Direct
computation shows that the corresponding fll is cumbersome and difficult to handle.
Let G¼ ð1þcÞ2ðθ1þθ2cÞ2. As we discuss earlier, it is sufficient to study the Chebyshev system property of the following

system

fð1þcÞ2ðθ1þθ2cÞ2;1;1þc; c log ðcÞ; ð1þcÞ2; cð1þcÞ log ðcÞ; ð1þcÞ2ðθ1þθ2cÞ; cð1þcÞðθ1þθ2cÞ log ðcÞ; c2 log 2ðcÞg: ð3:13Þ
By using row reduction of a matrix (i.e. multiplying a row by a constant, switching two rows or adding constant times a row
to another row) and the fact both θ1 and θ2 are positive, the Chebyshev system property of (3.13) is equivalent to that of the
following system

f1; c; c log ðcÞ; c2; c2 log ðcÞ; c3; c3 log ðcÞ; �c4; c2 log 2ðcÞg: ð3:14Þ
Now we can compute the corresponding fll for the new ~Ψ 1ðcÞ ¼ c, ~Ψ 2ðcÞ ¼ c log ðcÞ, ~Ψ 3ðcÞ ¼ c2, ~Ψ 4ðcÞ ¼ c2 log ðcÞ, ~Ψ 5ðcÞ ¼ c3,
~Ψ 6ðcÞ ¼ c3 log ðcÞ, ~Ψ 7ðcÞ ¼ �c4, and ~Ψ 8ðcÞ ¼ c2 log 2ðcÞ. We can verify that the corresponding f 1;1 ¼ 1, f 2;2 ¼ 1=c, f 3;3 ¼ 2,

f 4;4 ¼ 1=x, f 5;5 ¼ 6, f 6;6 ¼ 1=c, f 7;7 ¼ �12, and f 8;8 ¼ 1=18c3. Since c40, we have FðcÞo0. This implies that (3.9) holds. Our
conclusion follows by Theorem 3.1 of Dette and Melas (2011).
Now, we consider the case when λ is unknown. For an arbitrary design ξ¼ fðωi; xiÞ; i¼ 1;…;ng, there exists a design

~ξ ¼ fð ~ω j; ~xjÞ; j¼ 1;…;4g such that IξðθÞr I ~ξ ðθÞ for information matrix (2.5). From (2.6), the information matrix when λ is
unknown, it is sufficient to show that

∑
n

i ¼ 1
ωi

1
ηðxi; θÞ

∂ηðxi; θÞ
∂θT

¼ ∑
4

j ¼ 1
~ω j

1
ηð ~xj; θÞ

∂ηð ~xj; θÞ
∂θT

: ð3:15Þ

Direct computation shows that

1
ηðx; θÞ

∂ηðx; θÞ
∂θ

¼ 1
θ1þθ2c

;
c

θ1þθ2c
;

θ4ðθ1�θ2Þc
θ3ð1þcÞðθ1þθ2cÞ

; � ðθ1�θ2Þc lnðcÞ
θ4ð1þcÞðθ1þθ2cÞ

� �T
ð3:16Þ

with the same transformation on c¼ ðx=θ3Þθ4 . The first component of (3.16) is Ψ6ðcÞ, the second component is linear
transformation of Ψ6ðcÞ, the third component is a linear combination of Ψ2ðcÞ and Ψ4ðcÞ, and the last component is
proportional to Ψ7ðcÞ. Notice that (3.3) holds for Ψ1ðcÞ;…;Ψ7ðcÞ. This implies that (3.15) holds. Thus, the conclusion
follows. □

Although Model 3 involves a distribution other than normal distribution, its information matrices, (2.7) and (2.8), are
similar to the information matrix (2.5) of Model 2 when λ is known. A design determines the information matrices through
the expression 1=η2ðx; θÞ½ð∂ηðx; θÞ=∂θÞð∂ηðx; θÞ=∂θT Þ�, the same way as that of Model 2 when λ is known. Thus, the conclusion of
Theorem 2 can be immediately extended to Model 3.

Theorem 3. Under Model3, i.e., Gamma linkage models with constant coefficient of variation λ, in the continuous design space
[A,B], for an arbitrary design ξ, there exists a design ~ξ with at most four support points such that IξðθÞr I ~ξ ðθÞ regardless λ being
known or unknown.

4. Simulation studies

With Theorems 1, 2, and 3 we can focus on a subclass of designs with a simple format for any optimal design. But we still
need to determine the four design points and their corresponding weights. How to derive a specific optimal design? With
the complicated information structure, it could be rather difficult to derive an analytical solution, if not impossible. Although
numerical solution is in general feasible, with total seven variables to be determined, the computation is rather complicated.

Since deriving a numerical optimal design is reduced to maximization of a function of a few arguments, some standard
methods from Matlab or R usually have some limitations. They often stuck at a local minimum/maximization and failed to
find a global minimum/maximum solution, especially when the optimized functions are complicated. The local solutions are
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not usually optimal designs. Given that our log-likelihood functions in our examples are complicated functions with 7
arguments (four design points and three weights), it might be rather difficult to find the true optimal designs with standard
methods from Matlab or Stufken and Yang (2012) provided an algorithm of deriving optimal designs. Although their
approach is for one-stage design, their approach can be extended for adaptive designs. The main idea of their approach is
using adaptive grid search, which starts with a coarse grid that is made increasing finer in later stages. At each stage we
identify the best design based on the grid at that stage. For the next stage, a finer grid is restricted to neighborhoods of the
best support points found at the current stage. The search continues until a specified accuracy for the design points is
reached. For a given design support, the corresponding optimal weights are determined through solving a few nonlinear
equations. We refer readers to Theorems 5 and 6 of Stufken and Yang (2012) for details.

Although this approach cannot guarantee the resulting design is an optimal design, the following general equivalence
theorem for adaptive optimal designs can be used to verify the optimality. The proof is standard and therefore omitted (c.f.,
Pukelsheim, 2006). Let ξ0 be the design we have used so far, n0 be the associated sample size, ξ1 be the next stage design, n1
be the associated sample size, FðθÞ be a vector of parameter functions of interest. The covariance matrix of the maximum
likelihood estimator of FðθÞ, ΣF , can be written as

ΣF ¼
∂FðθÞ
∂θT

ðn0Iξ0 þn1Iξ1 Þ�1∂FðθÞ
∂θ

: ð4:1Þ

Here, we assume that the matrix n0Iξ0 þn1Iξ1 is non-singular. Such assumption is true in general since our initial design ξ0 is
to estimate all parameters. We consider two optimality criteria here: A- and D-optimality. A similar conclusion can be
generalized to more general optimality criteria, such as Φp-optimality (Biedermann et al., 2006). Under D-optimality, we
are looking for ξ, such that jΣ�1

F j is maximized. This optimality criterion results in minimizing the generalized variance of
the parameter estimates. Under A-optimality, we are looking for ξ, such that TrðΣF Þ is minimized. This criterion results in
minimizing the average variance of the estimates.

Theorem 4. Let ξ0 be the design we have used so far, ξ1 is the next stage design, FðθÞ be a vector of parameter functions of
interest, and ΣF be the covariance matrix of FðθÞ.
Then a design ξn1 is D-optimal for FðθÞ if and only if, for all design points x,

Tr Σ�1
F

∂FðθÞ
∂θT

ðn0Iξ0 þn1Iξn1 Þ
�1Iðx; θÞðn0Iξ0 þn1Iξn1 Þ

�1∂FðθÞ
∂θ

� �

rTr Σ�1
F

∂FðθÞ
∂θT

ðn0Iξ0 þn1Iξn1 Þ
�1Iξn1 ðn0Iξ0 þn1Iξn1 Þ

�1∂FðθÞ
∂θ

� �
; ð4:2Þ

where equality holds when x is any support point of a D-optimal design for FðθÞ.
Similarly, a design ξn1 is A-optimal for FðθÞ if and only if, for all design points x,

Tr
∂FðθÞ
∂θT

ðn0Iξ0 þn1Iξn1 Þ
�1Iðx; θÞðn0Iξ0 þn1Iξn1 Þ

�1∂FðθÞ
∂θ

� �

rTr
∂FðθÞ
∂θT

ðn0Iξ0 þn1Iξn1 Þ
�1Iξn1 ðn0Iξ0 þn1Iξn1 Þ

�1∂FðθÞ
∂θ

� �
; ð4:3Þ

where equality holds when x is any support point of an A-optimal design for FðθÞ.
Next, we will study some numerical examples about Models 1, 2, and 3. For adaptive optimal designs, we need an initial

design. Since we do not have much information about the parameters, it is better to choose some robust design as the initial
design. Here, we adopt the same set up as that of Dragalin et al. (2007). The four parameters are θ¼ ð3;15; θ3;4Þ. There are
four possible values of θ3: 200, 300, 400, and 500. The dose range is from 0 to 1000, the finest grid unit is 0.1 when searching
adaptive optimal designs using the algorithms from Stufken and Yang (2012). The initial design is an uniform design, where
the first 120 subjects are equally allocated to the doses f0;200;400;600;800;1000g. The design question is how to allocate
the next 240 subjects after the first stage design.

The set up of simulation studies is as follows: we first generated data based on the uniform design. Then the estimation
of parameters was analyzed using NLMINB function of R. An adaptive optimal design was derived based on the parameter
estimation. We considered four types of optimal designs: (1) D-optimal designs for all parameters; (2) A-optimal designs for
all parameters; (3) D-optimal designs for part of the parameters; and (4) A-optimal designs for part of the parameters. The
corresponding efficiencies, which are defined below, are evaluated with respect to the locally optimal design based on the
true parameter values.

Let ξn be the locally optimal design based on the true parameter values; ξM be the adaptive optimal design based on the
estimated parameter values; ξ0 be the initial uniform design (all designs are in the form of approximate designs). Suppose
FðθÞ is the vector of parameter functions of interest. The covariance matrix of the MLE of FðθÞ under ξ0 and ξM can be written
as

ΣM
F ¼ ∂FðθÞ

∂θT
ð120Iξ0 þ240IξM Þ�1∂FðθÞ

∂θ
: ð4:4Þ
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The covariance matrix of the MLE of FðθÞ under ξn can be written as

Σn

F ¼
∂FðθÞ
∂θT

ð360Iξn Þ�1∂FðθÞ
∂θ

: ð4:5Þ

The D-efficiency is defined as

eff DξM ¼ jΣn
F j

jΣM
F j

 !1=s

; ð4:6Þ

where s is the dimension of matrix ΣM
F . The A-efficiency is defined as

eff AξM ¼ TrðΣn
F Þ

TrðΣM
F Þ

: ð4:7Þ

Notice that both (4.6) and (4.7) are evaluated under the true parameter values. The D- and A-efficiencies of the uniform

design, denoted by eff DξU and eff AξU , respectively, are computed in the similar fashion. Here, the uniform design means that
(120þ240) subjects are equally allocated to the doses f0;200;400;600;800;1000g. The relative efficiency between the
adaptive optimal design and the uniform design is also computed.

In the following six tables, we present the simulation results for some selected parameters for Models 1, 2 and 3. The
simulation was repeated 1000 times for each combination of the model and parameter values. For each estimated parameter
values, the four types of optimal designs were derived. For each derived adaptive optimal design, its optimality has been
verified through the modified general equivalence theorem (Theorem 4). The mean values of efficiencies are reported. The
corresponding standard deviations are also reported in brackets.

Example 1. Model 1 with known variance. Tables 1 and 2 summarize the simulation results for ðθ1; θ2; θ3; θ4Þ and ðθ1; θ2; θ3Þ,
respectively. Notice that some parameter values are much larger than the others, thus the corresponding variances likely
dominate those of the others. Since A-optimal design is to minimize the summation of the variances of the corresponding
MLE, A-optimal design could be mainly influenced by those parameters with larger values. To avoid this, we consider the
summation of the “normalized” variances, i.e., A-optimal design here is to minimize ∑Varðθ̂ iÞ=θ̂ i. The same procedure is
applied to A-optimal designs in other examples.

From Tables 1 and 2, we can see that D-efficiencies of the adaptive optimal designs are good in general, range from 0.87
to 0.92 for ðθ1; θ2; θ3; θ4Þ, and range from 0.81 to 0.86 for ðθ1; θ2; θ3Þ. On the other hand, the A-efficiencies are relatively small,
especially for Table 2, where they range from 0.56 to 0.67. However, the adaptive optimal designs perform significantly
better than the uniform designs. For one case (A-optimality in Table 2 when θ3 ¼ 300), the relative efficiency is 1.91, which
means we can expect that adaptive optimal designs save 48% sample size compared to the uniform designs. The smallest
relative efficiency is 1.06 (D-optimality in Table 1 when θ3 ¼ 500). In fact, the adaptive design has high efficiency in this case
(0.92). The relative efficiency is small due to the relatively high efficiency of uniform design (0.86).

Example 2. Model 2 with unknown coefficient of variance λ¼ 0:33.
Tables 3 and 4 show that D-efficiencies of the adaptive optimal designs are good for most cases (above 0.84) except for the

two cases when θ3 ¼ 500, which are 0.75 and 0.69, respectively. A-efficiencies are again relatively small, ranging from 0.65 to
0.78. An interesting observation is that A-efficiencies are almost identical for both tables with very small difference. Just like
Example 1, the adaptive optimal designs perform better than the uniform designs. For one case (A-optimality in Table 4
when θ3 ¼ 200), the relative efficiency of the adaptive optimal design and the uniform design is 2.91, which means we can
expect that the adaptive optimal design saves 64% of the sample size compared to the uniform design. Interestingly, the
adaptive optimal design is not highly efficient (0.65) at this case. But the uniform design is also very inefficient (0.22). The
smallest relative efficiency is 1.13 (D-optimality in Table 3 when θ3 ¼ 400). This is due to the fact that uniform design already
has 84% efficiency, which means not much gain can be expected.

Example 3. Model 3 with known coefficient of variance λ¼ 0:33.
Table 1
D- and A-efficiencies for ðθ1 ; θ2 ; θ3; θ4Þ.

θ3 200 300 400 500

eff DξM 0.87(0.10) 0.92(0.05) 0.90(0.05) 0.92(0.04)

eff DξU 0.58 0.80 0.78 0.86

eff DξM =eff
D
ξU

1.51(0.17) 1.15(0.06) 1.16(0.07) 1.06(0.05)

eff AξM 0.77(0.20) 0.82(0.14) 0.75(0.16) 0.75(0.13)

eff AξU 0.45 0.47 0.64 0.60

eff AξM =eff
A
ξU

1.72(0.46) 1.73(0.30) 1.18(0.26) 1.25(0.22)



Table 2
D- and A-efficiencies for ðθ1; θ2 ; θ3Þ.

θ3 200 300 400 500

eff DξM 0.81(0.09) 0.84(0.07) 0.84(0.06) 0.86(0.06)

eff DξU 0.64 0.62 0.68 0.77

eff DξM =eff
D
ξU

1.27 1.34(0.11) 1.24(0.09) 1.11(0.08)

eff AξM 0.56(0.23) 0.67(0.18) 0.65(0.20) 0.65(0.18)

eff AξU 0.53 0.35 0.56 0.52

eff AξM =eff
A
ξU

1.07(0.43) 1.91(0.52) 1.17(0.35) 1.26(0.35)

Table 3
D- and A-efficiencies for ðθ1; θ2 ; θ3 ; θ4; λÞ.

θ3 200 300 400 500

eff DξM 0.87(0.13) 0.95(0.05) 0.95(0.03) 0.75(0.15)

eff DξU 0.47 0.81 0.84 0.45

eff DξM =eff
D
ξU

1.86(0.29) 1.17(0.06) 1.13(0.04) 1.66(0.33)

eff AξM 0.65(0.28) 0.82(0.13) 0.81(0.12) 0.78(0.11)

eff AξU 0.22 0.36 0.56 0.45

eff AξM =eff
A
ξU

2.90(1.26) 2.25(0.37) 1.46(0.22) 1.76(0.24)

Table 4
D- and A-efficiencies for ðθ1; θ2 ; θ3 ; θ4Þ.

θ3 200 300 400 500

eff DξM 0.84(0.16) 0.94(0.05) 0.94(0.04) 0.69(0.13)

eff DξU 0.39 0.77 0.81 0.38

eff DξM =eff
D
ξU

2.18(0.40) 1.22(0.07) 1.16(0.05) 1.81(0.34)

eff AξM 0.65(0.28) 0.82(0.13) 0.81(0.13) 0.78(0.11)

eff AξU 0.22 0.36 0.55 0.45

eff AξM =eff
A
ξU

2.91(1.27) 2.25(0.37) 1.46(0.22) 1.76(0.24)
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Tables 5 and 6 show that D-efficiencies of the adaptive optimal designs are just moderate, range from 0.67 to 0.76 for
ðθ1; θ2; θ3; θ4Þ, and range from 0.60 to 0.71 for ðθ1; θ2; θ3Þ. A-efficiencies of the adaptive designs are even worse, range from
0.32 to 0.47. Surprisingly, unlike the previous two examples, the adaptive optimal designs do not always perform better than
uniform designs. In fact, among 16 cases, the adaptive optimal designs perform better in 5 cases, perform equivalently in 2
cases, and performworse in 9 cases. We found that the variances of the estimation in this example are much larger than the
counterparts of Examples 1 and 2. The poor estimation maybe the reason why the adaptive designs are not so efficient.
Another interesting observation is that, when θ1 ¼ 200, the relative efficiency is 1.9 under A-optimality for ðθ1; θ2; θ3; θ4Þ.
Surprisingly, with the same set up except that the parameters of interest are ðθ1; θ2; θ3Þ, the relative efficiency becomes 0.59.
After we checked the corresponding variance–covariance matrices, we found that the variance of θ4 under the uniform
design is significantly larger than others. This causes the A-efficiency of the uniform design in the first case to be
significantly lower than that of the second case.

5. Discussion

Adaptive optimal design approach is a practical remedy of “locally” optimal designs for nonlinear models. Focusing on
three different Sigmoid Emax models, we derive the simple formats for adaptive optimal designs regardless of the optimality
criteria or parameters of interest. The simple formats are helpful for us to derive some specific adaptive optimal designs
numerically. A modified general equivalence theorem is developed to verify the optimality.

Simulation studies show that the adaptive optimal designs perform better than the corresponding uniform designs in general,
but not always. The performance of the adaptive optimal designs depends on the quality of the initial estimation of parameters,
which relies on the initial design and the sample size. How to select a good initial design? Without good knowledge of unknown
parameters, either Bayesian optimal design or minimax design can be a good choice. Such optimal problems are in general



Table 5
D- and A-efficiencies for ðθ1 ; θ2 ; θ3; θ4Þ.

θ3 200 300 400 500

eff DξM 0.67(0.17) 0.75(0.12) 0.76(0.12) 0.75(0.11)

eff DξU 0.39 0.77 0.81 0.79

eff DξM =eff
D
ξU

1.78(0.45) 0.97(0.16) 0.94(0.14) 0.95(0.14)

eff AξM 0.42(0.22) 0.45(0.24) 0.47(0.19) 0.45(0.18)

eff AξU 0.22 0.36 0.55 0.44

eff AξM =eff
A
ξU

1.90(1.00) 1.25(0.67) 0.86(0.34) 1.00(0.41)

Table 6
D- and A-efficiencies for ðθ1 ; θ2 ; θ3Þ.

θ3 200 300 400 500

eff DξM 0.60(0.12) 0.66(0.15) 0.70(0.11) 0.71(0.09)

eff DξU 0.64 0.61 0.71 0.73

eff DξM =eff
D
ξU

0.95(0.18) 1.07(0.24) 0.98(0.15) 0.97(0.13)

eff AξM 0.32(0.16) 0.36(0.23) 0.41(0.18) 0.41(0.18)

eff AξU 0.54 0.29 0.48 0.41

eff AξM =eff
A
ξU

0.59(0.29) 1.23(0.78) 0.85(0.38) 1.00(0.44)
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challenging and worthy of further investigation. On the other hand, although allocating more samples in the initial stage is helpful
for better quality of initial parameter estimation, this also means we have less samples to allocate in the remaining stages, which
may not be the best strategy for the efficiency of the whole experiment. A general strategy for allocating sample sizes in adaptive
designs is not yet available. Some comprehensive simulation studies may be helpful.
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