
A-optimal designs for generalized linear model with two

parameters

Min Yang *

University of Missouri - Columbia

Abstract

An algebraic method for constructing A-optimal designs for two parameter general-
ized linear models is presented. It gives sufficient conditions to identify the A-optimal
design. When the conditions are satisfied, the A-optimal has exactly two points, which
is symmetric but not weight symmetric. The methodology is illustrated by means of
selected examples. This result proves the conjecture of Mathew and Sinha (2001),
which is for logistic model, and shows that the conjecture is also true for probit models
and some cases of double exponential and double reciprocal models.

KEY WORDS: A-optimality; Binary response; Generalized linear model; Logistic re-
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1 Introduction

Generalized linear models are widely applied in the experiments where the responses are
categorical. These models provide the experimenters with a rich and rewarding modelling
environment. Methods of analysis and inference for these models are well established
(McCullagh and Nelder, 1989; Agresti, 2002). The efficiency of resulting estimates depends
largely on the method of data collection, i.e., the design of experiments.

There are extensive results on the theory of optimal design for classical linear model
with normal errors. The problem is relative easy because the information matrix is inde-
pendent of the unknown parameters. For the generalized linear and nonlinear models, the
information matrix is dependent on the unknown parameters. The challenge in designing
experiments for such model is that: one is looking for the best design with the aim of
estimating the unknown parameters, and yet one has to know the parameters to find the
best design. One way to solve this problem is to use the locally optimal design based on
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the best guess of the parameters. In spite of this unpleasant feature, it is important to
construct the optimal designs in this context; see the arguments in Ford, Torsney, and Wu
(1992).

In this article, we will restrict to the binary response, where the response Y follows
a binomial distribution with the probability P (α + βx) that Y takes value 1. Here x is
the explanatory variable and (α, β) are the unknown parameters. For the joint estimation
of (α, β), the optimal design minimizes suitable scalar-valued functions of the information
matrix of the two parameters. The A-, D-, and E-optimality criteria are well known exam-
ples. Some of the relevant references on this specific optimal problem include Abdelbasit
and Plackett (1983), Minkin (1987), Wu (1988), Ford, Torsney, and Wu (1992), Sitter
and Wu (1993a, 1993b), Dette and Haines (1994), Hedayat, Yan, and Pezzuto (1997), and
Mathew and Sinha (2001). The A-optimal design for (α, β) has an appealing property. It
minimizes the sum of the two variances of the two estimated parameters. While most of
these results are about D- and E-optimal design, especially D-optimal design, A-optimal
design has also been considered. Sitter and Wu (1993a) obtained A-optimal design for
transformed parameters (α/β, 1/β) by using the geometric approach provided by Elfving’s
Theorem (Elfving, 1952). For (α/β, 1/β), they show that the optimal design is among the
symmetric designs. This greatly simplifies the information matrix. By using an algebraic
approach, Mathew and Sinha (2001) obtained a series of optimality results for logistic
model. They also found that A-optimal design for (α, β) cannot be symmetric design in
general. By restricting consideration to two points designs, they obtained some A-optimal
designs through numerical search. The result shows that the best symmetric design under
A-criterion could be up to 36% less efficient compared with the best design they found
(it could be even worse). What is the A-optimal design for (α, β)? Mathew and Sinha
(2001)’s numerical result shows that the A-optimal designs are point symmetric, but not
weight symmetric. They conjecture that (i) the A-optimal design in the entire class has
exact two points and (ii) the A-optimal design is point symmetric, but not weight symmet-
ric. Is the conjecture true? How about other models such as probit, double exponential,
and double reciprocal?

The aim of the present paper is to present an algebraic approach for constructing A-
optimal design under generalized linear model. The approach is based on the min-max
idea from Kunert and Stufken (2002). Mathew and Sinha (2001)’s conjecture can be
proved by applying this approach to logistic model. Section 2 introduces the necessary
notations. Section 3 develops the algebraic approach. Some illustrative examples including
logistic, probit, double exponential, and double reciprocal models are studied in Section 4.
Discussion is in Section 5.
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2 Notations

Consider the broad class of models for which the response, Y , follows a binomial distribution
with the expectation P (α + βx), where P is a cumulative distribution function. For the
estimation of α and β, the exact optimal design problem is to choose k distinct x1,...,xk

and ni observations on each of xi respect to some optimality criterion for fixed n. Here∑k
i=1 ni = n. Since this is a difficult and often intractable optimization problem, the

corresponding approximate design, in which ni/n is replaced by ξi, is considered. Thus a
design can be denoted by d = {(xi, ξi), i = 1, ..., k}, where ξi > 0 and

∑k
i=1 ξi = 1. We

shall denote the entire class of all such designs by D.
It is well known that the information matrix for a given design d is

Id(α, β) =

( ∑k
i=1 ξiΨ(ci)

∑k
i=1 ξixiΨ(ci)∑k

i=1 ξixiΨ(ci)
∑k

i=1 ξix
2
i Ψ(ci)

)
.

Here ci = α + βxi and Ψ(ci) = {P ′(ci)}2/[P (ci){1 − P (ci)}]. We shall assume that P

satisfies following condition.
Conditions (i): the density function P ′ is symmetric about zero; Ψ(0) > 0 and

limc→∞Ψ(c) = 0; when c > 0, Ψ(c) > 0,
(
Ψ−1/2(c)

)′
> 0, and

(
Ψ−1/2(c)

)′′
> 0.

Condition (i) is not demanding. In fact, commonly used generalized linear models for
binary response, such as logistic, probit, double exponential, and double reciprocal models,
satisfy condition (i). We shall verify this in Section 4.

By the symmetric property of P ′, we can easily see that P (c) + P (−c) = 1. Thus, by
the definition of Ψ(c), we have Ψ(c) = Ψ(−c). An A-optimal design for α and β minimizes
the sum of the variances of the maximum likelihood estimators. This is equivalent to
minimizing tr[Id(α, β)−1]. It is clear that

tr[Id(α, β)−1] =
∑k

i=1 ξiΨ(ci) +
∑k

i=1 ξix
2
i Ψ(ci)

(
∑k

i=1 ξiΨ(ci))(
∑k

i=1 ξix2
i Ψ(ci))− (

∑k
i=1 ξixiΨ(ci))2

. (2.1)

By the facts Ψ(c) = Ψ(−c) and (2.1), for any design d = {(xi, ξi), i = 1, ..., k}, we can
easily verify tr[Id(α, β)−1] = tr[Id(−α,−β)−1] and tr[Id(α, β)−1] = tr[Id′(α,−β)−1], where
d′ = {(−xi, ξi), i = 1, ..., k}. Thus the A-optimality problem when either α or β is negative
or both are negative can be transformed to the same problem when both α and β are
positive. Without loss of generation, we assume α and β are both positive in this paper.

3 The approach

From the expression of (2.1), we can see that directly minimizing tr[Id(α, β)−1] is not
feasible. The strategy to identify the A-optimal design here consists three steps: (i) identify
the A-optimal design, say d∗, among a subclass of designs D1. In this subclass D1, each
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design d only has two symmetric design points, i.e., d = {(x1, ξ1), (x2, ξ2)}, where α+x1β =
−α−x2β. (ii) derive the sufficient conditions such that tr[Id(α, β)−1] ≥ tr[Id∗(α, β)−1] for
any arbitrary design d. (iii) verify whether the model satisfies the sufficient conditions. If
yes, this establishes that d∗ is an A-optimal design among the entire class. In this section,
we will focus on step (i) and (ii). Step (iii) will be illustrated in next section by a few
selected models.

3.1 A-optimal design in D1

It is relative easy to identify an A-optimal design in this subclass. Let c = α + x1β. Then
x1 = (c − α)/β and x2 = (−c − α)/β. So for any design d ∈ D1, by (2.1) and the fact
ξ1 + ξ2 = 1, we have

tr[Id(α, β)−1] =
1 + ξ1( c−α

β )2 + ξ2(−c−α
β )2[

ξ1( c−α
β )2 + ξ2(−c−α

β )2 −
(
ξ1( c−α

β ) + ξ2(−c−α
β )

)2
]

Ψ(c)

=
[β2 + (c + α)2]/ξ1 + [β2 + (c− α)2]/ξ2

4c2Ψ(c)

≥ T 2(c, α, β).

(3.1)

Here,

T (c, α, β) =

√
β2 + (c + α)2 +

√
β2 + (c− α)2

2c(Ψ(c))
1
2

. (3.2)

The equality holds in the last inequality of (3.1) when ξ1 = ξc,α,β and ξ2 = 1− ξ1, where

ξc,α,β =

√
β2 + (c + α)2√

β2 + (c + α)2 +
√

β2 + (c− α)2
. (3.3)

We are ready to present our first result.

Theorem 1. Suppose that P satisfies condition (i) in Section 2. Then d∗ = {(x∗1, ξ∗1), (x∗2, ξ∗2)}
is the A-optimal in D1. Here x∗1 = (c∗ − α)/β, x∗2 = (−c∗ − α)/β, ξ∗1 = ξc∗,α,β, and
ξ∗2 = 1− ξ∗1 , where ξc∗,α,β is defined in (3.3) and c∗ > 0 is the only positive solution of the
following equation

c2 − α2 − β2

√
β2 + (c + α)2

√
β2 + (c− α)2

= 1 +
cΨ′(c)
Ψ(c)

. (3.4)

Proof. By (3.1) and (3.3), the conclusion is sufficient if we can show that c∗ minimizes
T 2(c, α, β). Since T 2(c, α, β) is symmetric about zero, we could restrict our considera-
tion for c > 0. Since T (c, α, β) > 0 when c > 0, minimizing T 2(c, α, β) is equivalent to
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minimizing T (c, α, β). By simple computation, we have

T ′(c, α, β) =
T1(c, α, β)

2c2
,

where

T1(c, α, β) =
(

c
(
Ψ−1/2(c)

)′
−Ψ−1/2(c)

)(√
β2 + (c + α)2 +

√
β2 + (c− α)2

)

+ Ψ−1/2(c)

(
c2 + αc√

β2 + (c + α)2
+

c2 − αc√
β2 + (c− α)2

)
.

(3.5)

On the other hand,

T ′1(c, α, β) =c
(
Ψ−1/2(c)

)′′ (√
β2 + (c + α)2 +

√
β2 + (c− α)2

)

+ 2c
(
Ψ−1/2(c)

)′( c + α√
β2 + (c + α)2

+
c− α√

β2 + (c− α)2

)

+ cΨ−1/2(c)

(
β2

(
√

β2 + (c + α)2)3
+

β2

(
√

β2 + (c− α)2)3

)
.

(3.6)

Notice that c > 0 and α > 0, it can be verified that

(c + α)2

β2 + (c + α)2
≥ (c− α)2

β2 + (c− α)2
,

which implies
c + α√

β2 + (c + α)2
+

c− α√
β2 + (c− α)2

> 0.

By the assumptions that Ψ−1/2(c) has positive first and second derivatives, we have
T ′1(c, α, β) > 0. So T1(c, α, β) = 0 has at most one solution. Notice that limc→0 T (c, α, β) =
∞, limc→∞ T (c, α, β) = ∞, and T (c, α, β) < ∞, there exist a point c∗ > 0 such that
T ′(c∗, α, β) = 0. This implies T1(c∗, α, β) = 0. By applying the fact that T ′1(c, α, β) > 0
again, T1(c, α, β) < 0 when 0 < c < c∗ and T1(c, α, β) > 0 when c > c∗. This implies that
T ′(c, α, β) has the same pattern as T1(c, α, β). Thus we can conclude that c∗ is the point
which minimizes T (c, α, β). On the other hand, from (3.5), it is clear that T1(c, α, β) = 0
has the same solutions as the following equation

c2+αc√
β2+(c+α)2

+ c2−αc√
β2+(c−α)2√

β2 + (c + α)2 +
√

β2 + (c− α)2
=

2Ψ(c) + cΨ′(c)
2Ψ(c)

. (3.7)

By (5.1) of Proposition 1 in appendix, (3.7) is equivalent to (3.4). Thus c∗ is the unique
solution of (3.4).

Remark: There is no explicit expression of c∗ in general. However T1(c, α, β) is a
increasing function of c. This is very helpful for us to find the solution c∗ numerically.
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3.2 A-optimal design in D
In this section, we shall show that under some conditions, d∗, introduced in Theorem
1, is the A-optimal design in the entire class D, i.e., tr[Id(α, β)−1] is minimized only at
design d∗. The structure of tr[Id(α, β)−1] is complicated. To circumvent this problem,
we will the following strategy: (i) for any design d ∈ D, find a manageable lower bound
for tr[Id(α, β)−1] (which may depend on d); and (ii) identify that d∗ minimizes the lower
bound.

In pursuing this strategy, we start with a lemma that provides an lower bound for
tr[Id(α, β)−1]. In this lemma, the min-max idea from Kunert and Stufken (2002) is
used. Before we state the lemma, we need define some notations. Hereafter, c∗ and
d∗ = {(x∗1, ξ∗1), (x∗2, ξ∗2)} are defined in Theorem 1. Let

Z∗1 =
1
β

(α− (ξ∗1 − ξ∗2)c
∗) ,

Z∗2 =
β (α− (ξ∗1 − ξ∗2)c

∗)
ξ∗1(α− c∗)2 + ξ∗2(α + c∗)2

,

Y ∗
1 = − β2

4(c∗)2ξ∗1ξ
∗
2Ψ(c∗)

,

and

Y ∗
2 = −ξ∗1(α− c∗)2 + ξ∗2(α + c∗)2

4(c∗)2ξ∗1ξ
∗
2Ψ(c∗)

.

(3.8)

Lemma 1. For any design d = {(xi, ξi), i = 1, ..., k},

tr[Id(α, β)−1] ≥ −
k∑

i=1

ξif(ci).

Here, ci = α + βxi and

f(c) = Ψ(c)
(

(Z∗1 +
c− α

β
)2(Y ∗

1 )2 + (
c− α

β
Z∗2 + 1)2(Y ∗

2 )2
)

+ 2Y ∗
1 + 2Y ∗

2 . (3.9)

Proof. For any design d = {(xi, ξi), i = 1, ..., k}, let

Gd(z1, z2, y1, y2) = −g1(z1)y2
1 − 2y1 − g2(z2)y2

2 − 2y2,

where

g1(z1) =

(
k∑

i=1

ξiΨ(ci)

)
z2
1 + 2

(
k∑

i=1

ξixiΨ(ci)

)
z1 +

k∑

i=1

ξix
2
i Ψ(ci)

and

g2(z2) =

(
k∑

i=1

ξix
2
i Ψ(ci)

)
z2
2 + 2

(
k∑

i=1

ξixiΨ(ci)

)
z2 +

k∑

i=1

ξiΨ(ci)
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By the property of quadric function, we have

g1(z1) ≥(
∑k

i=1 ξiΨ(ci))(
∑k

i=1 ξix
2
i Ψ(ci))− (

∑k
i=1 ξixiΨ(ci))2∑k

i=1 ξiΨ(ci)

and

g2(z2) ≥(
∑k

i=1 ξiΨ(ci))(
∑k

i=1 ξix
2
i Ψ(ci))− (

∑k
i=1 ξixiΨ(ci))2∑k

i=1 ξix2
i Ψ(ci)

.

(3.10)

The preceding inequalities imply that g1(z1) > 0 and g2(z2) > 0. By this fact and the
quadric property of Gd(z1, z2, y1, y2) about y1 and y2, for any z1 and z2, we have

max
y1,y2

Gd(z1, z2, y1, y2) =
1

g1(z1)
+

1
g2(z2)

. (3.11)

Applying (3.10) into (3.11) and by (2.1), we have

max
z1,z2,y1,y2

Gd(z1, z2, y1, y2) = tr[Id(α, β)−1],

which implies that

tr[Id(α, β)−1] ≥ Gd(Z∗1 , Z∗2 , Y ∗
1 , Y ∗

2 ).

On the other hand, by the definitions of g1(z1) and g2(z2), we have

Gd(Z∗1 , Z∗2 , Y ∗
1 , Y ∗

2 ) = −
k∑

i=1

(
ξiΨ(ci)[(Z∗1 + xi)2(Y ∗

1 )2 + (xiZ
∗
2 + 1)2(Y ∗

2 )2] + 2ξiY
∗
1 + 2ξiY

∗
2

)

= −
k∑

i=1

ξif(ci).

Thus the conclusion follows.

From Lemma 1, we can see that if we could show that (i) f(c∗) = −tr[Id∗(α, β)−1] and
(ii) f(c) ≤ f(c∗), then this implies that d∗ is an A-optimal design in the entire class D.
Lemma 2 will establish (i) and some useful equations for (ii).

Lemma 2. Let f(c) be defined in (3.9), then we have
(i) f(c∗) = −tr[Id∗(α, β)−1];
(ii) f(c) = Ψ(c)

(
(Z∗1 − α

β )2(Y ∗
1 )2 + c2

β2 (Y ∗
1 )2 + (α

β Z∗2 − 1)2(Y ∗
2 )2 + c2

β2 (Z∗2Y ∗
2 )2

)
+ 2Y ∗

1 +
2Y ∗

2 ;
(iii) f ′(c∗) = 0.
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Proof. Conclusion (i): by (3.8), (3.3), and (3.1), we have

Y ∗
1 + Y ∗

2 = −ξ∗1(β
2 + (α− c∗)2) + ξ∗2(β

2 + (α + c∗)2)
4(c∗)2ξ∗1ξ

∗
2Ψ(c∗)

= −(β2 + (α− c∗)2)/ξ∗2 + (β2 + (α + c∗)2)/ξ∗1
4(c∗)2Ψ(c∗)

= −tr[Id∗(α, β)−1].

(3.12)

By some simple algebra, we have

Z∗1 +
c∗ − α

β
=

2c∗ξ∗2
β

and

c∗ − α

β
Z∗2 + 1 =

2c∗(c∗ + α)ξ∗2
ξ1(α− c∗)2 + ξ2(α + c∗)2

.

(3.13)

Utilizing (3.13) and applying some routine algebra, we have

(Z∗1 +
c∗ − α

β
)2(Y ∗

1 )2 + (
c∗ − α

β
Z∗2 + 1)2(Y ∗

2 )2 =
β2 + (c∗ + α)2

4(c∗)2(ξ∗1)2Ψ2(c∗)

= tr[Id∗(α, β)−1]/Ψ(c∗).
(3.14)

By (3.9), (3.12), and (3.14), conclusion (i) follows.
Conclusion (ii): According to (3.9), the conclusion is sufficient if we can show that

(
Z∗1
β
− α

β2
)(Y ∗

1 )2 + (
Z∗2
β
− α(Z∗2 )2

β2
)(Y ∗

2 )2 = 0.

By (5.5) of Proposition 2 in the appendix, conclusion (ii) follows.
Conclusion (iii): since there is no explicit expression of c∗, we need to utilize the fact

that c∗ is the only positive solution of (3.4). By (ii), we have

f ′(c) = Ψ′(c)
(

(Z∗1 −
α

β
)2(Y ∗

1 )2 +
c2

β2
(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2 +
c2

β2
(Z∗2Y ∗

2 )2
)

+ Ψ(c)
(

2c

β2
(Y ∗

1 )2 +
2c

β2
(Z∗2Y ∗

2 )2
)

.

(3.15)

Notice that Ψ(c) and the second term in the right hand side of (3.15) are positive, (3.15)
implies that f ′(c∗) = 0 is equivalent to

Ψ′(c∗)
Ψ(c∗)

= −
2c∗
β2 (Y ∗

1 )2 + 2c∗
β2 (Z∗2Y ∗

2 )2

(Z∗1 − α
β )2(Y ∗

1 )2 + (c∗)2
β2 (Y ∗

1 )2 + (α
β Z∗2 − 1)2(Y ∗

2 )2 + (c∗)2
β2 (Z∗2Y ∗

2 )2
. (3.16)
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By the definitions of Z∗1 , Z∗2 , Y ∗
1 , and Y ∗

2 in (3.8), and the fact that Z∗1Y ∗
1 = Z∗2Y ∗

2 , (3.16)
can be simplified to

c∗Ψ′(c∗)
2Ψ(c∗)

= − 1 + (Z∗1 )2

(ξ∗1 − ξ∗2)2 + 1 +
(

c∗−α(ξ∗1−ξ∗2)
β

)2
+ (Z∗1 )2

. (3.17)

By (5.6) and (5.7) in Proposition 2 of appendix, (3.17) is equivalent to show

c∗Ψ′(c∗)
2Ψ(c∗)

= −
4α2(c∗)2 − (c∗)2

(√
β2 + (c∗ + α)2 −

√
β2 + (c∗ − α)2

)2

8α2(c∗)2 − (α2 + β2 + (c∗)2)
(√

β2 + (c∗ + α)2 −
√

β2 + (c∗ − α)2
)2 .

(3.18)

On the other hand, by the fact c∗ is the only positive solution of (3.4), we have

c∗Ψ′(c∗)
2Ψ(c∗)

=
(c∗)2 − α2 − β2 −

√
β2 + (c∗ + α)2

√
β2 + (c∗ − α)2

2
√

β2 + (c∗ + α)2
√

β2 + (c∗ − α)2
. (3.19)

So f ′(c∗) = 0 is equivalent to show that the two R.H.S of (3.18) and (3.19) are equal. By
Proposition 3 of appendix, the conclusion follows.

Remark: (i) Z∗1 , Z∗2 , Y ∗
1 , and Y ∗

2 are the values which maximizes Gd(z1, z2, y1, y2) when d

is the design d∗. So f(c∗) = −tr[Id∗(α, β)−1]. Lemma 2 verifies this directly. (ii) f ′(c∗) = 0
implies that c∗ could be a potential point to maximize f(c). But it cannot grantee that. It
depends on the specific Ψ(c). In the next section, we shall demonstrate how to verify this
through some selected models. Here we assume f(c) satisfies the following condition.

Condition (ii): f(c) is maximized at c∗.
Now we are ready to state our main theorem.

Theorem 2. Suppose that Ψ(c) satisfies condition (i) and f(c) satisfies condition (ii).
Then the design d∗, defined in Theorem 1, is the only A-optimal design in the entire class
D.

Proof. By Lemma 1, the conclusion is sufficient if we can show that f(c) is maximized at
c∗ and −c∗ only. By (ii) of Lemma 2, f(c) is a symmetric function about 0. We could
restrict our consideration on c > 0. By condition (ii), f(c) is maximized at c∗. Thus the
conclusion follows.

4 Examples

In this section, commonly used regression models are considered. For logistic and probit
models, the A-optimal designs are clear-cut, i.e., the d∗, introduced in Theorem 1, is the
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A-optimal design in the entire class. For double exponential and double reciprocal models,
the A-optimal designs are less clear-cut. We may have the same conclusions as those of
logistic and probit models; but the conclusion depends on the value of (α, β). According
to Theorem 2, for each model, we only need to verify the two conditions are satisfied.
Condition (i) is relatively easy to verify. The difficult part is to verify condition (ii). The
following lemma is helpful for this.

Lemma 3. Suppose that Ψ(c) satisfies condition (i). Let c∗ be the positive solution of
(3.4), Z∗1 , Z∗2 , Y ∗

1 , and Y ∗
1 be defined in (3.8), then we have

(i) c∗Ψ′(c∗) + 2Ψ(c∗) > 0;
(ii) (Y ∗1 )2

β2 + (Z∗2Y ∗2 )2

β2 = − Ψ′(c∗)
(c∗)2Ψ′(c∗)+2c∗Ψ(c∗)

(
(Z∗1 − α

β )2(Y ∗
1 )2 + (α

β Z∗2 − 1)2(Y ∗
2 )2

)
;

(iii) if Ψ(0)(c∗Ψ′(c∗) + 2Ψ(c∗)) ≤ 2Ψ2(c∗), then f(0) ≤ f(c∗).

Proof. By (5.2) of Proposition 1 in appendix and the fact that c∗ is the solution of (3.4),
we have

−1 < 1 +
c∗Ψ′(c∗)
Ψ(c∗)

< 1,

which implies (i) by the fact that Ψ(c∗) > 0.
By (iii) of Lemma 2, we have f ′(c∗) = 0. Using this fact and (3.15), we can establish

(ii).
By (ii) of Lemma 2 and (ii), we have

f(0)− f(c∗) = (Ψ(0)−Ψ(c∗))
(

(Z∗1 −
α

β
)2(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2
)

− (c∗)2Ψ(c∗)
(

(Y ∗
1 )2

β2
+

(Z∗2Y ∗
2 )2

β2

)

=
(

(Z∗1 −
α

β
)2(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2
)

Ψ(0)(c∗Ψ′(c∗) + 2Ψ(c∗))− 2Ψ2(c∗)
c∗Ψ′(c∗) + 2Ψ(c∗)

.

Since c∗Ψ′(c∗) + 2Ψ(c∗) > 0 by (i), conclusion (iii) follows.

4.1 Logistic regression

For logistic model, P (c) = ec

1+ec . Thus

P ′(c) = Ψ(c) =
ec

(1 + ec)2
=

1
(e

c
2 + e−

c
2 )2

. (4.1)

From (4.1), we can easily verify that P (c) satisfies condition (i). By Theorem 1, the
A-optimal design in D1 is

d∗ = {(x∗i , ξ∗i ), i = 1, 2}. (4.2)

10



Here x∗1 = (c∗ − α)/β, x∗2 = (−c∗ − α)/β, ξ∗1 = ξc∗,α,β, and ξ∗2 = 1 − ξ∗1 , where ξc∗,α,β is
defined in (3.3) and c∗ > 0 is the only positive solution of the following equation

c2 − α2 − β2

√
β2 + (c + α)2

√
β2 + (c− α)2

= 1 +
c(1− ec)
1 + ec

. (4.3)

Next we shall show that d∗ is the only A-optimal design in the entire class. Before we do
that, we need the following lemma.

Lemma 4. Let c∗ be the positive solution of (4.3), Z∗1 , Z∗2 , Y ∗
1 , and Y ∗

1 be defined in (3.8),
then we have

4(Y ∗
1 )2

β2
+

4(Z∗2Y ∗
2 )2

β2
− (Z∗1 −

α

β
)2(Y ∗

1 )2 − (
α

β
Z∗2 − 1)2(Y ∗

2 )2 > 0. (4.4)

Proof. Notice that α, β, and c∗ all are positive, this implies that (Z∗1 − α
β )2(Y ∗

1 )2 > 0. By
this fact and (ii) of Lemma 3, it is clear that (4.4) is equivalent to

4Ψ′(c∗) + (c∗)2Ψ′(c∗) + 2c∗Ψ(c∗)
(c∗)2Ψ′(c∗) + 2c∗Ψ(c∗)

< 0. (4.5)

On the other hand,

4Ψ′(c∗) + (c∗)2Ψ′(c∗) + 2c∗Ψ(c∗) = (4 + (c∗)2)
ec∗(1− ec∗)
(1 + ec∗)3

+
2c∗ec∗

(1 + ec∗)2

=
ec∗

(1 + ec∗)3
(
(c∗)2 + 2c∗ + 4− ec∗((c∗)2 − 2c∗ + 4)

)

< 0.

(4.6)

The preceding inequality holds because c2 +2c+4− ec(c2−2c+4) < 0 for all c > 0, which
can be verified by routine algebra. By (i) of Lemma 3 and (4.6), (4.5) follows.

Next, we shall verify that condition (ii) is satisfied. By (3.15), we have

f ′(c) =
ec

(1 + ec)3
f1(c),

where

f1(c) = (1− ec)
(

(Z∗1 −
α

β
)2(Y ∗

1 )2 +
c2

β2
(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2 +
c2

β2
(Z∗2Y ∗

2 )2
)

+ (1 + ec)
(

2c

β2
(Y ∗

1 )2 +
2c

β2
(Z∗2Y ∗

2 )2
)

.

(4.7)
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Next we shall investigate the property of f1(c). We have

f ′1(c) =
2c + 2

β2
(Y ∗

1 )2 +
2c + 2

β2
(Z∗2Y ∗

2 )2

− ec

(
(Z∗1 −

α

β
)2(Y ∗

1 )2 +
c2 − 2

β2
(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2 +
c2 − 2

β2
(Z∗2Y ∗

2 )2
)

,

(4.8)

f ′′1 (c) =
2
β2

(Y ∗
1 )2 +

2
β2

(Z∗2Y ∗
2 )2

− ec

(
(Z∗1 −

α

β
)2(Y ∗

1 )2 +
c2 + 2c− 2

β2
(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2 +
c2 + 2c− 2

β2
(Z∗2Y ∗

2 )2
)

,

(4.9)

and

f ′′′1 (c) =− ec

(
(Z∗1 −

α

β
)2(Y ∗

1 )2 +
c2 + 4c

β2
(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2 +
c2 + 4c

β2
(Z∗2Y ∗

2 )2
)

.

(4.10)

By (4.7), we have f1(0) = 0. Since f ′(c∗) = 0 by (iii) of Lemma 2, we have f1(c∗) = 0. By
(4.4) and (4.8) we have f ′1(0) > 0 and limc→+∞ f ′1(c) = −∞. Similarly, we have f ′′1 (0) > 0
and limc→+∞ f ′′1 (c) = −∞. By (4.10), we have f ′′′1 (c) < 0 for c > 0. By Proposition 4, we
have the conclusion that f(c) is maximized at c∗. Immediately we have following theorem
by Theorem 2.

Theorem 3. For logistic regression model, design d∗ (4.2) is the only A-optimal design in
the entire class D.

Remark: Theorem 3 proves that the conjecture by Mathew and Sinha (2001) is correct.
Example 1: suppose α = −2 and β = 1/2. A simple computer program shows that

c∗ = 1.8710, d∗={(x∗1 = 0.2579,ξ∗1 = 0.1168), (x∗2 = 7.7421, ξ∗2 = 0.8832)}. d∗ is the
A-optimal design in the entire class D.

4.2 Probit regression

For probit model, P (c) = Φ(c) =
∫ c
−∞ φ(u)du, where φ(u) = (1/

√
2π)exp(−u2/2). So we

have Ψ(c) = φ2(c)/[Φ(c)(1−Φ(c))]. It is straight forward to show that limc→+∞Ψ(c) = 0.
On the other hand, it is clear that

(
Ψ−1/2(c)

)′
= − Ψ′(c)

2Ψ3/2(c)
(4.11)
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and
(
Ψ−1/2(c)

)′′
=

1
2Ψ5/2(c)

(
3
2

(
Ψ′(c)

)2 −Ψ(c)Ψ′′(c)
)

≥ 1
2Ψ5/2(c)

((
Ψ′(c)

)2 −Ψ(c)Ψ′′(c)
)

.

(4.12)

By the conclusion (iii) of Proposition 5 in appendix, both
(
Ψ−1/2(c)

)′
and

(
Ψ−1/2(c)

)′′
are

positive. So P (c) satisfies condition (i). By Theorem 1, the A-optimal design in D1 is

d∗ = {(x∗i , ξ∗i ), i = 1, 2}. (4.13)

Here x∗1 = (c∗ − α)/β, x∗2 = (−c∗ − α)/β, ξ∗1 = ξc∗,α,β, and ξ∗2 = 1 − ξ∗1 , where ξc∗,α,β is
defined in (3.3) and c∗ > 0 is the only positive solution of the following equation

c2 − α2 − β2

√
β2 + (c + α)2

√
β2 + (c− α)2

= 1 + ch(c). (4.14)

Here h(c) = Ψ′(c)/Ψ(c).
Next we shall show that d∗ is the only A-optimal design in the entire class. Before we

do that, we need the following lemma.

Lemma 5. Let c∗ be the positive solution of (4.14), then we have (i) c∗ < 2; (ii) c2h(c) +
2c < 0 for c ≥ 2; and (iii) h(c∗)

(c∗)2h(c∗)+2c∗ < h′(0)
2 .

Proof. By Lemma 3, c∗ must satisfy (i) of Lemma 3, i.e., c∗h(c∗) + 2 > 0. By (i) of
proposition 5 in appendix, (ch(c) + 2)′ = ch′(c) + h(c) < 0 for c > 0. Thus ch(c) + 2 is
a decreasing function of c. Direct computation shows that 2h(2) + 2 < 0, thus we have
ch(c) + 2 < 0 for c ≥ 2. And c∗ < 2 follows immediately.

Since c∗h(c∗) + 2 > 0, (iii) is equivalent to h1(c∗) > 0, where h1(c) = h′(0)c2h(c) −
2h(c) + 2h′(0)c. Notice that

h′1(c) = 2ch′(0)h(c) + c2h′(0)h′(c) + 2h′(0)− 2h′(c). (4.15)

By (i) of proposition 5 in appendix, the first two terms of right hand side of (4.15) are
positive. By (ii) of proposition 5 in appendix, 2h′(0) − 2h′(c) > 0 when c < 2. Thus
h′1(c) > 0 when c < 2. This implies that h1(c) > h1(0) = 0 for c < 2. The conclusion
follows since c∗ < 2.

Next we shall show that f(c) is maximized at c∗. By (3.15), (ii) of Lemma 3, and the
definition of h(c), we have

f ′(c) =
(

(Z∗1 −
α

β
)2(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2
)

Ψ(c)f1(c).
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where

f1(c) = h(c)− (
c2h(c) + 2c

) h(c∗)
(c∗)2h(c∗) + 2c∗

. (4.16)

It can be directly verified that f1(0) = 0. f(c) is maximized at c∗ is sufficient if we can
show that f1(c) > 0 for 0 < c < c∗ and f1(c) < 0 for c > c∗. When c ≥ 2, by (ii) of Lemma
5, c2h(c) + 2c < 0. On the other hand, h(c∗)

(c∗)2h(c∗)+2c∗ < 0 by (iii) of Lemma 5 and the fact
h′(0) < 0 ((i) of proposition 5)). So the last term of right hand side of (4.16) is positive.
Notice that h(c) < 0 by (i) of Proposition 5 in appendix, f1(c) < 0 when c ≥ 2. By (i) of
Lemma 5, we have c∗ < 2. So the conclusion is sufficient if we can show that f1(c) > 0 for
0 < c < c∗ and f1(c) < 0 for c∗ < c < 2.

It is clear that

f ′1(c) = h′(c)− (
c2h′(c) + 2ch(c) + 2

) h(c∗)
(c∗)2h(c∗) + 2c∗

(4.17)

and

f ′′1 (c) = h′′(c)− (
c2h′′(c) + 4ch′(c) + 2h(c)

) h(c∗)
(c∗)2h(c∗) + 2c∗

. (4.18)

By Proposition 5 in appendix, when 0 < c < 2, we have h′′(c) < 0, h′(c) < 0, and h(c) < 0.
Thus c2h′′(c) + 4ch′(c) + 2h(c) < 0. Also notice that h(c∗)

(c∗)2h(c∗)+2c∗ < 0 by (iii) of Lemma
5 and the fact h′(0) < 0. The last term of right hand side of (4.18) is positive. Applying
this fact, h′′(c) < 0, and (4.18), we have f ′′1 (c) < 0 when 0 < c < 2. This implies that
f ′1(c) is decreasing function of c. On the other hand, applying (iii) of Lemma 5 again, we
have f ′1(0) > 0. f ′1(c) will be either (i) always positive when 0 < c < 2 or (ii) first positive
then negative. Case (i) cannot happen since it implies f1(c) is an increasing function when
0 < c < 2. It is contradiction to the fact that f1(0) = 0 and f1(c∗) = 0. Thus Case
(ii) holds. This means for some c̃ > 0, f1(c) is an increasing function when 0 < c < c̃

and decreasing function when c̃ < c < 2. By the fact that f1(0) = 0 and f1(c∗) = 0, we
can easily see that f1(c) > 0 for 0 < c < c∗ and f1(c) < 0 for c∗ < c < 2. Thus f(c) is
maximized at c∗. Immediately, we have the following theorem.

Theorem 4. For probit regression model, design d∗ (4.13) is the only A-optimal design in
the entire class D.

Example 2: suppose α = 1/2 and β = −1. A simple computer program shows that
c∗ = 1.1311, d∗={(x∗1 = −0.6311,ξ∗1 = 0.3820), (x∗2 = 1.6311, ξ∗2 = 0.6180)}. d∗ is the
A-optimal design in the entire class D.
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4.3 Double exponential regression

For double exponential model, P (c) = 1− 1
2e−|c| when c > 0 and 1

2e−|c| when c ≤ 0. Thus
P ′(c) = 1

2e−|c| and Ψ(c) = 1
2e|c|−1

. For c > 0, we have

(
Ψ−1/2(c)

)′
=

ec

√
2ec − 1

and
(
Ψ−1/2(c)

)′′
=

ec(ec − 1)
(2ec − 1)3/2

.

So P (c) satisfies condition (i). By Theorem 1, the A-optimal design in D1 is

d∗ = {(x∗i , ξ∗i ), i = 1, 2}. (4.19)

Here x∗1 = (c∗ − α)/β, x∗2 = (−c∗ − α)/β, ξ∗1 = ξc∗,α,β, and ξ∗2 = 1 − ξ∗1 , where ξc∗,α,β is
defined in (3.3) and c∗ > 0 is the only positive solution of the following equation

c2 − α2 − β2

√
β2 + (c + α)2

√
β2 + (c− α)2

= 1− 2cec

2ec − 1
. (4.20)

Next we shall show that d∗ is the only A-optimal design in the entire class if (2−c∗)ec∗−2 ≤
0. Before we do that, we need the following lemma.

Lemma 6. Let c∗ be the positive solution of (4.20), Z∗1 , Z∗2 , Y ∗
1 , and Y ∗

1 be defined in
(3.8), then we have
(i) (Y ∗1 )2

β2 + (Z∗2Y ∗2 )2

β2 − (Z∗1 − α
β )2(Y ∗

1 )2 − (α
β Z∗2 − 1)2(Y ∗

2 )2 > 0;
(ii) if (2− c∗)ec∗ − 2 ≤ 0, then f(0) ≤ f(c∗).

Proof. By the similar argument as that of Lemma 4, (i) is equivalent to

Ψ′(c∗) + (c∗)2Ψ′(c∗) + 2c∗Ψ(c∗)
(c∗)2Ψ′(c∗) + 2c∗Ψ(c∗)

< 0. (4.21)

On the other hand,

Ψ′(c∗) + (c∗)2Ψ′(c∗) + 2c∗Ψ(c∗) = −(1 + (c∗)2)
2ec∗

(2ec∗ − 1)2
+

2c∗

2ec∗ − 1

= − 2
(2ec∗ − 1)2

(
ec∗(c∗ − 1)2 + c∗

)

< 0

(4.22)

By (i) of Lemma 3 and (4.22), (4.21) follows.
As for (ii), by directly computation, we have

Ψ(0)(c∗Ψ′(c∗) + 2Ψ(c∗))− 2Ψ2(c∗) =
2

(
(2− c∗)ec∗ − 2

)

(2ec∗ − 1)2
.

By (iii) of Lemma 3, conclusion (ii) follows.
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Next, we shall study the property of f(c). By (3.15), we have

f ′(c) =
1

(2ec − 1)2
f1(c),

where

f1(c) = −2ec

(
(Z∗1 −

α

β
)2(Y ∗

1 )2 +
c2

β2
(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2 +
c2

β2
(Z∗2Y ∗

2 )2
)

+ (2ec − 1)
(

2c

β2
(Y ∗

1 )2 +
2c

β2
(Z∗2Y ∗

2 )2
)

.

(4.23)

It is clear that f1(0) < 0. Next we shall investigate the property of f1(c). We have

f ′1(c) =− 2
β2

(Y ∗
1 )2 − 2

β2
(Z∗2Y ∗

2 )2

− 2ec

(
(Z∗1 −

α

β
)2(Y ∗

1 )2 +
c2 − 2

β2
(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2 +
c2 − 2

β2
(Z∗2Y ∗

2 )2
)

,

(4.24)

f ′′1 (c) = −2ec

(
(Z∗1 −

α

β
)2(Y ∗

1 )2 +
c2 + 2c− 2

β2
(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2 +
c2 + 2c− 2

β2
(Z∗2Y ∗

2 )2
)

,

(4.25)

and

f ′′′1 (c) =− 2ec

(
(Z∗1 −

α

β
)2(Y ∗

1 )2 +
c2 + 4c

β2
(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2 +
c2 + 4c

β2
(Z∗2Y ∗

2 )2
)

.

(4.26)

Since f ′(c∗) = 0 by (iii) of Lemma 2, we have f1(c∗) = 0. By (i) of Lemma 6 and
(4.24) we have f ′1(0) > 0 and limc→+∞ f ′1(c) = −∞. Similarly, we have f ′′1 (0) > 0 and
limc→+∞ f ′′1 (c) = −∞. By (4.26), we have f ′′′1 (c) < 0 for c > 0. If we assume that
(2− c∗)ec∗ − 2 ≤ 0, then by (ii) of Lemma 6, we have f(0) ≤ f(c∗). Notice that f1(0) < 0,
then by Proposition 4, f(c) is maximized at c∗. Immediately we have following theorem
by Theorem 2.

Theorem 5. For double exponential regression model, design d∗ (4.19) is the only A-
optimal design in the entire class D if (2− c∗)ec∗ − 2 ≤ 0.

Example 3: suppose α = 3 and β = 1. A simple computer program shows that
c∗ = 1.7285, d∗={(x∗1 = −1.2715,ξ∗1 = 0.2508), (x∗2 = −4.7285, ξ∗2 = 0.7492)}, and (2 −
c∗)ec∗ − 2 ≤ 0. Thus d∗ is the A-optimal design in the entire class D.
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4.4 Double reciprocal regression

For double reciprocal model, P (c) = 1 − 1
2(1+c) when c > 0 and 1

2(1−c) when c ≤ 0. Thus
P ′(c) = 1

2(1+|c|)2 and Ψ(c) = 1
(1+|c|)2(1+2|c|) . For c > 0, we have

(
Ψ−1/2(c)

)′
=

3c + 2√
2c + 1

and
(
Ψ−1/2(c)

)′′
=

3c + 1
(2c + 1)3/2

.

So P (c) satisfies condition (i). By Theorem 1, the A-optimal design in D1 is

d∗ = {(x∗i , ξ∗i ), i = 1, 2}. (4.27)

Here x∗1 = (c∗ − α)/β, x∗2 = (−c∗ − α)/β, ξ∗1 = ξc∗,α,β, and ξ∗2 = 1 − ξ∗1 , where ξc∗,α,β is
defined in (3.3) and c∗ > 0 is the only positive solution of the following equation

c2 − α2 − β2

√
β2 + (c + α)2

√
β2 + (c− α)2

= − 4c2 + c− 1
2c2 + 3c + 1

. (4.28)

Next we shall show that d∗ is the only A-optimal design in the entire class if c∗ ≥ √
2.

Before we do that, we need the following lemma.

Lemma 7. Let c∗ be the positive solution of (4.28), Z∗1 , Z∗2 , Y ∗
1 , and Y ∗

1 be defined in
(3.8), then we have
(i) (Y ∗1 )2

β2 + (Z∗2Y ∗2 )2

β2 − 3(Z∗1 − α
β )2(Y ∗

1 )2 − 3(α
β Z∗2 − 1)2(Y ∗

2 )2 > 0;
(ii) if c∗ ≥ √

2, then f(0) ≤ f(c∗).

Proof. By the similar argument as that of Lemma 4, (i) is equivalent to

Ψ′(c∗) + 3(c∗)2Ψ′(c∗) + 6c∗Ψ(c∗)
(c∗)2Ψ′(c∗) + 2c∗Ψ(c∗)

< 0. (4.29)

On the other hand,

Ψ′(c∗) + 3(c∗)2Ψ′(c∗) + 6c∗Ψ(c∗) = −6(c∗)3 − 6(c∗)2 + 4
(2c∗ + 1)2(c∗ + 1)3

< 0.

(4.30)

By (i) of Lemma 3 and (4.30), (4.29) follows.
As for (ii), by directly computation, we have

Ψ(0)(c∗Ψ′(c∗) + 2Ψ(c∗))− 2Ψ2(c∗) =
2c∗(2− (c∗)2)

(1 + c∗)4(1 + 2c∗)2
.

By (iii) of Lemma 3, conclusion (ii) follows.
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Next, we shall study the property of f(c). By (3.15), we have

f ′(c) =
1

(2c + 1)2(c + 1)3
f1(c),

where

f1(c) = −(6c + 4)
(

(Z∗1 −
α

β
)2(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2
)

− (2c3 − 2c2 − 2c)
(

(Y ∗
1 )2

β2
+

(Z∗2Y ∗
2 )2

β2

)
.

(4.31)

It is clear that f1(0) < 0. Next we shall investigate the property of f1(c). We have

f ′1(c) = −6
(

(Z∗1 −
α

β
)2(Y ∗

1 )2 + (
α

β
Z∗2 − 1)2(Y ∗

2 )2
)
− (6c2 − 4c− 2)

(
(Y ∗

1 )2

β2
+

(Z∗2Y ∗
2 )2

β2

)
,

(4.32)

f ′′1 (c) = −(12c− 4)
(

(Y ∗
1 )2

β2
+

(Z∗2Y ∗
2 )2

β2

)
, (4.33)

and

f ′′′1 (c) = −12
(

(Y ∗
1 )2

β2
+

(Z∗2Y ∗
2 )2

β2

)
. (4.34)

Since f ′(c∗) = 0 by (iii) of Lemma 2, we have f1(c∗) = 0. By (i) of Lemma 7 and
(4.32) we have f ′1(0) > 0 and limc→+∞ f ′1(c) = −∞. Similarly, we have f ′′1 (0) > 0 and
limc→+∞ f ′′1 (c) = −∞. By (4.34), we have f ′′′1 (c) < 0 for c > 0. If we assume that c∗ ≥ √

2,
then by (ii) of Lemma 7, we have f(0) ≤ f(c∗). Notice that f1(0) < 0, then by Proposition
4, f(c) is maximized at c∗. Immediately we have following theorem by Theorem 2.

Theorem 6. For double reciprocal regression model, design d∗ (4.27) is the only A-optimal
design in the entire class D if c∗ ≥ √

2.

Example 4: suppose α = −5 and β = −1. A simple computer program shows that
c∗ = 1.5956, d∗={(x∗1 = −3.4044, ξ∗1 = 0.3472), (x∗2 = −6.5956, ξ∗2 = 0.6528)}. Thus d∗ is
the A-optimal design in the entire class D.

5 Discussion

Many results for optimal designs related to binary data are based on the geometry ap-
proach. The main purpose of this paper is to develop an algebraic approach for construct-
ing A-optimal design for generalized linear two-parameter models. This approach gives two
sufficient conditions to identify the A-optimal design. It shows that if the two conditions
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are satisfied, the A-optimal design is unique and has exactly two support points. The
two points are symmetric, but not weight symmetric. For a given model, condition (i) is
straight forward to verify; condition (ii) is relative difficult to verify. The commonly used
models, such as logistic and probit models satisfies the two conditions. Thus the A-optimal
designs are based on two symmetric points with different weights. This result show that
the conjecture of Mathew and Sinha (2001) is true for both logistic and probit models. It is
interesting to see that, for some parameters, the A-optimal designs for double exponential
and double reciprocal is based on two symmetric points with different weights. Sitter and
Wu (1993a) shows that the D-optimal designs of double exponential and double reciprocal
models are based on two symmetric points plus point 0. Holger and Haines (1994) shows
that, for some parameters, the E-optimal design of double reciprocal is also based on two
symmetric points plus point 0. Could A-optimal designs be based on two symmetric point
plus point 0 for the parameters that condition (ii) is not satisfied? The research effort in
this area is continuing.

Point c∗ is the only solution of (3.4). There is no explicit expression of the solution in
general. The solution has to be solved numerically. However c∗ is also the only solution of
(3.5), which is a increasing function of c. This is very helpful for us to find the solution
numerically. Once the solution is obtained, the two weights can be obtained immediately
by (3.3). A SAS macro program to derive the corresponding A-optimal design based on
the approach is available from the author as an addendum to this paper.

Appendix

Proposition 1. For any positive α, β > 0, and c, we have

c2+αc√
β2+(c+α)2

+ c2−αc√
β2+(c−α)2√

β2 + (c + α)2 +
√

β2 + (c− α)2
=

1
2

+
c2 − α2 − β2

2
√

β2 + (c + α)2
√

β2 + (c− α)2
, (5.1)

and
|c2 − α2 − β2|√

β2 + (c + α)2
√

β2 + (c− α)2
< 1. (5.2)

Proof. Apply some routine algebra, we have
√

β2 + (c + α)2 −
√

β2 + (c− α)2√
β2 + (c + α)2 +

√
β2 + (c− α)2

=
1

2αc

(
β2 + α2 + c2 −

√
β2 + (c + α)2

√
β2 + (c− α)2

)

(5.3)
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On the other hand, we have

c2 + αc√
β2 + (c + α)2

+
c2 − αc√

β2 + (c− α)2

=
c2(

√
β2 + (c + α)2 +

√
β2 + (c− α)2)− ac(

√
β2 + (c + α)2 −

√
β2 + (c− α)2)√

β2 + (c + α)2
√

β2 + (c− α)2
.

(5.4)

Applying (5.3) and (5.4), we can obtain (5.1) after some simple algebra.
As for (5.2), we have

|c2 − α2 − β2|√
β2 + (c + α)2

√
β2 + (c− α)2

=
|c2 − α2 − β2|√

(c2 − α2 − β2)2 + 4β2c2
.

Thus the conclusion follows.

Proposition 2. For the Z∗1 , Z∗2 , Y ∗
1 , and Y ∗

2 defined in (3.8), we have

(
Z∗1
β
− α

β2
)(Y ∗

1 )2 + (
Z∗2
β
− α(Z∗2 )2

β2
)(Y ∗

2 )2 = 0, (5.5)

1 + (Z∗1 )2 =

√
β2 + (c∗ + α)2

√
β2 + (c∗ − α)2

4α2β2
(

4α2 −
(√

β2 + (c∗ + α)2 −
√

β2 + (c∗ − α)2
)2

)
(5.6)

(ξ∗1 − ξ∗2)
2 +

(
c∗ − α(ξ∗1 − ξ∗2)

β

)2

+ 1 + (Z∗1 )2 =

√
β2 + (c∗ + α)2

√
β2 + (c∗ − α)2

4α2β2(c∗)2(
8α2(c∗)2 − (α2 + β2 + (c∗)2)

(√
β2 + (c∗ + α)2 −

√
β2 + (c∗ − α)2

)2
)

(5.7)

Proof. By (3.8), it is clear that Y ∗
2 = Y ∗1 Z∗1

Z∗2
. Applying this fact, by some routine algebra,

we have

(
Z∗1
β
− α

β2
)(Y ∗

1 )2 + (
Z∗2
β
− α(Z∗2 )2

β2
)(Y ∗

2 )2 =
(Y ∗

1 )2

β2

(
Z∗1 (β +

βZ∗1
Z∗2

− αZ∗1 )− α

)

=
(Y ∗

1 )2

β2

(
Z∗1
β

(
β2 + (c∗)2 − αc∗(ξ∗1 − ξ∗2)

)− α

)
.

(5.8)

By the definitions of ξ∗1 and ξ∗2 , by the similar approach as that of (5.3), we have

ξ∗1 − ξ∗2 =
1

2αc∗
(
β2 + α2 + (c∗)2 −

√
β2 + (c∗ + α)2

√
β2 + (c∗ − α)2

)
. (5.9)

Applying (5.9), we have

β2 + (c∗)2 − αc∗(ξ∗1 − ξ∗2) =
1
2

(
β2 + (c∗)2 − α2 +

√
β2 + (α + c∗)2

√
β2 + (α− c∗)2

)

(5.10)
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and

Z∗1 =
1

2αβ

(
−β2 − (c∗)2 + α2 +

√
β2 + (α + c∗)2

√
β2 + (α− c∗)2

)
. (5.11)

Apply (5.10) and (5.11) into (5.8), by some routine algebra, we can establish (5.5).
Applying (5.9) again, we have

(ξ∗1 − ξ∗2)
2 − 1 =

(
β2 + α2 + (c∗)2 −

√
β2 + (α + c∗)2

√
β2 + (α− c∗)2

)2
− 4α2(c∗)2

4α2(c∗)2

=
1

4α2(c∗)2
(
β2 + (α2 − c∗)2 −

√
β2 + (α + c∗)2

√
β2 + (α− c∗)2

)

(
β2 + (α2 + c∗)2 −

√
β2 + (α + c∗)2

√
β2 + (α− c∗)2

)

= −
√

β2 + (α + c∗)2
√

β2 + (α− c∗)2
(√

β2 + (α + c∗)2 −
√

β2 + (α− c∗)2
)2

4α2(c∗)2
.

(5.12)

By the definition of Z∗1 and (5.9), we have

1 + (Z∗1 )2 =
1
β2

(
β2 + α2 + (c∗)2(ξ∗1 − ξ∗2)

2 − 2αc∗(ξ∗1 − ξ∗2)
)

=
1
β2

(
(c∗)2[(ξ∗1 − ξ∗2)

2 − 1] +
√

β2 + (α + c∗)2
√

β2 + (α− c∗)2
)

.

(5.13)

Applying (5.12) into (5.13), we can establish (5.6).
By the similar approach, we have

(
c∗ − α(ξ∗1 − ξ∗2)

β

)2

+ 1 =
1
β2

(
α2[(ξ∗1 − ξ∗2)

2 − 1] +
√

β2 + (α + c∗)2
√

β2 + (α− c∗)2
)

=

√
β2 + (c∗ + α)2

√
β2 + (c∗ − α)2

4β2(c∗)2(
4(c∗)2 −

(√
β2 + (c∗ + α)2 −

√
β2 + (c∗ − α)2

)2
)

(5.14)

By (5.12), (5.14), and established (5.6), we can establish (5.7).

Proposition 3. For any positive α, β, and c,

c2 − α2 − β2 −
√

β2 + (c + α)2
√

β2 + (c− α)2

2
√

β2 + (c + α)2
√

β2 + (c− α)2

= −
4α2c2 − c2

(√
β2 + (c + α)2 −

√
β2 + (c− α)2

)2

8α2c2 − (α2 + β2 + c2)
(√

β2 + (c + α)2 −
√

β2 + (c− α)2
)2 .

(5.15)
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Proof. Notice that
(√

β2 + (c + α)2 −
√

β2 + (c− α)2
)2

=2(α2 + β2 + c2)

− 2
√

β2 + (c + α)2
√

β2 + (c− α)2.
(5.16)

By (5.16) and some routine algebra, we have

−
4α2c2 − c2

(√
β2 + (c + α)2 −

√
β2 + (c− α)2

)2

8α2c2 − (α2 + β2 + c2)
(√

β2 + (c + α)2 −
√

β2 + (c− α)2
)2

= − c2(α2 − β2 − c2 +
√

β2 + (c + α)2
√

β2 + (c− α)2)√
β2 + (c + α)2

√
β2 + (c− α)2(α2 + β2 + c2 −

√
β2 + (c + α)2

√
β2 + (c− α)2)

.

(5.17)

So (5.15) is sufficient if we can show

c2 − α2 − β2−
√

β2 + (c + α)2
√

β2 + (c− α)2 =

− 2c2(α2 − β2 − c2 +
√

β2 + (c + α)2
√

β2 + (c− α)2)
α2 + β2 + c2 −

√
β2 + (c + α)2

√
β2 + (c− α)2

,

which can be verified directly by the fact
(√

β2 + (c + α)2
√

β2 + (c− α)2
)2

= α4 + β4 + c4 + 2α2β2 + 2β2c2 − 2α2c2.

So the conclusion follows.

Proposition 4. Let g(c) be a function defined in [0,+∞) and g′(c) = g0(c)g1(c), where
g0(c) > 0 for c ∈ [0, +∞). Suppose that g1(c∗) = 0 for some c∗ > 0; g′1(0) > 0 and
limc→+∞ g′1(c) = −∞; g′′1(0) > 0 and limc→+∞ g′′1(c) = −∞; g′′′1 (c) < 0 for c > 0. Then
g(c) is maximized at c∗ if one of the following conditions holds: (i) g1(0) = 0 or (ii)
g1(0) < 0 and g(0) ≤ g(c∗).

Proof. g′′′1 (c) < 0 implies that g′′1(c) is a decreasing function of c. On the other hand,
g′′1(0) > 0 and limc→+∞ g′′1(c) = −∞. So there exist c1 > 0, such that g′′1(c) > 0 when
c ∈ (0, c1) and g′′1(c) < 0 when c ∈ (c1, +∞). This implies that g′1(c) is an increasing
function when c ∈ (0, c1) and a decreasing function when c ∈ (c1,+∞). With this fact
and g′1(0) > 0 and limc→+∞ g′1(c) = −∞, there exist c2 > 0, such that g′1(c) > 0 when
c ∈ (0, c2) and g′1(c) < 0 when c ∈ (c2, +∞). Thus g1(c) is an increasing function when
c ∈ (0, c2) and a decreasing function when c ∈ (c2,+∞).

Case (i): when g1(0) = 0. If c2 ≥ c∗, then g1(c∗) > 0 since g1(0) = 0 and g1(c) is
an increasing function for c ∈ (0, c∗). This is contradiction to g1(c∗) = 0. So we must
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have c2 < c∗. g1(0) = 0 and the fact that g1(c) is an increasing function when c ∈ (0, c2)
implies that g1(c) > 0 when c ∈ (0, c2]. g1(c∗) = 0 and the fact that g1(c) is a decreasing
function when c ∈ (c2, +∞) implies that g1(c) > 0 when c ∈ [c2, c

∗) and g1(c) < 0 when
c ∈ (c∗, +∞). So we have g1(c) > 0 when c ∈ (0, c∗) and g1(c) < 0 when c ∈ (c∗, +∞).
This is equivalent to g′(c) > 0 when c ∈ (0, c∗) and g′(c) < 0 when c ∈ (c∗, +∞) since
g0(c) > 0. This implies that g(c) is maximized at c∗.

Case (ii): when g1(0) < 0 and g(0) ≤ g(c∗). If c2 ≥ c∗, then g1(c) < 0 for c ∈ (0, c∗)
since g1(c∗) = 0 and g1(c) is an increasing function for c ∈ (0, c∗). This is equivalent
to g′(c) < 0 for c ∈ (0, c∗), which means that g(0) > g(c∗). This is contradiction to
g(0) ≤ g(c∗). So we must have c2 < c∗. Similarly as case (i), we have g1(c) > 0 when
c ∈ [c2, c

∗) and g1(c) < 0 when c ∈ (c∗, +∞). On the other hand, g1(0) < 0, g1(c2) > 0, and
the fact that g1(c) is an increasing function when c ∈ (0, c2) implies that there exist a point
c3 ∈ (0, c2) such that g1(c) < 0 for c ∈ (0, c3) and g1(c) > 0 for c ∈ (c3, c2). So we have
g1(c) < 0 for c ∈ (0, c3), g1(c) > 0 for c ∈ (c3, c

∗), and g1(c) < 0 for c ∈ (c∗,+∞). Again,
g′(c) has the same pattern by the fact that g0(c) > 0. This implies that g(c) is maximized
at either 0 or c∗. However we have g(0) ≤ g(c∗), thus the conclusion follows.

Proposition 5. Let Φ(c) =
∫ c
−∞ φ(u)du, where φ(u) = (1/

√
2π)exp(−u2/2). Define

Ψ(c) = φ2(c)/[Φ(c)(1− Φ(c))] and h(c) = Ψ′(c)/Ψ(c). Then we have

(i) h(c) < 0 and h′(c) < 0 for c > 0; h′(0) < 0.

(ii) h′′(c) < 0 for 0 < c < 2;

(iii) Ψ′(c) < 0 and Ψ(c)Ψ′′(c)− (Ψ′(c))2 < 0 for c > 0.

Proof. Since Ψ(c) > 0, conclusion (iii) is equivalent to conclusion (i). We only need to
show conclusion (i) and (ii).

Notice that φ′(c) = −cφ(c) and Φ′(c) = φ(c), by the straight algebra, we have

h(c) = −2c− φ(c)
Φ(c)

+
φ(c)

1− Φ(c)
, (5.18)

h′(c) = −2 +
cφ(c)Φ(c) + φ2(c)

Φ2(c)
+

φ2(c)− cφ(c) (1− Φ(c))
(1− Φ(c))2

, (5.19)

h′′(c) =
(1− c2)φ(c)

Φ(c)
− 3cφ2(c)

Φ2(c)
− 2φ3(c)

Φ3(c)

−(1− c2)φ(c)
1− Φ(c)

− 3cφ2(c)
(1− Φ(c))2

+
2φ3(c)

(1− Φ(c))3
, (5.20)

and

h′′′(c) =
(c3 − 3c)φ(c)

Φ(c)
+

(7c2 − 4)φ2(c)
Φ2(c)

+
12cφ3(c)
Φ3(c)

+
6φ4(c)
Φ4(c)

+
(3c− c3)φ(c)

1− Φ(c)
+

(7c2 − 4)φ2(c)
(1− Φ(c))2

− 12cφ3(c)
(1− Φ(c))3

+
6φ4(c)

(1− Φ(c))4
. (5.21)

23



Next, we shall show that h′′′(c) < 0 for 0 < c ≤ 1/2. Since (0, 1/2] =
⋃500

i=1((i −
1)/1000, i/1000], it is sufficient to show h′′′(c) < 0 for c ∈ ((i − 1)/1000, i/1000], i =
1, ..., 500. For c ∈ (c′, c′′], where 0 ≤ c′ < c′′ ≤ 1/2, we have (c3−3c)φ(c)

Φ(c) ≤ (c′3−3c′)φ(c′′)
Φ(c′′) ;

(7c2−4)φ2(c)
Φ2(c)

≤ (7c′′2−4)φ2(c′′)
Φ2(c′′) ; 12cφ3(c)

Φ3(c)
≤ 12c′′φ3(c′)

Φ3(c′) ; 6φ4(c)
Φ4(c)

≤ 6φ4(c′)
Φ4(c′) ; (3c−c3)φ(c)

1−Φ(c) ≤ (3c′′−c′′3)φ(c′)
1−Φ(c′′) ;

(7c2−4)φ2(c)
(1−Φ(c))2

≤ (7c′′2−4)φ2(c′′)
(1−Φ(c′))2 ; − 12cφ3(c)

(1−Φ(c))3
≤ − 12c′φ3(c′′)

(1−Φ(c′))3 ; and 6φ4(c)
(1−Φ(c))4

≤ 6φ4(c′)
(1−Φ(c′′))4 . By (5.21)

and a simple computer program can verify that h′′′(c) < 0 for c ∈ ((i − 1)/1000, i/1000],
i = 1, ..., 500.

By (5.20), we have h′′(0) = 0. Since h′′′(c) < 0 for 0 < c ≤ 1/2, this implies that
h′′(c) < 0 for 0 < c ≤ 1/2. We shall show that h′′(c) < 0 for 1/2 < c < 2. By the similar
argument as that of h′′′(c), we only need to show h′′(c) < 0 for c ∈ ((i−1)/10000, i/10000],
i = 5001, ..., 20000. For c ∈ (c′, c′′], where 1/2 < c′ < c′′ < 2, we have −3cφ2(c)

Φ2(c)
≤ −3c′φ2(c′′)

Φ2(c′′) ;

−2φ3(c)
Φ3(c)

≤ −2φ3(c′′)
Φ3(c′′) ; − 3cφ2(c)

(1−Φ(c))2
≤ − 3c′φ2(c′′)

(1−Φ(c′))2 ; and 2φ3(c)
(1−Φ(c))3

≤ 2φ3(c′)
(1−Φ(c′′))3 . When 1/2 <

c′ < c′′ < 1, we have (1−c2)φ(c)
Φ(c) ≤ (1−c′2)φ(c′)

Φ(c′) and − (1−c2)φ(c)
1−Φ(c) ≤ − (1−c′′2)φ(c′′)

1−Φ(c′) . When

1 ≤ c′ < c′′, we have (1−c2)φ(c)
Φ(c) ≤ (1−c′2)φ(c′′)

Φ(c′′) and − (1−c2)φ(c)
1−Φ(c) ≤ − (1−c′′2)φ(c′)

1−Φ(c′′) . By (5.20)
and a simple computer program can verify that h′′(c) < 0 for c ∈ ((i− 1)/10000, i/10000],
i = 5001, ..., 20000. Thus we have the conclusion (ii).

By (5.19), we have h′(0) = −2 + 4/π < 0. Since h′′(c) < 0 for 0 < c < 2, this implies
that h′(c) < 0 for 0 < c < 2. We shall show that h′(c) < 0 for c ≥ 2. By integration by
parts, for any c > 0, we have

1− Φ(c) > (
1
c
− 1

c3
)φ(c). (5.22)

By (5.22) and c ≥ 2, we have

φ2(c)− cφ(c) (1− Φ(c))
(1− Φ(c))2

≤
1
c2

φ2(c)

(1− Φ(c))2

≤ 1
(1− 1

c2
)2
≤ 16

9
.

(5.23)

On the other hand, it can be verified that cφ(c) is a decreasing function of c for c ≥ 2.
Thus for c ≥ 2, we have

cφ(c)Φ(c) + φ2(c)
Φ2(c)

=
cφ(c)
Φ(c)

+
(

φ(c)
Φ(c)

)2

≤ 2φ(2)
Φ(2)

+
(

φ(2)
Φ(2)

)2

.

(5.24)

By (5.19), (5.23), and (5.24), we can directly show that h′(c) < 0 when c ≥ 2. Thus we
have the conclusion that h′(c) < 0 for c > 0. Immediately we have h(c) < 0 for c > 0 since
h(c) = 0 by (5.18). So we have the conclusion (i).
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