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Chapter 1

Designs for selected non-linear models

1.1 Introduction

This chapter is an example based guide to optimal design for nonlinear regression models.

For clarity, we restrict ourselves to models with only one continuous explanatory variable.

The theory presented below also holds for multi variable models. In practice, designs for

multi variable models are usually found numerically due to the increased complexity; see e.g.

[64] or [60] for some recent developments on algorithms. Some analytical results on finding

optimal designs for multi variable models can be found in [63] and [10] and references therein.

Throughout this chapter, we assume we can make n observations y1, . . . , yn, at experi-

mental conditions x1, . . . , xn ∈ X , from a nonlinear model, i.e.

yi = η(xi,θ) + εi, εi ∼ N (0, σ2), i = 1, . . . , n, (1.1)

where η(xi,θ) is the regression function, known up to the vector of m unknown parameters,

θ, and the errors εi, i = 1, . . . , n, are independent and identically distributed. The design

space X is usually an interval on the real axis, i.e. X ⊆ IR.

Suppose without loss of generality that x1, . . . , xt, t ≤ n, are the distinct points among

1



2 CHAPTER 1. DESIGNS FOR SELECTED NON-LINEAR MODELS

x1, . . . , xn. We consider approximate designs of the form ξ = {(x1, w1), . . . , (xt, wt)}, where

the weight wi gives the proportion of observations to be made in the corresponding support

point xi, i = 1, . . . , t. We thus require 0 < wi ≤ 1, for i = 1, . . . , t, and
∑t
i=1wi = 1.

Note that nwi is not restricted to be an integer to avoid cumbersome discrete optimization

problems. In order to run an approximate design in practice a rounding procedure, see e.g.

[50], is used.

We are concerned with the “optimal” choice of a design. A decision rule of what is deemed

optimal is provided by an optimality criterion, which is selected to reflect the purpose of the

experiment. In what follows, we assume that we want to estimate the model parameters as

accurately as possible, and the estimation is either through maximum likelihood or nonlinear

least squares. It is therefore natural to consider optimality criteria which are concerned

with minimizing the (asymptotic) covariance matrix of the estimator θ̂ or, equivalently,

maximizing the Fisher information, Mξ, which for model (1.1) is given by

Mξ =
t∑
i=1

wif(xi,θ)f ′(xi,θ),

where

f(x,θ) = (
∂η(x,θ)

∂θ1
, . . . ,

∂η(x,θ)

∂θm
)′ (1.2)

is the vector of partial derivatives of η(x,θ) with respect to θ.

Example. The Michaelis-Menten model has expected response

η(x,θ) =
θ1x

θ2 + x
,

which is depicted in Figure 1.1 for parameter values θ′ = (1, 0.6). The parameter θ1 gives

the supremum of the curve, whereas θ2 can be interpreted as the value of x, at which half

the supremum is attained.

Figure 1.1 approximately here
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For the Michaelis-Menten model, the Fisher information of a design ξ is

Mξ =
t∑
i=1

wi
x2i

(θ2 + xi)2

 1 −θ1
(θ2+xi)

−θ1
(θ2+xi)

θ21
(θ2+xi)2

 .

There is no total ordering on the nonnegative definite matrices of size (m ×m). Hence

they are mapped to the real axis through an objective function to make them comparable.

A popular class of optimality criteria are the φp-criteria, which maximize the corresponding

matrix means. The pth matrix mean, p ∈ [−∞, 1], is defined as

φp(ξ) =



(
1
m

traceMξ
p
)1/p

p 6= −∞, 0

|Mξ|1/m p = 0

λmin(Mξ) p = −∞,

where λmin(Mξ) is the minimal eigenvalue of Mξ. Well-known special cases are the D-,

A- and E-criteria, where p = 0,−1,−∞, respectively. A D-optimal design minimizes the

volume of an asymptotic confidence ellipsoid for θ̂, and an A-optimal design minimizes the

average of the asymptotic variances for the estimators of the individual parameters.

If interest is in estimating a linear combination of the parameters, c′θ, for a given vector

c, we use the c-optimality criterion, which minimizes the objective function φc(ξ) = c′M−
ξ c,

where M−
ξ is a generalized inverse of the information matrix Mξ. This corresponds to

minimizing the asymptotic variance of c′θ̂.

We note that in nonlinear models at least some of the partial derivatives, and thus the

Fisher information, depend on the unknown parameter vector θ. An optimal design with

respect to some optimality criterion will therefore only be optimal for a specific value of θ,

and is denoted a locally optimal design, see e.g. [14]. An important subclass of nonlinear

models, the partially nonlinear models, are defined by [39] and [42] as models where some of

the parameters appear linearly. For D-optimality, these linear parameters do not affect the

maximization problem, and thus D-optimal designs depend only on the nonlinear param-

eters. The Michaelis-Menten model, for example, is a partially nonlinear model where the
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parameter θ1 appears linearly.

This chapter is organized as follows. In Section 1.2, we review three classical methods

for finding optimal designs. Section 1.3 is devoted to a recent approach, shedding light on

optimal design problems from a more general perspective. All these methods are illustrated

through a running example, the Michaelis Menten model. Further models are discussed

in section 1.4. For each of these, only the most suitable method is applied, including a

discussion of the drawbacks of the other methods for this particular situation. While the

main focus of this chapter is optimal design for parameter estimation, section 1.5 gives a brief

overview of optimal design when the purpose of the experiment is discrimination between

two or more models. All designs provided in this chapter are locally optimal in the sense of

[14], i.e. they depend on a best guess of the unknown model parameters. In Section 1.6, we

briefly discuss approaches to overcome this problem. In each section, we point the interested

reader to further relevant articles from the recent literature on optimal design for nonlinear

models.

1.2 Classical methods

In this section, we distinguish between three approaches to facilitate the computation of

optimal designs.

The standard method in many situtions is the use of an appropriate Equivalence Theorem

in order to find certain properties, usually the number of support points and possibly the

inclusion of end points of X in the support of the optimal design. Equivalence Theorems

are available for all commonly applied optimality criteria based on Fisher information, e.g.

the φp-criteria or c-optimality. The most important application of an Equivalence Theorem,

however, is checking optimality of a given candidate design.

Similarly powerful methods, summarized as the geometric approach, use the visualization

of what is called the induced design space, a combination of the model and the design space

X . Again, this often leads to finding the number of support points of an optimal design, and
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to results concerning the inclusion of boundary points of X . Results are available for φp-

and c-optimality. Since the plots used for visualization have as many axes as the underlying

model has parameters this approach is most useful for models with two or at most three

parameters.

A further method is the functional approach; see e.g. [47]. The main idea of this approach

is to express the support points (and sometimes also the weights) of optimal designs as

implicit functions of some auxiliary parameters. In many cases these functions, being real and

analytic, can be expanded into Taylor series, for the coefficients of which recursive formulae

are available. Results in this area cover the D-, E- and c-criteria and some parameter robust

criteria.

Unlike some more recent methods, see section 1.3, which aim at finding complete classes

of optimal designs that are dominating with respect to the Loewner ordering, the classical

methods usually solve one design problem at a time. Some of these approaches, however,

allow conclusions for a particular class of optimality criteria, the φp-criteria.

In some situations, the first two methods provide (some of) the support points of an

optimal design, but usually no characterization of the optimal weights. For the situation

where the optimal design has the minimal number of support points, m, to estimate θ,

[51] have developed a method to find optimal weights given the support points, applicable

to many optimality criteria including the φp-criteria. A similar result is available for c-

optimality.

Define the model matrix X = [f(x1,θ) . . . f(xm,θ)]′, and let V = (XX ′)−1X. Then

the φp-optimal weights wi of a design with support points x1, . . . , xm can be obtained by

solving the system of equations

wi =

√
uii∑m

j=1
√
ujj

, i = 1, . . . ,m, (1.3)

where uii is the ith diagonal element of the matrix U = VMp+1
ξ V ′. Note that the infor-

mation matrix can be expressed as Mξ = X ′WX, where W is the diagonal matrix holding

the weights. Hence for p = −1, i.e. A-optimality, we get an explicit solution since U reduces
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to (XX ′)−1, and thus the right hand side of (1.3) does not depend on the weights.

For c-optimality with respect to a vector c, we also obtain an explicit solution wi =

|vi|/
∑m
j=1 |vj|, i = 1, . . . ,m, where the vector v is defined as v = V c.

1.2.1 Methods based on the Equivalence Theorem

In what follows, we consider the situation where interest is in the whole parameter vector

θ. Moreover, we restrict attention to the φp-optimality criteria. Equivalence results for

subsystems of θ and further criteria which are information functions in the sense of [49] can

e.g. be found in [49], Ch. 7.

The Equivalence Theorem for φp-optimality is as follows.

Theorem 1.2.1 The design ξ is φp-optimal on X if and only if

f ′(x,θ)Mp−1
ξ f(x,θ)− trace(Mξ

p) ≤ 0 ∀ x ∈ X . (1.4)

Equality applies in (1.4) in the support points of ξ.

Example (continued). Suppose we seek the D-optimal design for the Michaelis Menten

model. This problem is tackled in three standard steps:

• Step 1: Use the Equivalence Theorem to show that for any value of θ the D-optimal

design on X = [0, B] has exactly two support points. Hence the weights of the D-

optimal design are w1 = w2 = 0.5; see e.g. [55].

• Step 2: Show that the larger support point of the D-optimal design is given by B, the

upper boundary of the design region X .

• Step 3: Find the smaller support point of the D-optimal design.

Step 1: For D-optimality, Theorem 1.2.1 simplifies to:
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Corollary 1.2.2 The design ξ is D-optimal for θ if and only if inequality

d(ξ, x,θ) = f ′(x,θ)Mξ
−1f(x,θ)−m ≤ 0 (1.5)

holds for all x ∈ X , with equality in the support points of ξ.

Consider inequality (1.5) for the Michaelis Menten model with arbitrary parameter value

θ and a D-optimal design ξ. We require that ξ has at least two support points to have

nonsingular Fisher information Mξ. Multiplying (1.5) through with (θ2 + x)4, we obtain

a polynomial of degree four, p4(x) say, on the left hand side. We now count its possible

number of roots, the support points. A polynomial of degree four can have at most four

roots. However, if p4(x) had four roots at least the two middle ones would have to be

turning points, since p4(x) must not become positive on X . Hence the derivative of p4(x),

a polynomial of degree three, would have at least five roots, which is a contradiction. Now

suppose p4(x) has three roots on X . By the same argument as before, only the middle root

may be a turning point, so the other two roots have to be the endpoints of X . A schematic

of such a polynomial is depicted in Figure 1.2. Now substitute the lower endpoint into

d(ξ, x,θ). Since f(0,θ) = 0, we find that d(ξ, 0,θ) = −2 6= 0, so 0 cannot be a support

point of the D-optimal design, which contradicts the assumption of a three-point design.

Figure 1.2 approximately here

Step 2: By a standard result in optimal design theory, see e.g. [55], Lemma 5.1.3., a

D-optimal design with the number of support points equal to m, the number of model

parameters, (often called a saturated design) must have equal weights w1 = . . . = wm = 1/m.

Hence the objective function becomes

φD(ξ,θ) = |Mξ| =
1

4

θ21x
2
1x

2
2(x2 − x1)2

(θ2 + x1)4(θ2 + x2)4
. (1.6)

We note that the linear parameter θ1 comes out as a factor, and does therefore not affect

the maximization of (1.6) with respect to the design. Without loss of generality, let x2 be



8 CHAPTER 1. DESIGNS FOR SELECTED NON-LINEAR MODELS

the larger support point, i.e. x2 > x1. For the derivative of φD with respect to x2 we obtain

∂φD(ξ,θ)

∂x2
=
θ21x

2
1x2(x2 − x1)[θ2(x2 − 0.5x1) + 0.5x1x2]

(θ2 + x1)4(θ2 + x2)5
> 0,

so φD is increasing as x2 increases, and is thus maximized at the upper boundary, B, of X .

Step 3: Substitute x2 = B into (1.6) and solve ∂φD(ξ,θ)/∂x1 = 0 for x1. There are

three solutions, 0, Bθ2/(B + 2θ2) and B. For both x1 = 0 and x1 = B, the objective

function becomes zero, so these points correspond to local (and global) minima. Hence the

point x1 = Bθ2/(B + 2θ2), situated between the two, has to correspond to the only local

maximum, which is also global on X since the values attained at the end points are minima.

We finally check for one example that the design obtained is indeed D-optimal. Figure 1.3

shows d(ξ, x,θ) for the D-optimal design ξ with parameter vector θ′ = (1, 0.6) and design

region X = [0, 1]. The conditions of the Equivalence Theorem are clearly satisfied.

Figure 1.3 approximately here

Note that the same strategy can be applied to search for other φp-optimal designs. One

major difference is that, unlike the D-optimal design, other φp-optimal designs may depend

on the value of the linear parameter θ1. The other difference is that the optimal weights

are not readily available in closed form, which requires either the use of formula (1.3) or a

further variable over which to optimize in Step 3 above.

1.2.2 Geometric approach

For c-optimality, Elfving’s Theorem (see [33]) is a powerful tool for characterizing optimal

designs. This was generalized to D-optimality and Bayesian optimality criteria by [16] and

[17], respectively. A related approach based on covering ellipses was introduced by [53], [54]

and [56] for D-optimality and subsequently used by e.g. [35] and [38]. This method was

extended to E-optimality for linear and nonlinear models by [28], [29] and [22], respectively.
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In an integrated approach, [11] generalized this method, for two-parameter models, to the

class of φp-optimality criteria. We will briefly review the results by [11] and [33] and illustrate

them through an example.

Both approaches use the concept of an induced design space, G, where G = {f(x,θ), x ∈
X} with f(x,θ) defined in (1.2). In what follows, we require G to be compact, which is

trivially satisfied if X is compact and, for every admissible value of θ, f(x,θ) is continuous

in x.

Figure 1.4 shows a parametric plot of the induced design space for the Michaelis-Menten

model with parameter vector θ′ = (1, 0.6) and design space X = [0, 1] as a solid line. Its

reflection −G has been added as a dotted line. The axes are given by the entries of the vector

f(x,θ), i.e. the horizontal axis is ∂η(x,θ)/∂θ1, and the vertical axis is ∂η(x,θ)/∂θ2.

Figure 1.4 approximately here

Elfving’s Theorem and its implications for c-optimality

Consider a vector c and designs ξ such that c ∈ range(Mξ) to ensure estimability of c′θ;

see e.g. [48]. Define the Elfving set, E , by

E = co(G ∪ −G),

where co(A) means the convex hull of a set A ⊂ IRm. Elfving’s Theorem characterizes a

c-optimal design in terms of the intersection of the halfline {γc | γ > 0} with the boundary

of E .

Theorem 1.2.3 A design ξ = {(x1, w1), . . . , (xt, wt)} is c-optimal for estimating c′θ if and

only if there exists a positive number γ∗ > 0 and real numbers ε1, . . . , εt ∈ {−1, 1} such that

the point γ∗c =
∑t
i=1wiεif(xi,θ) is a boundary point of the Elfving set E.

To see how this result can be used to find c-optimal designs, consider the following example.
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Example (continued). Suppose an experimenter is interested in estimating percentiles xr

of the Michaelis-Menten curve, i.e. values of x, for which one expects a proportion r of the

supremum of the concentration, θ1, to be attained. For r ∈ (0, 1), we solve the equation

θ1x

θ2 + x
= rθ1

for x to obtain xr = rθ2/(1 − r). The problem of estimating xr for fixed but arbitrary

r ∈ (0, 1) is therefore equivalent to estimating θ2, and we seek a c-optimal design where

c = (0, 1)′.

Now consider the shape of the Elfving set E depicted in Figure 1.5 (for θ = (1, 0.6)′ and

X = [0, 1]). The halfline {γ(0, 1)′ | γ > 0} intersects the boundary of E for some positive γ∗

at the point (0, γ∗)′ on the vertical axis. This point is a convex combination of two points,

one at the right hand boundary point of G, and one on −G, since they are all on the same

straight line.

Figure 1.5 approximately here

This tells us that the c-optimal design must have two support points, x1 and x2 (w.l.o.g.

let x1 < x2) satisfying

 0

γ∗

 = w1ε1

 x1
θ2+x1

−θ1x1
(θ2+x1)2

+ (1− w1)ε2

 x2
θ2+x2

−θ1x2
(θ2+x2)2


= −w1

 x1
0.6+x1

−x1
(0.6+x1)2

+ (1− w1)

 1
0.6+1

−1
(0.6+1)2

 .
We have x2 = 1 since the right hand side end point of G is attained at the upper bound

of X , and ε1 = −1, ε2 = 1 since they correspond to points on −G and G, respectively. As

we do not know the value of γ∗ we cannot use this system of equations to find x1 and w1,

but we can substitute x2 = 1 into the objective function, φc(ξ) = c′M−
ξ c, and minimize

either analytically or numerically with respect to x1 and w1. Alternatively, we can use the
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weight formula by [51] to find the optimal weight w1 in terms of x1 to reduce the number of

variables in the optimization problem.

Characterization of φp-optimal designs via covering ellipses

[11] express the φp-optimal design problem for two-parameter models in terms of a dual

problem.

Theorem 1.2.4 Let N be a nonnegative definite matrix with eigenvalues λ1 and λ2, and

let q be determined by the equation p + q = pq. Define the v2q-content of the ellipse EN =

{u ∈ IR2 | u′Nu ≤ 1} as

v2q(EN ) =
Vol(EN )

l2q(EN )
=

π/
√
λ1λ2

[(2/
√
λ1)2q + (2/

√
λ2)2q]1/(2q)

,

where Vol(EN ) denotes the volume of the ellipse EN , and l2q(EN ) is the l2q-mean of the

lengths of its major and minor diameter.

Then the φp-optimal design problem is the dual of finding a centered ellipse EN which

covers the induced design space G and has minimal v2q-content. Moreover, this ellipse touches

G at the points f(x∗i ,θ), where x∗i are the support points of any φp-optimal design.

We consider the following example in order to illustrate how the calculation of optimal

designs can be facilitated by this method.

Example (continued). For arbitrary p ∈ [−∞, 1], consider the aim is to find a φp-optimal

design for the Michelis Menten model. From Figure 1.4 we can see that a centered ellipse

that covers the induced design space G must touch G in exactly two points to have minimal

v2q-content. One of these points is the right hand side end point of G corresponding to the

upper boundary of the design space X . This general form of design does not depend on the

value of p. An example showing the D-optimal (p = 0) covering ellipse is depicted in Figure

1.6.
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Figure 1.6 approximately here

This approach provides a geometric characterization of the optimal support points, but

not of the optimal weights. [11] present a counterexample where all φp-optimal designs have

the same covering ellipse with minimal v2q-content, but different weights. The standard

strategy for finding a φp-optimal design would therefore follow similar steps as we have seen

in the section on the Equivalence Theorem:

1. Establish the number of support points by visual inspection. (Two, in this example.)

2. Identify as many support points as possible. (The upper boundary of X , in this exam-

ple.)

3. Substitute this information into the objective function, and optimize with respect to

the remaining support points and the weights.

Again, if the optimal design is saturated, the method by [51] can be used to find the optimal

weights.

1.2.3 Functional approach

The idea behind the functional approach is the following. Suppose the design problem has

been reduced to an optimization problem, for which the optimum is attained in the interior

of its domain. Hence the solution can be found by setting the gradient (with respect to

the design variables) of the objective function to zero and solving for the design variables.

By “design variables” we mean all support points and weights of the optimal design that

require calculation. Now this gradient, g(τ ,θ) say, depends on two sets of “variables”,

the design variables, τ say, and the model parameters held in the vector θ. Under some

regularity assumptions, the implicit function theorem implies that in the neighborhood U

of an arbitrary vector θ0 for which we have a vector τ0 with g(τ0,θ0) = 0 there exists a

function τ = τ (θ) such that for all θ ∈ U we obtain g(τ (θ),θ) = 0, and τ (θ) can be
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expanded into a Taylor series. The coefficients for this series can be obtained by recursive

formulae provided in [47].

This means that once we have found an optimal design τ0 with respect to one parameter

vector θ0, we can approximate optimal designs τ (θ) for different values of θ by the first few

terms of their Taylor polynomials about θ0. An essential assumption for this approach is

that there are as many design variables as there are model parameters to make the Jacobian

of τ (θ) invertible. A natural application is therefore to find saturated D-optimal designs.

In many other situations, the approach can still be applied after using some properties of

the optimal design and/or restricting/transforming the parameter space. More details can

be found in [47] and the references therein. The method is easy to implement in software

allowing symbolic calculations, such as Mathematica or Maple, and usually only a few coeffi-

cients are required for a good approximation to the true function τ (θ), provided the interval

for each component of θ is not too wide.

Example (continued). Suppose we seek D-optimal designs for the Michaelis Menten

model on the design space X = [0, 1], for different values of the parameter vector θ. Further

assume we have already established that 1, the upper bound of X , is a support point, and

that the optimal designs depend only on θ2. Hence we aim to approximate the smaller

support point x1 = τ(θ2) as a function of θ2. We note that for this particular example

τ(θ2) = θ2/(1 + 2θ2) can be found explicitly by a simple calculation, so an approximation

would not be necessary in practice. It is still useful for illustration of the method.

From (1.6), we have to maximize x21(1 − x1)
2/(θ2 + x1)

4, so we set its derivative with

respect to x1 equal zero, which, after some algebra and observing that x1 6= 0, 1 − x1 6= 0

and θ2 + x1 6= 0, is equivalent to

g(x1, θ2) = x1(1 + 2θ2)− θ2 = 0.

Assume we expand the series about θ2,0 = 0.6, then the corresponding τ0 = τ(θ2,0) is

3/11. The recursive formulae from [47], p. 34, yield for the (s+1)th coefficient of the Taylor
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expansion

τ̃s+1 = −J−10

1

(s+ 1)!

∂s+1g(τ̂s(θ2), θ2)

∂θs+1
2

, s = 0, 1, . . . ,

where J0 is the Jacobian of g(τ, θ2) with respect to τ , evaluated at (τ0, θ2,0), and

τ̂s(θ2) = τ̃0 +
s∑
j=1

τ̃j(θ2 − θ2,0)j

is the Taylor expansion from the sth step. Therefore, the function g(τ̂s(θ2), θ2) depends on

θ2 in both components (the first component is a polynomial in θ2), which must be taken into

account when working out its partial derivatives with respect to θ2.

We obtain J0 = 1 + 2θ2,0 = 2.2, so −J−10 = −1/2.2 = −0.4̄5 and τ̃1 = −0.4̄5(2τ0 − 1) =

0.2066 to 4 d.p. Hence τ̂1(θ2) = 3/11+0.2066(θ2−0.6). For τ̃2 we require the second derivative

of g(3/11 + 0.2066(θ2− 0.6), θ2) = 3/11 + 0.2066(θ2− 0.6) + 2θ2[3/11 + 0.2066(θ2− 0.6)] + θ2

with respect to θ2. This is given by 4 × 0.2066 = 0.8264, and we obtain for the second

coefficient τ̃2 = −J−10 × 0.8264/2! = −0.1878 (4 d.p.). Continuing in this manner yields the

next coefficients τ̃3 = 0.1708, τ̃4 = −0.1552, τ̃5 = 0.1411 and τ̃6 = −0.1283.

Figure 1.7 shows two Taylor approximations about θ2 = 0.6 to the true function x1 = τ(θ2)

on the domain θ2 ∈ [0.1, 1.1]. The Taylor polynomial of degree four is virtually identical to

τ(θ2) across this interval. On a smaller interval, e.g. θ2 ∈ [0.4, 0.8], the Taylor polynomial

of degree two is already a good approximation.

Figure 1.7 approximately here

1.3 General solutions

The “classical” methods have in common that design problems are solved on a case-by-case

basis. Each combination of model and optimality criterion requires its own proof. There

is a recent development towards more general solutions of design problems. [61] considered

nonlinear models with two parameters, and algebraically derived conditions, under which for
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each design ξ there is a design ξ̃ from a simple class, which is at least as good as ξ in terms

of the Loewner ordering of the corresponding information matrices, i.e. Mξ̃−Mξ is positive

semidefinite. For any reasonable optimality criterion maximizing an objective function φ(ξ),

Mξ̃ ≥ Mξ implies that φ(ξ̃) ≥ φ(ξ), i.e. optimality criteria should be isotonic relative to

the Loewner ordering. The information functions in the sense of [49], which include the φp-

criteria as special cases, satisfy this condition. These results were subsequently generalized to

models with an arbitrary number of parameters by [59] and [24]. In particular, [59] provides

considerably tighter bounds on the maximal number of support points than Caratheodory’s

bound, for large classes of models and arbitrary optimality criteria based on the information

matrix, thus greatly reducing the computational effort to find optimal designs. In many

situations the optimal designs are saturated, i.e. they have as many support points as the

model has parameters to be estimated. A similar result has been shown for polynomial

models by [15], which has subsequently been named the de la Garza phenomenon. [24]

provide a rigorous investigation, using the theory of Chebyshev systems, see e.g. [41], of the

classes of models for which the de la Garza phenomenon holds. A further extension of these

methods, which can result in finding even smaller complete classes for optimal designs, can

be found in [62].

1.3.1 Algebraic method

The method proposed in [61] and [59] uses a transformation of the information matrix for a

design ξ, of the form

Mξ = P (θ)[
t∑
i=1

wiC(θ, zi)]P (θ)′, (1.7)

where

C(θ, zi) =


Ψ1,1(zi) · · · Ψ1,m(zi)

...
. . .

...

Ψ1,m(zi) · · · Ψm,m(zi)


and P (θ) is a m ×m nonsingular matrix that depends on the value of θ only. Typically,

for fixed θ and an interval design space X , the map from x ∈ X to z ∈ [Zl, Zu] is one-to-

one and onto, and a design ξ can be expressed in terms of its transformed support points
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zi, i = 1, . . . , t, and its weights.

Now rename all nonconstant and distinct functions Ψl,s, 1 ≤ l ≤ s ≤ m, to Ψ1, . . . ,Ψk,

such that Ψk is one of Ψl,l, 1 ≤ l ≤ m, and that there is no Ψl,s = Ψk for l < s. The

idea behind this approach is to show that for each design ξ = {(z1, w1), . . . , (zt, wt)} there

exists a design ξ̃ = {(z̃1, w̃1), . . . , (z̃t̃, w̃t̃)} from a simple class, for which
∑t̃
i=1 w̃iΨj(z̃i) =∑t

i=1wiΨj(zi) for j = 1, . . . , k − 1, and
∑t̃
i=1 w̃iΨk(z̃i) ≥

∑t
i=1wiΨk(zi), which makes ξ̃ at

least as good as ξ in the Loewner ordering. The extension by [62] uses a similar idea where

instead of just one entry, Ψk(z), an arbitrary lower principal submatrix of the matrix C(θ, z)

is considered.

If Ψ1, . . . ,Ψk are differentiable infinitely often and the functions ψl,s recursively defined

as

ψl,s(z) =

 Ψ′l(z), s = 1, l = 1, . . . , k,(
ψl,s−1(z)

ψs−1,s−1(z)

)′
, 2 ≤ s ≤ k, s ≤ l ≤ k

(1.8)

have no zero value on the transformed design space [Zl, Zu], the following result holds; see

[59]:

Theorem 1.3.1 Let Φ(z) =
∏k
l=1 ψl,l(z), z ∈ [Zl, Zu]. For any given design ξ there exists a

design ξ̃, such that Mξ ≤Mξ̃ in the Loewner ordering.

(a) When k is odd and Φ(z) < 0, ξ̃ has at most (k+ 1)/2 support points including point Zl.

(b) When k is odd and Φ(z) > 0, ξ̃ has at most (k+1)/2 support points including point Zu.

(c) When k is even and Φ(z) > 0, ξ̃ has at most k/2 + 1 support points including points Zl

and Zu.

(d) When k is even and Φ(z) < 0, ξ̃ has at most k/2 support points.

Note that the general formula for computing Φ(z) can easily be implemented in software

that is capable of symbolic calculations. Furthermore, even if Φ(z) has a complicated struc-

ture, making it impossible to check directly if this function is positive/negative on [Zl, Zu],

we can easily obtain this information from visual inspection of its graph.
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To fix ideas, consider the following example.

Example (continued). Consider the Michaelis Menten model. After some algebra, we find

that the information matrix can be written in form (1.7) with

P (θ) =

 1/θ1 0

−1/θ2 1/(θ1θ2)

 , C(θ, z) =

 z2 z3

z3 z4

 ,
where z = θ1x/(θ2 + x). Let Ψ1(z) = Ψ1,1(z) = z2,Ψ2(z) = Ψ1,2(z) = z3 and Ψ3(z) =

Ψ2,2(z) = z4. Then k = 3, Ψk = Ψl,l for l = 2, and there is no l < s with Ψl,s = Ψk. From

(1.8), we find that

ψ1,1 = Ψ′1(z) = 2z

ψ2,2 =

(
ψ2,1(z)

ψ1,1(z)

)′
=

(
Ψ′2(z)

Ψ′1(z)

)′
=

(
3z2

2z

)′
=

3

2

ψ3,3 =

(
ψ3,2(z)

ψ2,2(z)

)′
=

(
[ψ3,1(z)/ψ1,1(z)]′

3/2

)′
=

(
[Ψ′3(z)/Ψ′1(z)]′

3/2

)′
=

(
[4z3/2z)]′

3/2

)′
=

8

3
.

Hence Φ(z) = 2z× 3/2× 8/3 = 8z > 0 if z > 0. Since an observation in x = 0 does not give

any increase in information, we can choose X = [A,B] where A is small but positive instead

of the interval [0, B] we used before. Therefore x > 0, and we obtain that z > 0 since θ1 > 0

and θ2 > 0. That means we are in the situation of case (b) in Theorem 1.3.1. Hence for each

optimality criterion based on the information matrix, there exists an optimal design with no

more than (k + 1)/2 = 2 support points, one of which is Zu, which translates into B by the

inverse map. This confirms our results for this example from previous sections. It remains

to select an appropriate optimality criterion, and to use analytical or numerical search to

obtain an optimal design from the class found.

Note that for larger values of k, we do not necessarily obtain the existence of a saturated

optimal design. For example, if p = 6, k can be as large as 21, provided all Ψl,s, 1 ≤ l ≤ s ≤ m

are distinct. If Φ(z) 6= 0 on [Zl, Zu], there exists an optimal design with at most (k+1)/2 = 11

support points, one of which is already determined. This leaves an optimization problem

in 20 dimensions, 10 for the remaining support points, and 10 for the weights. This is still

a considerable improvement on Caratheodory’s lower bound, m(m + 1)/2, see e.g. [55] or
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[49], where in the above situation we would have to solve an optimization problem in 41

dimensions (21 support points and 20 weights). However, for many models some Ψl,s occur

repeatedly in the information matrix. For example, for polynomials of degree five, i.e. p = 6,

the information matrix holds only 11 different functions of z = x, the monomials up to degree

ten. The monomial of degree zero, i.e. the function constant to 1, does not depend on the

design, and hence k = 10, and there exists an optimal design with six support points, two of

which are the endpoints of the design interval X , as given by the de la Garza phenomenon.

In the next subsection, we will investigate in more detail for which classes of models the de

la Garza phenomenon holds.

1.3.2 Method based on Chebyshev systems

Roughly speaking, [24] demonstrate that the de la Garza phenomenon occurs in any model,

for which the functions in the information matrix, together with the constant function, form

a Chebyshev system. Following [41], a set of k+1 continuous functions {u0, . . . , uk} is called

a Chebyshev system on the interval [Zl, Zu] if

∣∣∣∣∣∣∣∣∣∣
u0(z0) · · · u0(zk)

...
. . .

...

uk(z0) · · · uk(zk)

∣∣∣∣∣∣∣∣∣∣
> 0 (1.9)

for all Zl ≤ z0 < . . . < zk ≤ Zu. Note that if the determinant in (1.9) is negative then the

set {u0, . . . ,−uk} is a Chebyshev system on [Zl, Zu].

As in Section 1.3.1, denote the different elements of the transformed information matrix

C(θ, z) defined in (1.7) as Ψ1, . . . ,Ψk, such that Ψk is one of the diagonal elements, and

that there is no Ψl,s = Ψk for l < s. Assume that Ψ1, . . . ,Ψk are all continuous, so infinite

differentiability of the Ψi as in [59] is not required. Furthermore, let Ψ0(z) = 1, and define

the index, I(ξ), of a design ξ on the interval [Zl, Zu] as the number of support points, where

the boundary points, Zl and Zu, are only counted by 1/2.

Suppose that the sets {Ψ0,Ψ1, . . . ,Ψk−1} and {Ψ0,Ψ1, . . . ,Ψk} are Chebyshev systems.
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Then the following result holds; see Theorem 3.1 in [24].

Theorem 1.3.2 For any design ξ there exists a design ξ̃ with at most (k + 2)/2 support

points such that Mξ̃ ≥Mξ. If I(ξ) < k/2, then ξ̃ = ξ. Otherwise:

(a) If k is odd, ξ̃ has at most (k + 1)/2 support points, and can be chosen such that its

support contains the point Zu.

(b) If k is even, ξ̃ has at most k/2 + 1 support points, and can be chosen such that its

support contains the points Zl and Zu.

If the sets {Ψ0,Ψ1, . . . ,Ψk−1} and {Ψ0,Ψ1, . . . ,−Ψk} are Chebyshev systems, a similar result

holds, with the point Zu in (a) replaced by Zl, k/2+1 in (b) replaced by k/2, and the points

Zl and Zu crossed out in (b).

Several sets of functions, e.g. the monomials up to degree m for any integer m, are known

to be Chebyshev systems. If this information is not available, using the definition given in

(1.9) can be unwieldy, in particular if k is large. In this situation, it is usually easier to check

the condition on Φ(z) from the algebraic method described in subsection 1.3.1.

Example (continued). To apply this result to the Michaelis Menten model, we need

to check if the sets of functions S2 = {Ψ0(z),Ψ1(z),Ψ2(z)} and S3 = S2 ∪ {Ψ3(z)} are

Chebyshev systems on [Zl, Zu] where Zl ≥ 0, Ψ0(z) = 1,Ψ1(z) = z2,Ψ2(z) = z3 and

Ψ3(z) = z4. For S2 we obtain

∣∣∣∣∣∣∣∣∣∣
1 1 1

z20 z21 z22

z30 z31 z32

∣∣∣∣∣∣∣∣∣∣
= (z2 − z1)(z2 − z0)(z1 − z0)(z1z2 + z1z0 + z2z0) > 0

for Zl ≤ z0 < z1 < z2 ≤ Zu. Similarly, the determinant for S3 is (z3 − z1)(z3 − z0)(z3 −
z2)(z2 − z1)(z2 − z0)(z1 − z0)(z0z1z2 + z1z2z3 + z0z2z3 + z0z1z3), which is also positive for

Zl ≤ z0 < z1 < z2 < z3 ≤ Zu. Hence S2 and S3 are both Chebyshev systems on [Zl, Zu].

Here k = 3, so (k + 2)/2 = 2.5, and for any design ξ the dominating design ξ̃ has at
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most 2 support points. Only a design ξ with support points Zl and Zu can achieve an index

I(ξ) < k/2 = 1.5. Hence such a design is dominated by itself. Any other design will be

dominated by a design ξ̃ with at most (k+1)/2 = 2 support points, one of which is the upper

bound of the transformed design interval, Zu, which translates into the upper bound, B, of

the original design space X . Note that if interest is in estimating both model parameters any

dominating design must have exactly two support points to ensure estimability. It remains

to select an appropriate optimality criterion, and to use analytical or numerical search to

obtain an optimal design from the class found.

1.4 Further examples

In this section, we will apply the methods described earlier to further examples. Unlike the

previous sections, we will not apply every method to every model, but only a combination

of the most suitable methods for each situation.

1.4.1 The two-parameter exponential model

Exponential growth models with expected response η(x,θ) of the form

η(x,θ) =
L∑
l=1

ale
−blx, al > 0, l = 1, . . . , L, (1.10)

occur in chemical kinetics, see e.g. [36], with particular emphasis on toxicology (see [5] and

[6]) and microbiology (see [1]). Locally D-, c-, and E-optimal designs for this class of models

have been found in [34], [25] and [26].

For the purpose of this example, we assume that L = 1 in (1.10), and for consistency

rename the parameters to obtain η(x,θ) = θ1e
−θ2x. We further let θ2 > 0, and X = [0, B]

for some B > 0. Note that knowledge of the sign of θ2 is not a restrictive assumption, since

the experimenter will usually know whether to expect growth or decline. The information
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matrix for this model for a design ξ is given by

Mξ =
t∑
i=1

wi

 e−2θ2xi −θ1xie−2θ2xi

−θ1xie−2θ2xi θ21x
2
i e
−2θ2xi

 . (1.11)

Before selecting an optimality criterion, we seek the complete class of dominating designs

in the Loewner sense. Following the approaches presented in section 1.3, we simplify the

functions in the information matrix (1.11) using the transformation z = θ2x, z ∈ [0, θ2B],

and defining

P (θ) =

 1 0

0 −θ1/θ2

 .
This yields the functions Ψ1(z) = e−2z, Ψ2(z) = ze−2z and Ψ3(z) = z2e−2z. The algebraic

method from subsection 1.3.1 involves checking if Φ(z), a function consisting of ratios of

Ψ1,Ψ2,Ψ3 and their derivatives, is positive/negative on [0, θ2B]. We can see that the expo-

nential term, e−2z, will cancel in these ratios, and therefore expect Φ(z) to have a simple

form. Alternatively, we could use the method described in subsection 1.3.2, and show that

{1,Ψ1,Ψ2} and {1,Ψ1,Ψ2,±Ψ3} are Chebyshev systems, which appears to be harder. It

turns out that Φ(z) = −4e−2z, which is negative for all z. Hence we stick to the algebraic

method for this example.

Here, k = 3 is odd and Φ(z) < 0 for all z ∈ [Zl, Zu]. Hence, from Theorem 1.3.1, we

obtain that the dominating designs have at most (k+ 1)/2 = 2 support points, one of which

is Zl, or zero in the original design space. It thus remains to find the other support point (if

necessary), and one weight.

Note that if interest is in estimating both parameters, any optimal design will have two

support points. If, however, we seek a c-optimal design, this may have just one support

point, zero, depending on where the vector c intersects the boundary of the Elfving set E .

Assume the experimenter is only interested in estimating the rate, θ2, of exponential

decay. In this case, the c-optimality criterion with c = (0, 1)′ will be appropriate. Now there

are two simple ways to establish if a second support point is needed: A plot of the Elfving
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set E and the vector c, similar to figure 1.5, or finding the weight w in the point zero by the

method described in [51], and checking if this is always less than one. A weight equal one

would indicate a design with only zero as its support point. For plotting the Elfving set,

we would need to specify values for the two model parameters, hence to keep our results as

general as possible, we use the latter method.

After some algebra, we find that the vector v = V c is given by (1/(θ1x2), e
θ2x2/(θ1x2))

′.

Since neither of the two entries is equal zero, the weight w = |v1|/(|v1|+ |v2|) = 1/(1 + eθ2x2)

is strictly between zero and one, hence a second support point is required. We further note

that w does not depend on the value of θ1, and on θ2 only through the product θ2x2.

We substitute the expression for w into the objective function and obtain

φc(ξ,θ) =
(1− w)e−2θ2x2 + w

w(1− w)e−2θ2x2θ21x
2
2

=
(1 + eθ2x2)2

θ21x
2
2

.

Setting the derivative with respect to x2 equal zero is equivalent to solving

eθ2x2(θ2x2 − 1) = 1,

which yields x2 = 1.278/θ2 (3 d.p.). Inspection of the second derivative reveals that this is

indeed a minimum. Hence θ2x2 = 1.278 is constant, and the weight w = 0.2178 is constant,

too, for any combination of θ2 and the corresponding optimal value of x2.

If θ2 is relatively small, the optimal x2 becomes large, and may not be included in the

design interval X = [0, B]. In this case, inspection of the first derivative of the objective

function with respect to x2 reveals that φc is strictly decreasing on X , and therefore the

second support point has to be B. The corresponding optimal weight is then given by

w = 1/(1 + eθ2B), and depends on the value of θ2.

Suppose now that the experimenter’s interest is in θ1 only, i.e. c = (1, 0)′. This scenario is

less likely to occur in practice, but we include it for illustration. In this case, it turns out that

the second entry of the vector v, v2, is equal zero, so in this situation the optimal weight at

point x1 = 0 is one, and the c-optimal design has only one support point. This corresponds



1.4. FURTHER EXAMPLES 23

to intuition, since η(0,θ) = θ1, so we expect that this parameter can be estimated well if

we observe in x = 0. A plot of the Elfving set could reveal such information for all possible

choices of vectors c at one glance, but suffers from the dependence of E on the unknown

parameter values. In many cases, however, one can argue that the parameter values do not

affect the general shape of E , which can then be used to gain general insight into the design

problem.

In this example, substituting the expression for the optimal weight into the objective

function resulted in a considerable simplification of the optimization problem. This is not

necessarily always the case. For example the objective function for A-optimality for the

exponential model appears to become rather more complicated, possibly because of the

square root terms involved in the weight formula.

1.4.2 The Emax model

The Emax model is a generalization of the Michaelis Menten model, and is widely used in

dose response studies. The expected response is given by

η(x,θ) = θ0 +
θ1x

θ2 + x
, θ1, θ2 > 0, x ∈ [0, B],

where θ0 represents the placebo response, θ1 (often called Emax) is the maximum achievable

increase above the placebo response, and θ2 is the dose which produces 50% of the Emax

effect. [23] show that D- and EDr-optimal designs for this model have the same support

points but different weights, where EDr is the smallest dose that achieves a proportion of r,

0 < r < 1, of the maximum effect in the observed dose range. Optimal designs for estimating

the minimum effective dose are given in [21].

Again, we start with writing the information matrix in the form (1.7). Following [59], we
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use the transformation z = 1/(θ2 + x) and

P (θ) =


1 0 0

1 −θ2 0

0 −θ1 θ1θ2


to obtain Ψ1(z) = z, Ψ2(z) = z2, Ψ3(z) = z3 and Ψ4(z) = z4. We know that the monomials

of degree 0, . . . , l form a Chebyshev system for every integer l, hence we can apply Theorem

1.3.2 immediately.

Here, k = 4, so for each design ξ there exists a dominating design ξ̃ with at most (k +

2)/2 = 3 support points. In particular, provided the index I(ξ) ≥ k/2 = 2, from part (b),

we obtain that Zl and Zu can be chosen as support points, which translate back into the

endpoints of the design interval X . A design with index strictly less than 2 has strictly less

than three support points, and thus produces a singular information matrix. If interest is in

estimating all parameters, we can thus restrict design search to designs with three support

points, including zero and B.

The Emax model is a generalization of the Michaelis Menten model, having an additional

parameter for a possible placebo effect. It may therefore be of interest how well an optimal

design for the Emax model performs if the true model is the Michaelis Menten model. This

corresponds to a situation where a placebo effect was anticipated, and therefore taken into

account when designing the experiment, but then it turned out that this parameter was

unnecessary in the model, so a Michaelis Menten model would be used in the analysis. For

comparison with designs found previously, we seek the D-optimal design for the Emax model,

on a design space X = [0, B]. Since this model is partially nonlinear, the D-optimal design

will not depend on the linear parameters θ0 and θ1.

We know that the weights of this saturated D-optimal design will be equal, i.e. w1 =

w2 = w3 = 1/3. Substituting these weights, together with the known support points, 0 and

B, into the objective function, we obtain

φD(ξ,θ) = |Mξ| =
1

33

θ21B
2x22(B − x2)2

(θ2 + x2)4(θ2 +B)4
.
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This is proportional to the objective function of the Michaelis Menten model (1.6), and thus

is also maximized by x2 = θ2B/(B + 2θ2).

We find that two of the support points of the D-optimal design, ξ∗ say, for the Emax

model coincide with those of the D-optimal design for the Michaelis Menten model. The

third support point of ξ∗, x1 = 0, however does not provide any information for the Michaelis

Menten model, i.e. the information matrix in this point is the zero matrix. To assess the

performance of ξ∗ for estimating the Michaelis Menten model, we compute its D-efficiency,

where the D-efficiency of a design ξ is defined as

effD(ξ) =

(
|Mξ|
|MξD |

)1/m

, (1.12)

with ξD the D-optimal design for the true scenario.

For this example, ξD is the D-optimal design for the Michaelis Menten model, and m = 2,

and we straightforwardly obtain that Mξ∗ = 2/3×MξD for all eligible values of θ2 and B,

provided these are the same for both designs. Hence, regardless of the parameter values or

the upper endpoint of the design interval, we have that effD(ξ∗) = 2/3.

The D-efficiency of a design ξ can be interpreted as the proportion of observations one

needs from the optimal design to get the same accuracy in parameter estimation as for

design ξ. For example, if we conducted a clinical trial with 300 patients, using the D-

optimal design for the Emax model, but then it turned out that there is no placebo effect,

and the Michaelis Menten model is appropriate, we could get estimates for θ1 and θ2 with the

same precision from a trial with 200 patients using the D-optimal design for the Michaelis

Menten model. In practice, however, it would not be known before analysing the data from

the trial that the placebo effect is not significant. At the planning stage, there are therefore

two possible scenarios (placebo effect/no placebo effect) and two possible decisions (design

for Emax/Michaelis Menten model) for the experimenter to make. Taking into account that

the D-optimal design for the Michaelis Menten model is not capable of estimating/testing

the presence/absence of the placebo effect, using design ξ∗ seems to be the safer bet, even if

some efficency is lost if the smaller model is correct. In practice, a compromise design could
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be employed, for example putting only weight 0.2 at point zero, and weight 0.4 at the other

two support points. This design has higher efficiency in the smaller model than ξ∗, and is

capable of estimating/testing all parameters. There will, however, be some loss in efficiency

if the Emax model is correct.

1.4.3 A heteroscedastic linear model

In some situations, it is not realistic to assume that the variability of observations is con-

stant throughout the design region, i.e. the variance function Var(εi) = σ2(xi,α) for some

parameter vector α, where the functional form of σ2(xi,α) is known. If this is not taken

into account when planning the experiment, an inefficient analysis may result. Consider the

class of heteroscedastic models where observations are described by

Yi = η(xi,θ) + εi, εi ∼ N (0, σ2(xi,α)), i = 1, . . . , n. (1.13)

The function λ(xi,α) := 1/σ2(xi,α) is called efficiency or intensity function. We note that

even in the simplest case, i.e. when the parameters in the efficiency function do not overlap

with the parameter vector θ in the expected response, and are not of interest, optimal designs

will be affected by heteroscedasticity. In particular, design problems for linear models with

nonconstant variance resemble those for nonlinear models in that they depend on the nuisance

parameters held in α. In what follows, we will consider a simple example.

Let η(x,θ) = θ0 + θ1x + θ2x
2, and λ(x,α) = e−αx for some α > 0 and x ∈ X = [0,∞).

That means, we assume the variance is increasing exponentially as x increases. Here the

information matrix for estimating θ = (θ0, θ1, θ2)
′ is given by

Mξ =
t∑
i=1

wiλ(xi, α)


1 xi x2i

xi x2i x3i

x2i x3i x4i

 =
t∑
i=1

wie
−αxi


1 xi x2i

xi x2i x3i

x2i x3i x4i

 ,
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which clearly depends on α. Replacing αx = z, z ∈ [Zl, Zu) = [0,∞), and letting

P (θ) =


1 0 0

0 1/α 0

0 0 1/α2


we obtain Ψ1(z) = e−z, Ψ2(z) = ze−z, Ψ3(z) = z2e−z, Ψ4(z) = z3e−z and Ψ5(z) = z4e−z. We

observe that the design problem closely resembles the problem for the exponential model.

In fact, if we dropped the squared term, θ2x
2, from the model equation, we would get the

identical problem as in subsection 1.4.1 in terms of finding the simple complete class of

Loewner dominating designs.

Again we consider the method by [59]. We find that Φ(z) = −24e−z < 0, which implies

that the optimal design will have at most 3 support points, one of which is Zl, translating into

x1 = 0 in the original design interval. Suppose interest is in estimating all three parameters

in θ, and we select the D-criterion. In this case, the optimal design will have exactly three

support points, one of which is zero, and equal weights. The objective function to maximize

is

|Mξ| =
1

27
e−α(x2+x3)x22x

2
3(x3 − x2)2.

A straightforward maximization yields the remaining D-optimal support points x2 = (3 −
√

3)/α and x3 = (3 +
√

3)/α.

[44] show a more general result, finding D-optimal designs for polynomials of any degree

with efficiency function λ(x) = e−x and several further functions commonly used to model

heteroscedasticity. In particular, they find that D-optimal designs on X = [0,∞) for model

(1.13) where η(x,θ) = θ0 + θ1x + . . . + θkx
k, k ≥ 1, and λ(x) = e−x have k + 1 equally

weighted support points. These are given by the roots of xL
(1)
k (x) where L

(1)
k (x) is the kth

generalized Laguerre polynomial. For more information on generalized Laguerre or indeed

other classical orthogonal polynomials, see e.g. [57].

By a simple transformation, we see that for efficiency function λ(x, α) = e−αx the support

points of the D-optimal design are the roots of xL
(1)
k (αx). We apply this to our example for

comparison. The generalized Laguerre polynomial L
(1)
2 (x) is given by L

(1)
2 (x) = 0.5x2−3x+3.
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Solving

xL
(1)
2 (αx) = x(0.5α2x2 − 3αx+ 3) = 0

confirms the results we found before.

Note that [44] used a method not yet described in this chapter, the method of expressing

the objective function in terms of canonical moments. We will only give a brief description of

this approach. For further reading the interested reader is referred to [30] and the references

therein.

The idea behind this approach is as follows. The entries in the information matrix M ξ

can be viewed as the moments of the design ξ. This is particularly evident for polynomial

models with constant variance. If we tried to maximize the determinant of M ξ with respect

to the moments, we would get into trouble due to the complicated structure of the moment

spaces. For example, the possible range for the second moment will depend on the value of

the first moment in a nontrivial way.

Canonical moments are transformations of the ordinary moments of a probability measure.

Roughly speaking, a canonical moment determines the relative position of the corresponding

ordinary moment in its moment space, given the lower order moments. The big advantage

of canonical moments is the simple structure of their moment spaces. In particular, they

do not depend on the values of the lower order canonical moments. If it is possible to

express the objective function in terms of canonical moments, it can be optimized over

each of these quantities independently, which usually results in a considerable simplication

of the problem. Once the optimal canonical moments have been found, the corresponding

optimal design can be determined by applying results on continued fractions, the Stieltjes

transform and orthogonal polynomials. The major limitation of canonical moments is that

the objective function can only be expressed as a function of canonical moments in a few

special cases, e.g. for D- or Ds-optimality for polynomial models with certain efficiency

functions or trigonometric models with constant variance.
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1.5 Model discrimination for nonlinear models

To discriminate between two nested models, a popular optimality criterion is Ds-optimality.

Intuitively, this is related to D-optimality for the s entries in the parameter vector θ by which

the models differ. Without loss of generality let θ′ = (θ′(1),θ
′
(2)) where the s additional

parameters are held in θ(1). Then a Ds-optimal design maximizes

φDs(ξ) = |(K′M−
ξ K)−1|,

whereK′ = [Is 0s×(m−s)] andM−
ξ denotes a generalized inverse of the information matrix.

The blocks inK′ are the identity matrix of size (s×s) and the zero matrix of size (s×(m−s)),
respectively.

This criterion is motivated by the likelihood ratio test for the null hypothesis

H0 : K′θ(1) = 0.

Since a Ds-optimal design minimizes the confidence ellipsoid for K′θ̂(1) it is expected that

using such a design will result in a high power for this test.

To discriminate between more than two nested models, compound or constrained criteria

can be used. A compound criterion, see e.g. [43], optimizes a combination of l objective

functions of the form φ(ξ) = φ1(ξ)
β1× . . .×φl(ξ)βl , where l ≥ 1 is an integer, and the weights

β1, . . . , βl sum to one. The weights are chosen to reflect the importance of each criterion,

and the objective functions should be appropriately standardized to avoid some of them

dominating the others just bcause they take values on a different scale. Constrained criteria

optimize one objective function, subject to the constraints that the resulting design achieves

at least given efficiencies for all the other criteria. A constrained optimal design does not

necessarily exist for certain combinations of lower bounds for the efficiencies. An application

of this method to a class of linear models can be found in [8].

Another popular optimality for model discrimination, which does not require the models

to be nested, and is applicable directly to discriminate between more than two models, is T -
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optimality; see [3, 4]. Suppose the aim of the experiment is to discriminate between models

η1(x,θ1) and η2(x,θ2). [3] suggest to fix a model, η1(x,θ1) = η1(x), say. A T -optimal design

then maximizes the minimal deviation between the model η1 and the class of models defined

by η2, that is

φT (ξ) = inf
θ2∈Θ2

∫
X

(η1(x)− η2(x,θ2))2 dξ(x).

If the models are not nested, it may be difficult to decide which of them should be fixed,

and thus assumed to be the “true” model. In this situation, a compound design for the

two T -criteria with each model fixed in turn could be applied. If both models are linear and

nested, and differ by a single term, the T -optimal design coincides with the Ds-optimal design

for that term. For further properties of T -optimal designs in the context of approximation

theory see [31]. Generally, analytical results for this criterion are hard to obtain, and usually

optimal designs have to be found numerically.

A common drawback of both Ds- and T -optimal designs is that in some situations these

designs have fewer support points than there are parameters in the larger model, so this model

cannot be estimated if found preferrable by the likelihood ratio test. Sometimes not even the

smaller model can be estimated, see example below. In such a situation, again compound or

constrained optimal designs, where the additional criteria are D-efficiencies for estimating

each model, can be useful. If these turn out to be difficult to find, hybrid designs, which

are weighted averages of optimal designs with respect to different criteria, can be a good

compromise. Compound optimal designs combining T -optimality for model discrimination

and D-optimality for estimation (also called DT -optimal designs) are described in [2], which

also gives an overview of similar criteria used in the literature.

The optimal designs depend on the values of the unknown model parameters. For ex-

amples of discrimination designs for the Michaelis Menten model and exponential models,

respectively, which have been made robust to parameter misspecifications, see e.g. [27] and

[9].

For models with non-normal errors, [45] suggest an optimality criterion based on the

Kullback Leibler distance, and show that this is consistent with T -optimality. To discrimi-

nate between different link functions for GLMs, see e.g. [58], who consider the difference in
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deviances for the rival models.

Example (continued). We briefly discuss the discrimination problem between the Michae-

lis Menten and the Emax model with normally distributed errors. These are nested, so either

the T - or the Ds-criterion can be used. For the T -criterion, an optimal design has to be found

numerically. We will focus on Ds-optimality, since this criterion is based on the information

matrix, so this will allow us to use results from previous sections.

For this example, K′ = (1, 0, 0). Hence the Ds-criterion corresponds to the c-criterion for

estimating θ0 in the Emax model. From subsection 1.4.2 an optimal design ξ will have at most

three support points, including the endpoints of X = [0, B], i.e. ξ = {(0, w1), (x2, w2), (B, 1−
w1 − w2)} with x2, w1 and w2 to be determined. Substituting this design into the objective

function, yields that φc(ξ) = 1/w1, which is minimized for w1 = 1. The optimal design is

thus a one-point design in x1 = 0.

The obvious drawback of this design is that it does not allow estimation of either of the

two models. We consider hybrid designs, i.e. weighted averages of the Ds-optimal design for

discrimination and the D-optimal designs in either model. In practice, the weighting is often

selected to achieve certain values for the individual efficiencies. For example, if the resulting

design has equal weights on the support points 0, θ2B/(2θ2 + B) and B, its Ds-efficiency

is 1/3, its D-efficiency for the Michaelis Menten model is 2/3, and its D-efficiency for the

Emax model is 1. Giving more weight to the point 0, e.g. 1/2, and 1/4 to each of the other

two support points, improves the efficiency for model discrimination to 1/2, at the expense

of reducing the D-efficiencies for estimating the Michaelis Menten and the Emax model,

respectively, to 1/2 and 0.945.

1.6 Parameter robust approaches

All design problems discussed so far have in common that the optimal designs found depend

on at least some of the unknown model parameters. This leads to a chicken and egg situation:

To get a good design, and thus precise estimates, we need to know the very quantities we
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actually want to estimate from the data before these are collected. In this section, we will

illustrate the effects of parameter misspecification when designing experiments, and then

briefly discuss strategies to make designs robust. A more detailed investigation of this issue

can be found in later chapters of this monograph.

Example (continued). Consider the Michaelis Menten model, and suppose an experiment

was designed to be D-optimal for a specific value of θ2. However, the “true” value of this

parameter is θ∗2. We can then find the D-efficiency of the misspecified design ξ, relative to

the “correct” D-optimal design ξ∗. Substituting

ξ = {( θ2B

2θ2 +B
, 0.5), (B, 0.5)}, ξ∗ = {( θ∗2B

2θ∗2 +B
, 0.5), (B, 0.5)},

into the expression (1.12) for D-efficiency, we obtain that

effD(ξ) =
θ2θ
∗
2(θ2 +B)(θ∗2 +B)

[θ2θ∗2 +B(θ2 + θ∗2)/2]2
.

Similarly, the D-efficiency of a misspecified D-optimal design ξ for the exponential model

is given by

effD(ξ) =
θ∗2
θ2
e1−θ

∗
2/θ2 .

Figure 1.8 shows D-efficiencies of the locally optimal designs for the Michaelis Menten

model and the exponential model, respectively, when the value of θ2 has been misspecified

across a range of θ2 ∈ [0.1, 2]. In the upper panel, we see two scenarios for the Michaelis

Menten model, where the true value, θ∗2, is 0.3 and 0.6, respectively. We see that the

efficiencies appear to be reasonable even on this relatively wide range, with 0.764 and 0.628

the respective minimal efficiencies.

Figure 1.8 approximately here

The lower panel shows two scenarios for the exponential model, with θ∗2 given by 0.6

and 1.2, respectively. Here, the drop in efficiency is dramatic. For example, if θ∗2 = 1.2,
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but the experimenter designed the experiment for θ2 = 0.1, the efficiency of the D-optimal

design is only 0.0002. This is intuitive, since the observations are taken at points 0 and 10,

which is appropriate for a relatively slow decay with rate 0.1. However, if the true rate of

decay is 1.2, the expected response decreases much faster than expected, and is almost zero

at x = 10. Hence the design “misses” the “interesting” part of the experiment. This can

also be seen from the information matrix, whose entries are almost zero for x = 10 since

e−1.2×10 = 6.144×10−6, and thus x = 10 provides almost zero information for the estimation

of the model parameters.

These results show that parameter misspecification can be a serious issue, and robust

designs are sought for experiments in practice. There are several different approaches, of

which we will briefly introduce the four most common ones.

Response-adaptive sequential/batch sequential experimentation. If the nature of

the experiment permits observations to be taken sequentially, future experimental conditions

can be optimized based on the observations already made. Starting with an initial design

ξ0, which can e.g. be a locally optimal design, a robust design as described below, or an

equidistant uniform design, we take some observations, from which the parameter vector θ

is estimated. This estimate, θ̂1 say, is then substituted into the objective function, to find

the design ξ1 for the next stage, such that the combined design ξ0 + ξ1 optimizes φ(ξ, θ̂1).

One or a whole batch of observations will be made according to the design ξ1, from which an

updated estimate for θ is obtained. This procedure is repeated until the total sample size

has been reached.

It is expected that by adopting this strategy the quality of the design, and thus the es-

timate, can be improved successively. However, there are a few drawbacks. Observations

at experimental conditions from e.g. ξ1 depend on the estimate θ̂1 obtained from previous

observations, i.e. the data from a sequential experiment are dependent, making inference

more difficult. For many situations, it has been shown that under mild conditions the esti-

mators obtained from such experiments are asymptotically efficient, and that the sequential

designs converge to the locally optimal design for the “true” parameter value; see e.g. [52].

[20] show analytically that one can expect a benefit from two-stage adaptive designs over
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non-adaptive designs for sufficiently large sample sizes. However, for small sample sizes the

adaptive design may still be outperformed by non-adaptive designs, in particular if the initial

design has been chosen poorly. Another open question in this context is how to choose the

number of batches and observations per batch in the sequential procedure. Usually extensive

simulations are required prior to experimentation to determine a good strategy.

Bayesian/Pseudo-Bayesian designs. Bayesian (also called fully Bayesian) designs are

optimized for Bayesian inference, and are beyond the scope of this chapter. In the frequentist

literature, a Bayesian (often called Pseudo-Bayesian) φ-optimal design optimizes an objective

function of the form ∫
φ(ξ,θ)π(θ) dθ, (1.14)

where φ(ξ,θ) is the objective function of a local optimality criterion, and π(θ) is a prior

distribution summarizing the available knowledge for θ. This means that the local objective

function φ(ξ,θ) is averaged over the plausible values for θ. The prior π(θ) is specified solely

for the purpose of finding a design that performs reasonably well across its domain, and

is not used for data analysis. For further reading on relationships and differences of fully

Bayesian and Pseudo-Bayesian designs, we refer to the review paper [13]. This topic will

also be covered in more detail in a later chapter of this monograph.

A potential problem with Pseudo-Bayesian designs is the choice of prior distribution. If

the domain is far from the “true” parameter value the same problems as for locally optimal

designs arise. Moreover, even if the “true” value of θ is contained in the domain of π(θ)

it is not guaranteed that it can be estimated efficiently, since other values of the parameter

vector may dominate the weighted average in (1.14).

Pseudo-Bayesian D-optimal designs for the Michaelis Menten model are found in [46].

Note that for numerical computation of a Pseudo-Bayesian optimal design the integral in

(1.14) is usually replaced by a finite sum, which approximates the integral. For guidance on

the choice of values for θ to be used in the summation, see e.g. [37].

Standardized maximin optimal designs. This approach is more cautious than the

Pseudo-Bayesian, and addresses the problem of possibly low design efficiency in some regions
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within the domain of the prior π(θ) by optimizing the design for the worst case scenario.

Moreover, it is not necessary to specify a prior distribution on θ, but only a plausible range

Θ.

Let φ(ξ,θ) be the objective function of a local optimality criterion, which without loss of

generality must be maximized. Then a standardized maximin φ-optimal design maximizes

min
θ∈Θ

φ(ξ,θ)

φ(ξ∗θ,θ)
, (1.15)

where ξ∗θ is the locally φ-optimal design for the value θ. Note that if φ(ξ,θ) were to be

minimized the numerator and denominator in (1.15) would changes places. The standard-

ization with the maximal value, φ(ξ∗θ,θ), was first suggested by [18] to make the optimality

criterion independent of the scale of φ(ξ,θ), which can be considerably affected by the value

of θ. For many local optimality criteria, the ratio in (1.15) is the φ-efficiency of the design ξ

by definition, or a one-to-one and onto map to this quantity. For example, for D-optimality,

the ratio would be raised to the power 1/m to obtain the D-efficiency as defined in (1.12).

One drawback of standardized maximin optimal designs is that they do not necessarily

perform well if the “true” parameter value for θ is outside the range Θ specified by the

experimenter. If it is, we have a lower bound for the φ-efficiency of the design for each

value of θ ∈ Θ. However, the efficiencies of standardized maximin optimal designs, in

particular for large ranges Θ, tend to be flat, i.e. may be close to the lower bound across

the whole range. Another issue, preventing more widespread use of these designs is that

they are usually very hard to compute. Examples where standardized maximin D-optimal

designs with minimum support are found analytically for the Michaelis Menten model, the

exponential model and polynomials with several different efficiency functions are given in

[19], [40] and [7], respectively.

Cluster designs. These designs are used as an alternative if Pseudo-Bayesian and stan-

dardized maximin optimal designs are difficult to compute. A sample of J (J large, e.g.

1000) values of the parameter vector θ is drawn according to a prior distribution π(θ). A

clustering algorithm is then applied to the support points of the corresponding J locally op-
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timal designs. The cluster design is formed by taking the centroids of the resulting clusters

as equally-weighted support points.

This basic method was first introduced in [32], and later modified by [12] to take non-equal

weights of the locally optimal designs into account. Cluster designs are easy to compute, but

suffer potentially from the same drawbacks as Pseudo-Bayesian designs. There is no general

rule on how to select the number of support points for these designs. This is currently

done through summary statistics for efficiencies relative to a large number of locally optimal

designs, and simulations on a case by case basis.

1.7 Summary

We have outlined the most popular methods for finding optimal designs for nonlinear models,

and illustrated them through examples. Some methods are particularly useful in specific

situations. The general strategy, however, is as follows: First apply one of the “new” methods

described in section 1.3 to identify a simple class for the optimal design. Secondly, select an

appropriate optimality criterion and use one of the “classical” methods to further narrow

down this class (if possible). Finally, use an optimization procedure, either analytically

or numerically, to find the optimal design. Some powerful new algorithms for numerical

calculation of optimal designs have been suggested in the recent literature, see e.g. [64] for

D-optimal designs and [60] for φp-optimal designs, the latter of which is also capable of

finding response adaptive optimal designs and optimal designs for subsets or functions of the

unknown model parameters.
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Figure 1.1: Plot of the expected response η(x,θ) for the Michaelis Menten model with
parameter vector θ′ = (1, 0.6). For x→∞, η(x,θ) is asymptoting at θ1 = 1, and half of its
supremum is attained at x = θ2 = 0.6
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Figure 1.2: Plot of a polynomial of degree four, which is nonpositive on [0, 1] and attains its
maximum, zero, at three points
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Figure 1.3: Plot of d(ξ, x,θ) for the Michaelis-Menten model with parameter vector θ′

= (1, 0.6) and the D-optimal design ξ on the design space X = [0, 1]
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Figure 1.4: Parametric plot of the induced design space G (solid line) for the Michaelis-
Menten model with parameter vector θ′ = (1, 0.6) and design space X = [0, 1], and its
reflection −G (dotted line). Horizontal axis: ∂η(x,θ)/∂θ1, vertical axis: ∂η(x,θ)/∂θ2
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Figure 1.5: Parametric plot of the Elfving set, E , for the Michaelis-Menten model with
parameter vector θ′ = (1, 0.6) and design space X = [0, 1]. Solid line: induced design space
G, dotted line: its reflection −G, dashed line: convex hull of G ∪ −G, vertical arrow: vector
c, circles: c-optimal support points (or their reflections). Horizontal axis: ∂η(x,θ)/∂θ1,
vertical axis: ∂η(x,θ)/∂θ2
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Figure 1.6: Parametric plot of the induced design space G (solid line) for the Michaelis-
Menten model with parameter vector θ′ = (1, 0.6) and design space X = [0, 1], its reflection
−G (dotted line), with D-smallest covering ellipse (dashed line) and D-optimal support
points. Horizontal axis: ∂η(x,θ)/∂θ1, vertical axis: ∂η(x,θ)/∂θ2
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Figure 1.7: Taylor series approximations to the smaller support point, x1, of the D-optimal
design for the Michaelis Menten model with design space X = [0, 1] in terms of the parameter
θ2. Solid line: True curve, dotted line: Taylor polynomial of degree four, dashed line: Taylor
polynomial of degree two. The Taylor series are centered about θ2 = 0.6
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Figure 1.8: Upper panel: Efficiencies of the locally D-optimal designs for the Michaelis
Menten model with parameter θ2 ∈ [0.1, 2]. Left: True parameter θ∗2 = 0.3. Right: True
parameter θ∗2 = 0.6. Lower panel: Efficiencies of the locally D-optimal designs for the
exponential model with parameter θ2 ∈ [0.1, 2]. Left: True parameter θ∗2 = 0.6. Right: True
parameter θ∗2 = 1.2


