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a b s t r a c t

Knowing an upper bound on the number of optimal design points greatly simplifies the
search for an optimal design. Carathéodory’s Theorem is commonly used to identify an
upper bound. However, the upper bound from Carathéodory’s Theorem is relatively loose
when there are three or more parameters in the model. In this paper, an alternative
approach of finding a sharper upper bound for classical optimality criteria is proposed.
Examples are given to demonstrate how to use the new approach.
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1. Introduction

Regression models with at least three parameters are required in many applications. For example, although the two
parameter logistic model is widely used to estimate the dose corresponding to the p%th effectiveness (ED100p), four
parameter sigmoidal shaped functions, such as the EMAXmodel (Wagner, 1968), are commonly required when continuous
responses are scaled to fall between zero and one and minimum and maximum values are unknown. In addition, many
biological science experiments produce dose response functions with a downturn which require nonlinear models with at
least three parameters (e.g. Welshons et al. (2003)). In any experiment, the sample space of treatments (e.g. doses) and the
distribution of subjects over this treatment sample space must be determined. Let the treatment space be finite, and let
ξ = {(xi, wi)

⊤
}
K
1 denote a design, where xi is the ith dose and wi = ni/n is the proportion of subjects allocated to dose xi

(i.e., the associated design weight).
An optimal design specifies the doses to use and how to distribute subjects over these doses in the manner which

minimizes a criterion function, which reflects the goals of the experiment. Because the inverse of the Fisher information
matrix is approximately proportional to the variance–covariance matrix of maximum likelihood estimates (under common
regularity conditions), this information matrix is typically used to construct criterion functions. Two common examples are
the so called D- and A-optimality criteria. D-optimality minimizes the determinant of the inverse of the Fisher information
matrix for the parameters of interest, which is asymptotically equivalent to minimizing the confidence ellipsoid for the
joint estimation of the parameters; A-optimality minimizes the sum of the asymptotic variances of themaximum likelihood
estimates.

As an illustrative model, define Θ = (θ1, θ2, . . . , θt) and let observations be independent given treatment with

yij = µ(xi, Θ) + ϵij; ϵij ∼ N(0, σ 2), (1)
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where µ(xi, Θ) is differentiable with respect to Θ and σ 2 is unknown. Let Θ̂ denote the maximum likelihood estimate of
Θ. Then, by the Taylor expansion, an approximate Fisher information matrix for Θ can be written as

M(ξ,Θ) =

muv


=

n
σ 2

K
i=1

wif (xi)⊤f (xi), (2)

where f (x) =


∂µ(x, Θ)⊤

∂θ1

∂µ(x, Θ)⊤

∂θ2
· · ·

∂µ(x, Θ)⊤

∂θt


, u, v = 1, 2, . . . , t .

Often interest is in s(1 ≤ s ≤ t) linear combinations of the parameters, say A⊤Θ, where A is a t × s dimensional
matrix. For example, with s = 1, A⊤

=

1 0 · · · 0


specifies interest in estimating the first parameter with all the rest

being nuisance parameters. The information matrix for A⊤Θ under model (1) is C =


A⊤M−

(ξ,Θ)
A
−1

, where M−

(ξ,Θ)
is the

generalized inverse of M(ξ,Θ). A general, classical, class of optimality criteria is given by

φp =



1
s
Tr

Cp1/p

, p < 0;

(Det[C])1/s p = 0;
λmin(C) p = −∞;

(3)

where λmin(C) denotes the minimum eigenvalue of C. The most well known criteria are D-optimality if p = 0 and
A-optimality if p = −1. Note that the factorization in (2) is not limited tomodels of the form (1), and themethods described
in the paper can be applied to other models as long as the information matrix can be factored as (2).

Analytical methods for obtaining optimal designs are well developed for linear models, See Fedorov (1972), Fedorov and
Hackl (1997), Pukelsheim (2006), and Atkinson et al. (2007). A geometric method developed by Elfving (1952) has proven
useful for some optimal design criteria for two parameter generalized linear models, See Ford et al. (1992), and Fellman
(1999). General analytical methods for two parameter nonlinear models are developed by Yang and Stufken (2009).

In general, nonlinear models with three or more parameters have complicated information matrices making it hard to
obtain optimal designs analytically. There are relatively few recent papers on analytically obtaining optimal designs for
nonlinear models with three or more parameters, See Li and Majumdar (2008, 2009), Yang (2010), and Dette and Melas
(2011). Sitter and Torsney (1995) apply Elving’s geometric approach to a three parameter model.

However, the application of optimal design theory for nonlinear models has exploded with the use of numerical
algorithms. For example, the exchange algorithm is described by Fedorov and Hackl (1997). Knowing an upper bound on the
number of design points limits the number of candidate design points to be considered, making the search more tractable.

Yang (2010) provides a procedure for determining an upper bound on the number of support points for any classical
optimal design criterion. The basic idea is to identify a subclass of designs such that for any arbitrary design, one can find
a design in that subclass which has an improved information matrix in terms of Lowener ordering. Dette and Melas (2011)
generalized Yang (2010), utilizing different methods.

In this paper, we provide yet a different way of determining an upper bound on the number of support points for
classical optimal criterion function. Although this approach is not as general as Yang’s approach, it is easy to understand
and straightforward to implement.

When each subject has a single response and the number of design points is less than the number of parameters, the
parameters are unidentifiable. Therefore, onemay require the number of design points be at least t , where t is the number of
parameters. Finding a upper bound q on the number of design permits the search for optimal design points to be restricted to
the range [t, q] and reducing q by even just one can greatly simplify the search for optimal designs. Carathéodory’s Theorem
(cf. Liski et al. (2002), and Pukelsheim (2006)) is commonly used for obtaining q. The theoremstates that the number of points
for any optimal design is no more than t(t + 1)/2 + 1. When the number of parameters is 2, the upper bound is 4. Thus,
the search can be limited to 2, 3 and 4 point designs; since the cardinality of possible optimal design points is very narrow,
optimal designs for two parameter models can be obtained relatively easily. However, when the model has more than 3
parameters, Carathéodory’s Theoremprovides an upper bound that is increasingly far from t and the optimal design problem
explodes. In this paper, we present a new approach which reduces q below the bound given by Carathéodory’s Theorem.
This approach is invariant under any classical optimality criteria, and it can be applied tomultiple-stage experiments as well
as to single-stage ones.

In Section 2, the new approach for identifying an upper bound on the number of optimal design points is described. In
Section 3, the proposed approach is applied to Hyun et al.’s model (2011) and to a probit model with three parameters.
Finally, brief conclusions are given.

2. Identifying the upper bound on the number of design points

Let ξ∗ denote the optimal design under some φp-optimality criterion, and let G denote a generalized inverse of M(ξ∗,Θ),
the information for ξ∗. Suppose the research question of interest lies in s (s ≤ t) linear combinations of the parameters A⊤Θ,
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where A is a t × smatrix of rank s. Then the information matrix for A⊤Θ under the model (1) is (A⊤GA)−1. Kiefer’s General
Equivalence Theorem (Kiefer (1958); cf. Pukelsheim (2006)) states that ξ∗ is the φp-optimal design for A⊤Θ if and only if
there is a generalized inverse G ofM(ξ∗,Θ) such that

f (x)Cf (x)⊤ ≤ Tr((A⊤GA)−p), (4)

where

C = GA

A⊤G(ξ∗,Θ)A

−(p+1) A⊤G⊤
=

cij
t,t
1,1 . (5)

If G is constructed from any φp-optimal design ξ∗ for A⊤Θ, equality will be obtained in (4) when x is replaced with any
support point xi from ξ∗. So no matter what the support points are, they must be the local maximum points of

F(x) = f (x)Cf (x)⊤, (6)

and, hence, the number of optimal design points cannot exceed the number of local maxima in F(x). If we can determine an
upper bound on the number of local maxima in F(x), then we have an upper bound on the number of optimal design points.
Note that cij, 1 ≤ j ≤ i ≤ t , is some function of ξ∗, Θ, A, and G, but not of x. Therefore, in seeking the maxima in (6), one can
treat


cij

as constant. Define Ψ ij = f (xi)f (xj), 1 ≤ j ≤ i ≤ t . Then (6) can be written as

F(x) =

t
i=1

ciiΨ ii(x) + 2
t

i=1


j<i

cijΨ ij(x). (7)

Suppose that F(x) is a smooth function defined on [A, B], where A can be−∞ and B can be∞. We first give two definitions:

1. A point x is called a down-crossing critical point of F(x) if F(x) = 0, F(x−) > 0 and F(x+) < 0;
2. A point x is called a up-crossing critical point of F(x) if F(x) = 0, F(x−) < 0 and F(x+) > 0.

Lemma 1 gives some basic facts about down-crossing critical points and up-crossing critical points of F(x) which follow
straightforwardly from mathematical analysis:

Lemma 1. Let F(x) be given by (6), and suppose it is a smooth function defined on [A, B] with a finite number of critical points.

1. Down-crossing critical points and up-crossing critical points alternate, i.e., any two adjacent down-crossing critical pointsmust
have one and only one up-crossing critical point between them and any two adjacent up-crossing critical points must have one
and only one down-crossing critical point between them;

2. Suppose x1 is a down-crossing critical point and x2 is a up-crossing critical point which is adjacent to x1. If x1 < x2, then
F(x) < 0 for x ∈ (x1, x2); if x1 > x2, then F(x) > 0 for x ∈ (x2, x1);

3. Suppose xA is the smallest down-crossing critical point. If there is no up-crossing critical point on [A, xA], then F(x) > 0 for
x ∈ [A, xA]. If there exist a up-crossing critical point on [A, xA], say x0, then F(x) < 0 for x ∈ [A, x0] and F(x) > 0 for
x ∈ [x0, xA];

4. Suppose xB is the largest down-crossing critical point. If there is no up-crossing critical point on [xB, B], then F(x) < 0 for
x ∈ [xB, B]. If there exist a up-crossing critical point on [xB, B], say x0, then F(x) < 0 for x ∈ [xB, x0] and F(x) > 0 for
x ∈ [x0, B].

The following theorem helps to clarify the relationship between the number of down-crossing critical points of F(x) and
the number of down-crossing critical points of it’s derivative F ′(x).

Theorem 1. For a differentiable function F(x) defined on [A, B], suppose F ′(x) has finite number of critical points with at most
M(≥ 1) down-crossing critical points on [A, B]. Then F(x) has finite number of critical points and the number of down-crossing
critical points depends on one of the following four situations:

1. if the smallest and largest critical points of F ′(x) are both down-crossing, then F(x) has either (i) at most M−1 down-crossing
critical points or (ii) M down-crossing critical points and the largest critical point is down-crossing;

2. if the largest critical point of F ′(x) is down-crossing, then in addition to the two cases in 1, F(x) has either (i)M down-crossing
critical points and the smallest critical point is down-crossing or (ii)M +1 down-crossing critical points and both the smallest
and largest critical point are down-crossing;

3. if the smallest critical point of F ′(x) is down-crossing, then F(x) has at most M down-crossing critical points;
4. otherwise, F(x) either has (i) at most M down-crossing critical points or (ii) M + 1 down-crossing critical points and the

smallest critical point is down-crossing.

Proof. Let xA′ and xB′ be the smallest and largest down-crossing critical points of F ′(x) and let xA and xB be the smallest
and largest down-crossing critical points of F(x). The conclusions of this theorem are straightforward once we establish the
following three facts:

(a) Between two adjacent down-crossing critical points of F ′(x), there exists at most one down-crossing critical point of
F(x) and at most one up-crossing point of F(x), and there are no other critical points of F(x).
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(b) On [A, xA′ ], if there is no up-crossing critical point of F ′(x), then there is no down-crossing critical point of F(x) on
[A, xA′ ], but there may exist an up-crossing critical point on this interval; if there exists an up-crossing critical point of
F ′(x), then there may exist a down-crossing critical point of F(x) on [A, xA′ ] and there is no up-crossing critical point
before the down-crossing critical point.

(c) On [xB′ , B], if there is no up-crossing critical point of F ′(x), then there exists at most one down-crossing critical point
of F(x) on [xB′ , B], and there is no up-crossing critical point on this interval; if there exists an up-crossing critical point
of F ′(x), then there may exist a down-crossing critical point of F(x) on [A, xA′ ] and there may also exist an up-crossing
critical point after the down-crossing critical point.

The proof of the three facts are similar, so we just prove (a). Let x1 and x3 be two adjacent down-crossing critical points
of F ′(x). Then by 1 of Lemma 1, there exists one and only one up-crossing critical point of F ′(x) on (x1, x3), say x2. By 2 of
Lemma 1, F ′(x) ≤ 0 for x ∈ (x1, x2), which means F(x) is a strictly decreasing function (F ′(x) has finite number of critical
points). Thus there exists at most one critical point of F(x) on (x1, x2), and if it exists, it must be down-crossing critical point.
Similarly we can show that there exists at most one critical point of F(x) on (x2, x3), and if it exists, it must be up-crossing
critical point. �

Clearly, the number of local maxima of a function F(x) depends on the number of down-crossing critical points of F ′(x)
and whether there are up-crossing points in [A, xA′ ] and [xB′ , B]. By mathematical induction, we have

Lemma 2. Suppose that F(x) is a function defined on [A, B]. Let the number of local maximum points of a function F(x) be R and
the number of down-crossing critical points of F ′(x) be M.

1. if both the smallest and largest critical points of F ′(x) are down-crossing, then R = M;
2. if only the smallest critical point of F ′(x) is down-crossing, then R = M + 1 and B is one of local maximum points;
3. if only the largest critical point of F ′(x) is down-crossing, then R = M + 1 and A is one of local maximum points;
4. if none of the smallest or largest critical point of F ′(x) is down-crossing, then R = M + 2 and both A and B are local maximum

points.

If we divide F ′(x) by some positive function on [A, B], say P(x), then the down-crossing critical points and up-crossing
points of F ′(x) are the same as those of F ′(x)/P(x). Thus we can study F ′(x)/P(x) instead of F ′(x). If it is still difficult to
determine the number of down-crossing critical points of F ′(x)/P(x), we can study the down-crossing critical points and up-
crossing points of


F ′(x)/P(x)

′. This process can be continued until one obtains functions in a simple format, in particular,
a quadratic form. The derivatives of F(x) are typically easily obtained byMathematica. Using the following theorem, we can
obtain the maximum number of locally maximum points of F(x).

Theorem 2. Let F(x) be a differentiable function given by (6). Suppose there exist positive functions Pi(x) (possibly equal to 1)
such that

G1(x) =
dF(x)
dx

= P1(x)F1(x)

G2(x) =
dF1(x)
dx

= P2(x)F2(x)

...

Gm(x) =
dFm−1(x)

dx
= Pm(x)[ax2 + bx + c], (8)

where a, b, and c are constants; and m is the number of derivatives required to reach a quadratic form. Let r be a positive integer.
Then

1. If a is negative and m = 2r, the upper bound is r + 1;
2. If a is negative and m = 2r + 1, the upper bound is r + 2 and ξ∗ includes the lowest point in the design space;
3. If a is positive and m = 2r, the upper bound is r + 2 and ξ∗ includes both the lowest point and the highest point in the design

space;
4. If a is positive and m = 2r + 1, the upper bound is r + 2 and ξ∗ includes the highest point in the design space.

Proof. We only give the proof when a is negative by mathematical induction. The proof when a is positive is similar. LetM ′

andM be the number of down-crossing critical points of F ′(x) and F(x), respectively.
When m = 1, consider the behavior of F ′(x) when x ∈ (−∞, +∞). Clearly, F ′(x) either < 0 for all x or has one down-

crossing critical point and the largest critical point is down-crossing. For the first case, F(x) is a strict decreasing function,
thus F(x) has one locally maximum point and M ≤ 1 (if M = 1 the largest critical point is down-crossing). For the second
case, F(x) has atmost two locallymaximumpoints including A by Lemma 2. In addition, as given by situation 2 of Theorem 1,
M ≤ 1 (ifM = 1 at least one of the smallest and the largest critical point is down-crossing) orM = 2 and both the smallest
and largest critical point are down-crossing. Thus whenm = 1, the conclusion follows.
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When m = 2, by the discussion of m = 1, we have M ′
= 0, or M ′

= 1 and at least one of the smallest and the largest
critical point is down-crossing, or M ′

= 2 and both the smallest and largest critical point are down-crossing. By Lemma 2,
F(x) has at most two locally maximum points. In addition, by applying Theorem 1 and discussing the three cases, we have
either (i)M ≤ 1 or (ii)M = 2 and the largest critical point is down-crossing.

Assume that whenm = 2r , F(x) has at most r + 1 locally maximum points and two cases for the down-crossing critical
points of F(x): (i)M ≤ r or (ii)M = r + 1 and the largest critical point is down-crossing.

When m = 2r + 1, by the assumption, down-crossing critical points of F ′(x) have two possibilities: (i) M ′
≤ r;

(ii) M ′
= r + 1 and the largest critical point is down-crossing. By Lemma 2, F(x) has at most r + 2 locally maximum

points including A. In addition, by applying Theorem 1 and discussing the two possibilities, there are three possibilities for
the down-crossing critical points of F(x): (i)M ≤ r; (ii)M = r + 1 and at least one of the smallest and the largest critical is
down-crossing; (iii)M = r + 2 and both the smallest and the largest critical are down-crossing.

When m = 2r + 2, by the discussion of m = 2r + 1, down-crossing critical points of F ′(x) have three possibilities:
(i)M ′

≤ r; (ii)M ′
= r +1 and at least one of the smallest and the largest critical point is down-crossing; (iii)M ′

= r +2 and
both the smallest and the largest critical are down-crossing. By Lemma 2, F(x) has at most r + 2 locally maximum points.
In addition, by applying Theorem 1 and discussing the three possibilities, there are two possibilities for the down-crossing
critical points of F(x): (i)M ≤ r + 1 or (ii)M = r + 2 and the largest critical point is down-crossing.

By mathematics induction, our conclusion follows. �

3. Application

In many toxicological assays, response functions have a downturn at high doses. This situation has been described by
Margolin et al. (1981), Bretz et al. (2003), and Welshons et al. (2003); and others. Nonlinear models with three or more
parameters have been utilized to explain such a response function with downturn. For example, Hyun et al. (2011) adapted
Margolin et al.’s three parametermodel (1981) to continuous responses. They subsequently found that the probitmodelwith
a quadratic term fitted themotivating experimental data very well. In this paper, these twomodels are used to demonstrate
our approach.

Example 1. In Hyun et al.’s model (2011), the mean response function is

µ(xi, Θ) = {1 − exp[−(α + βxi)]} exp[−γ xi], where α > 0, β ≥ 0, γ ≥ 0. (9)

The Fisher information matrix for Θ̂ = {α̂, β̂, γ̂ } can be written as

M(ξ,Θ) =
n
σ 2

K
i=1

wi(B⊤)−1B⊤f (xi)⊤f (xi)BB−1,

where

f (x) =

e−(α+βx+γ x) xe−(α+βx+γ x)

−x{e−γ x
− e−(α+βx+γ x)

}

;

B =

1 0 0
0 1 0
0 1 −1


.

Now M(ξ,Θ) can be rewritten as M(ξ,Θ) =
n

σ 2

K
i=1 wi(B⊤)−1(f ∗(xi))⊤f ∗(xi)B−1, where f ∗(x) = Bf (x) =


e−(α+βx+γ x)

xe−(α+βx+γ x) xe−γ x

. The General Equivalence Theorem states

f ∗(x)Cf ∗(x)⊤ ≤ Tr((A⊤M−

(ξ∗,Θ)
A)−p), (10)

where C is given by (5) and equality holds when x is a support point of ξ∗. Recall that C is constant in (10) since ξ∗ is a
φp-optimal design.

Eq. (6) becomes

F(x) = f ∗(x)

c11 c12 c13
c21 c22 c23
c31 c32 c33


(f ∗(x))⊤

= e−2(α+βx+γ x)
{c22x2 + 2c12x + c11 + xeα+βx(2c13 + 2c23x + c33xeα+βx)}. (11)

Recall that, in applying Theorem 2, a positive factor in F ′(x) does not change the down-crossing critical points and up-
crossing critical points of F ′(x). Therefore, any positive factors in the derivatives of (11) can be ignored. The seventh
derivative in the sequence (8) applied to (11) is a quadratic equation with respect to x:

G7(x)
P7(x)

= −16β6c33γ x2 + (16β6c33 − 144β5c33γ )x + 72β5c33 − 264β4c33γ = 0. (12)
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Fig. 1. The change of shapes of the graphs for different differential equations. The graphs show how many extreme values can be observed at most for
each of lower order derivatives from the concave down quadratic equation. For example, the graph 1 represents the shape of the concave down quadratic
equation and the graph 2 shows that there are 2 extreme values including the lowest point where there is one lower order derivatives from the concave
down quadratic equation.

Since c33 is a diagonal element of the positive definite matrix (5), c33 is positive. Recall β, γ ≥ 0 as given in (9). Thus the
sign of coefficient for x2 is negative. By 2 of Theorem 2, there are 5 extreme values and ξ∗ includes the lowest point in the
design space. Thus the upper bound on the number of design points for a φp-optimality criterion is 5 of which only four are
unknown. The procedure for obtaining this result is sketched in Fig. 1. In Fig. 1, the graph 1 shows the shape of the quadratic
equation (12), and the graph 2 represents the shape of one lower order derivative from (12), G6(x)

P6(x)
. In order to come back to

F(x), there are seven lower order derivatives from (12) in this case. Thus, the graph 8 in Fig. 1 represents the shape of (11),
which shows that there are 5 extreme values including the lowest point.

Example 2. In Hyun and Flournoy (submitted for publication), the probit model with quadratic term fit the data that
motivated Hyun et al. (2011) very well when the mean response function is

µ(xi, Θ) = Φ(α + βxi + γ x2i ), (13)

where α < 0, β < 0, γ < 0 and Φ is the cumulative distribution function of the standard normal distribution. The Fisher
information matrix for Θ is

M(ξ,Θ) =
n
σ 2

K
i=1

wi
1

√
2π

f (xi)⊤f (xi),

where

f (x) = exp

−

(α + βxi + γ x2i )
2

2

 
1 x x2


.

Eq. (6) becomes

F(x) = f (x)

c11 c12 c13
c21 c22 c23
c31 c32 c33


(f (x))⊤

= exp{−(α + βx + γ x2)2}{c33x4 + 2c23x3 + (2c13 + c22)x2 + 2c12x + c11}. (14)
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The positive term exp{−(α + βx + γ x2)2} can be ignored in G1(x). Continuing to apply Theorem 2, the sixth derivative in
the sequence (8) applied to (14) is a quadratic equation with respect to x:

G6(x)
P6(x)

= −42c33γ 2x2 − 6(4c23γ 2
+ 3c33βγ )x − (c33β2

+ 6c23βγ + 4c13γ 2
+ 2c22γ 2

+ 2c33αγ ) = 0. (15)

As for Example 1, the sign of coefficients for the both quadratic terms are negative. By 1 of Theorem 2, the upper bound for
φp-optimal designs under the model (13) is 4 design points. This also can be seen in the Fig. 1 again. The procedure is the
same as before. In Fig. 1, the graph 1 shows the shape of the quadratic equation (15). In order to come back to F(x), there
are six lower order derivatives from (15) in this case. Thus, the graph 7 in Fig. 1 represents the shape of (14), which shows
that there exists 4 extreme values.

4. Conclusion

We present a new approach for identifying the maximum number of design points under classical optimality criteria.
To illustrate our approach, Hyun et al.’s model (2011) and a probit model with a quadratic term are used to describe the
response surface. The approach provides the maximum number of design points under φp-optimality cannot be greater
than 5 and one point is the lowest in the design space under Hyun et al.’s model and cannot be greater than 4 under the
probit model. Carathéodory’s Theorem provides 7 points as the upper bound when there are 3 parameters in the model. So
our approach reduces the upper bound for both examples. In addition, one point is given in some cases and others may have
weights equal to zero indicating a smaller optimal set.

As mentioned in the introduction, the proposed approach is not restricted to single-stage experiments. Multi-stage
experiments are used when good parameter estimates do not exist. Following the first stage using an initial design,
parameter estimates are used to estimate the optimal design, which is then used in the second stage. Continuing in this
manner, the design points that are added are increasingly efficient. Let ξ1 denote an initial design and ξ2 denote a design used
at the second stage. Then a common measure of information isM(ξ,Θ) = M(ξ1,Θ) + M(ξ2,Θ). The corresponding equivalence
theorem can be re-written in a format similar to (4). So, identifying the upper bound on the number of optimal design points
for ξ2 following ξ1 becomes the same as identifying the upper bound for ξ2 in a single-stage ignoring ξ1.

The approach presented in this paper is illustrated for specific models. If the model changes, the upper bounds may
change too, and the bounds proposed in this paper can be better or worse than in the examples given here. Regardless, it
will be worthwhile to apply Theorem 2 to determine whether or not it provides a reduced upper bound on the maximum
number of design points from Carathéodory’s Theorem.
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