
Optimal Designs for Some Selected

Nonlinear Models

A.S. Hedayat∗,† , Ying Zhou† Min Yang‡

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago

Science and Engineering Offices (M/C 249)
851 S. Morgan Street

Chicago, IL 60607-7045

Abstract: Some design aspects related to three complex nonlinear models
are studied in this paper. For the Klimpel’s flotation recovery model, it is
proved that regardless of model parameter and optimality criterion, any
optimal design can be based on two design points and the right boundary
is always a design point. For this model, an analytical solution for a D-
optimal design is derived. For the 2-parameter chemical kinetics model, it
is found that the locally D-optimal design is a saturated design. Under a
certain situation, any optimal design under this model can be based on two
design points. For the 2n-parameter compartment model, compared to the
upper bound by Carathéodory’s theorem, the upper bound of the maximal
support size is significantly reduced by the analysis of related Tchebycheff
Systems. Some numerically calculated A-optimal designs for both Klimpel’s
flotation recovery model and 2-parameter chemical kinetic model are pre-
sented. For each of the three models discussed, the D-efficiency when the
parameter misspecification happens is investigated. Based on two real ex-
amples from the mining industry, it is demonstrated how the estimation
precision can be improved if optimal designs would be adopted. A simula-
tion study is conducted to investigate the efficiencies of adaptive designs.

1. Introduction

Optimal designs based on nonlinear models have wide and important applica-
tions in many areas of science. A good example of the application is the optimal
design based on PK/PD models which are widely used in pharmaceutical indus-
tries for the examination of absorption, distribution, metabolism, elimination,
efficacy and toxicity parameters in drug developments, see Gieschke and Steimer
(2000), Meibohm and Derendorf (2002).

We study and explore optimal designs for three complex nonlinear models.
These are the 2-parameter chemical kinetic model, the 2n-parameter compart-
ment model and the 2-parameter Klimpel’s flotation recovery model. These
three models have been shown to have extensive applications in real life situa-
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tions (Godfrey (1983), Jacquez (1985), Parekh and Miller (1999)), Saleh (2010)
and Yuan et al. (1996).

We concentrate on the nonlinear model y = η(x,θ)+ε, where θ = (θ1, θ2, ..., θk)T

is a vector of k unknown parameters and x is the explanatory variable defined on
a design space χ in R. The error ε is postulated to be distributed as N(0, σ2) and
without loss of generality we let σ = 1. Further, we assume that all observations
are independent.

Typically, the optimal nonlinear design studies are under approximate theory,
i.e., instead of exact sample sizes for design points, design weights are used. Let
ξ be any n-point approximate design,

ξ =
(

t1 t2 . . . tn
ω1 ω2 . . . ωn

)
.

Here 0 < ωi < 1 represents the proportion of the number of points studied at
ti with

∑n
i=1 ωi = 1. The Fisher information matrix for y = η(t, θ) + ε can be

written as

Iξ =
n∑

i=1

ωi(
∂η(t,θ)

∂θ
)(

∂η(t,θ)
∂θ

)T . (1.1)

How to compare two designs? There are variety of optimality criteria. Two
popular optimality criteria are D-optimality and A-optimality, which are to
maximize |Iξ| and minimize Tr(I−1

ξ ) over all possible designs, respectively. A
D-optimal design minimizes the volume of an asymptotic confidence ellipsoid for
θ, and an A-optimal design minimizes the average of the asymptotic variances
for the estimators of the individual parameters.

2. Preliminaries

In this paper, we shall use and deal with Extended Tchebycheff systems and
Extended Complete Tchebysheff systems. The Tchebycheff systems were first
introduced by the Russian mathematicians Chebyshev (1859) and Bernshtein
(1937). In Karlin and Studden (1966), the theory of the Tchebycheff systems
and its applicability in optimal design of experiments theory is introduced and
studied.

Let {u0, u1, ..., un} be n+1 continuous real-valued functions on [a, b]. {u}n
k=0 =

{u0, u1, ..., un} is called a Tchebycheff system(T-system) if the following deter-
minant is strictly positive whenever a ≤ t0 < t1 < ... < tn ≤ b

U

(
u0, u1, ..., un

t0, t1, ..., tn

)
=

∣∣∣∣∣∣∣∣∣

u0(t0) u0(t1) · · · u0(tn)
u1(t0) u1(t1) · · · u1(tn)

...
...

...
...

un(t0) un(t1) · · · un(tn)

∣∣∣∣∣∣∣∣∣
> 0.
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{u}n
k=0 is called a Complete Tchebycheff system (CT-system) if {u}m

k=0 is a
T-system on [a, b] for each m = 0, 1, ..., n. In the sequel, we shall deal with Ex-
tended Tchebycheff system and Extended Complete Tchebysheff system, which
are defined below:

(i) {u}n
k=0 on [a, b] is called an Extended Tchebycheff system(ET-system) of

order p, provided ui ∈ Cp−1[a, b], i = 0, 1, ..., n and

U∗
(

0, 1, . . . , n
t0, t1, . . . , tn

)

=

∣∣∣∣∣∣∣∣∣∣

u0(t0) u0(t1) · · · u0(ti) u
(1)
0 (ti) · · · u

(q)
0 (ti) u0(ti+q+1) · · · u0(tn)

u1(t0) u1(t1) · · · u1(ti) u
(1)
1 (ti) · · · u

(q)
1 (ti) u1(ti+q+1) · · · u1(tn)

...
... · · · ...

... · · · ...
... · · · ...

un(t0) un(t1) · · · un(ti) u
(1)
n (ti) · · · u

(q)
n (ti) un(ti+q+1) · · · un(tn)

∣∣∣∣∣∣∣∣∣∣

> 0

for all choices a ≤ t0 < t1 < ... < ti−1 < ti = ti+1 = ... = ti+q < ... < tn ≤ b,
0 ≤ q ≤ p−1, where equality occurs in groups of at most p consecutive ti values.

In the above, u
(j)
k (t) denotes the jth order derivative of uk.

(ii) {u}n
k=0 is called an Extended Complete Tchebysheff system(ECT-system)

if {u}m
k=0 is an ET-system on [a, b] for each m = 0, 1, ..., n.

The following results are known and we skip the proofs.
(a) {u}n

k=0 on [a, b] is a Tchebysheff system if and only if every non-trivial linear
combination g(t) =

∑n
i=0 ciui(t) has at most n zeros, where (c0, c1, ..., cn) 6=

(0, 0, ..., 0).
(b) {u}n

k=0 on [a, b] is an ECT-system if and only if for k = 0, 1, ..., n,

W (u0, u1, ..., uk)(t) =

∣∣∣∣∣∣∣∣∣∣

u0(t) u
(1)
0 (t) · · · u

(n)
0 (t)

u1(t) u
(1)
1 (t) · · · u

(n)
1 (t)

...
...

...
...

un(t) u
(1)
n (t) · · · u

(n)
n (t)

∣∣∣∣∣∣∣∣∣∣

> 0

where W (u0, u1, ..., uk)(t) is the Wronskian determinant, see Hartman(1964).

3. Klimpel’s Flotation Recovery Model

Flotation model is a gravity separation process that originated from process-
ing of minerals. They are widely used in mining engineering and have found
wide application in industrial waste-water treatment. It is also useful in the
concentration of a variety of dissolved chemical species often following a sorp-
tion process. They are based on an observation that was made in the earliest
experimental kinetic studies of flotation, namely, that not all particles will be
recovered by flotation no matter how much time they have in the flotation en-
vironment. Each particle type has an ultimate recovery that is less than 100
percent. The particles that do float are recovered at a rate that is governed by
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a simple first-order kinetic law. Thus two kinetic parameters are required for
each type of particle: the ultimate recovery and the kinetic constant. There are
three types of flotation recovery models: exponential flotation recovery model,
Klimpel’s flotation recovery model and Agars flotation recovery model. We will
discuss and treat the Klimpel’s flotation recovery model.

The 2-parameter Klimpel’s flotation recovery model is widely used in envi-
ronmental science for metal recovery:

R(t, Rmax, k) = Rmax[1− 1
kt

(1− e−kt)] + ε. (3.1)

R(t, Rmax, k) refers to the recovery of mineral or metal of interest; t refers to
time and Rmax is the ultimate recovery while k is constant first-order rate.

For an easy presentation, we rewrite Model (3.1) in the following form:

y = η(t, θ) + ε = a[1− 1
bt

(1− e−bt)] + ε (3.2)

where, θ = (a, b)′.

Theorem 3.1. Under Model (3.2), for any arbitrary design ξ, there exists a
design ξ∗ such that Iξ(θ) ≤ Iξ∗(θ) (here and elsewhere, matrix inequalities are
under the Loewner ordering). Here, ξ∗ is based on two design points including
the upper bound point T of the design space. When Iξ(θ) ≤ Iξ∗(θ), it means
design ξ∗ is not inferior to ξ under commonly used matrix based optimality
criteria. An optimal design under Loewner ordering criterion does not exist in
general. We have to consider optimal design under less restrictive criteria.

Proof. For any arbitrary design ξ = (ti, ωi), i = 1, . . . , n, it can be shown that
the Fisher information matrix Iξ can be written in the form:

Iξ = P (θ)C(ξ, θ)P (θ)T . (3.3)

Here

P (θ) =
(

1 0
−a

b
a
b

)
and C(ξ,θ) =

n∑

i=1

ωi

(
(1 + xi

ln(1−xi)
)2 xi(1 + xi

ln(1−xi)
)

xi(1 + xi

ln(1−xi)
) x2

i

)
,

with xi = 1− e−bti . Since 0 < t ≤ T , we have 0 < xi < 1− e−bT .
Let Ψ1(x) = x2, Ψ2(x) = x(1+ x

ln(1−x) ), and Ψ3(x) = (1+ x
ln(1−x) )

2. We can
verify that for any 0 < x < 1,

(a) Ψ′1(x) > 0;

(b)
(

Ψ′2(x)
Ψ′1(x)

)′
> 0;

(c)
((

Ψ′3(x)
Ψ′1(x)

)′
/

(
Ψ′2(x)
Ψ′1(x)

)′)′
> 0;

(d) limx↑(1−e−bT )
Ψ′2(x)
Ψ′1(x) (Ψ1(1− e−bT )−Ψ1(x)) = 0.



Hedayat and Zhou and Yang/Optimal Designs for Some Selected Nonlinear Models 5

The above inequalities are rather difficult to verify by hand since involving
manipulation of derivative, therefore we use symbolic computational software
MAPLE(Waterloo, Canada) to verify them. By Corollary 3 of Yang and Stufken
(2009), there exists a design with two design points including the upper bound T ,
say ξ∗, such that one diagonal element and the off-diagonal element of C(ξ∗,θ)
are the same as that of C(ξ,θ), and the remaining diagonal element is larger.
Thus the conclusion follows.

Theorem 3.1 shows that no matter what optimal designs we are looking for,
we can always restrict ourself to two-points design including the upper bound T ,
irrespective of parameters of interest or the optimality criterion. Consequently,
we are able to obtain analytical expression for some specific optimal designs.

Corollary 3.1. Under Model (3.2), ξ∗ is the D-optimal design for θ, where,
ξ∗ = {(T, 0.5); (t∗, 0.5)}, where t∗ = −ln(1−x∗)/b and x∗ is the unique solution
of the following equation

(1− e−bT )
(

ln(1− x) + x
1−x

ln2(1− x)

)
−

(
1− 1

bT
(1− e−bT )

)
= 0.

Proof. By Theorem 3.1, a D-optimal design, which maximizes determinant of
Iξ, for θ must only have two design points including the upper bound T . Conse-
quently, it must have equal weights on each support point, Silvey (1980). Thus
a D-optimal design for θ must maximize g2(x), where

g(x) = (1− e−bT )(1 +
x

ln(1− x)
)− x[1− 1

bT
(1− e−bT )].

Clearly g(x) = 0 when x = 1 − e−bT . We can show that limx↓0 g(x) = 0. Now
let us consider the first derivative of g(x),

g′(x) = (1− e−bT )
(

ln(1− x) + x
1−x

ln2(1− x)

)
−

(
1− 1

bT
(1− e−bT )

)
.

With some simple algebra, we can show that (i) g′(x) is a strictly increasing
function on (0, 1); (ii) limx↓0 g′(x) < 0 and (iii) g′(x) > 0 when x = 1 − e−bT .
Thus, there must exist a unique solution x∗ such that g′(x∗) = 0, g′(x) < 0 when
0 < x < x∗, and g′(x) > 0 when x∗ < x ≤ 1 − e−bT . So g(x) is minimized at
x = x∗. Combining the fact the g(x) = 0 when x = 1−e−bT and limx↓0 g(x) = 0,
g2(x) must be maximized at x∗.

From Theorem 3.1, we notice that the D-optimal design does not depend on
parameter a. Once the values of upper bound T and the parameter b are given,
the value of x∗ can be easily computed. For example, when T = 100, Table 1
provides the value of x∗ for some selected b values.

Although it may not be easy to derive other optimal designs, we may be
able to derive any optimal design numerically due to the simple format of ξ∗

in Theorem 3.1. For example, let us consider A-optimal designs for θ, which
minimizes the trace of I−1

ξ . With the explicit optimal weight formula provided
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Table 1
x∗ for the D-optimal design for θ under Model (3.2)

b 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x∗ 8.3817 4.3395 2.9253 2.2060 1.7705 1.4786 1.2693 1.1119

Table 2
(x∗, ω∗) for the A-optimal design for θ under Model (3.2)

b 0.2 0.4 0.6 0.8
(x∗, ω∗) (7.1165,0.3903) (3.6294, 0.5283) (2.3780, 0.5929) (1.7594,0.6261)

b 1.0 1.2 1.4 1.6
(x∗, ω∗) (1.3951,0.6449) (1.1558,0.6563) (0.9869,0.6638) (0.8612,0.6689)

by Biedermann, Dette, and Zhu (2006), the numerical search turns out to be
one dimension which can be easily carried out. Table 2 provides the optimal
designs for T = 100, a = 1 under some selected b values.

4. 2-Parameter Chemical Kinetic Model

Kinetic models related to chemical reactions are widely used in chemical engi-
neering and chemistry. The models are usually in the form of differential equa-
tions with two groups of parameters, the rate and the order of reaction; see
Boroujerdi (2001).

Consider the consecutive reaction: A −→ B, with reaction order λ and reac-
tion rate θ. The kinetic model is given by the differential equation:

d[A]
dt

= −θ[A]λ, (4.1)

where, t ≥ 0 is the reaction time, λ > 0 is the reaction order, θ > 0 is the
reaction rate.

Given (4.1), with the initial conditions A = 1, B = 0 at t = 0, the model is
determined as follows.

[A] = η(t, θ, λ) + ε = [1− (1− λ)θt)]
1

1−λ + ε. (4.2)

Theorem 4.1. Under model (4.2), a D-optimal design for all parameters is
supported on two points.

Proof. By the extended equivalence theorem of Kiefer (1974) established by
White (1973), it is enough to verify that there are at most 2 maximal points for
d(ξ, x,θ), directional derivative, which will be introduced shortly.
Let 1

(1−λ) = β, 1− θ
β t = x, and θ′ = (θ, β). Note that a D-optimal design for λ

and θ is the same as that for β and θ. The Fisher information matrix for ξ is

Iξ =

(
1
θ2

∑n
i=1 ωiβ

2x2β−2
i (xi − 1)2 1

θ

∑n
i=1 ωiβx2β−1

i (xi − 1)(lnxi + 1
xi
− 1)

1
θ

∑n
i=1 ωiβx2β−1

i (xi − 1)(lnxi + 1
xi
− 1)

∑n
i=1 ωi(lnxi + 1

xi
− 1)2x2β

i

)
.
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We tacitly assume that n ≥ 2 and that xi’s are all distinct. This ensures the
existence of the inverse of the Fisher information matrix,

I−1
ξ =

(
m11 m12

m21 m22

)

with m12 = m21.
Then,

d(ξ, x,θ) = tr

(
1
θ2 β2x2β−2(x− 1)2 β

θ x2β−1(x− 1)(lnx + 1
x − 1)

β
θ x2β−1(x− 1)(lnx + 1

x − 1) (lnx + 1
x − 1)2x2β

)(
m11 m12

m21 m22

)

=
m11

θ2
β2x2β−2(x−1)2+

2
θ
m12βx2β−1(x−1)(lnx+

1
x
−1)+m22x

2β(lnx+
1
x
−1)2.

We obtain the first order derivative of d(ξ, x,θ) with respect to x, which is
denoted by d

′
(ξ, x,θ):

d
′
(ξ, x,θ) = x2β−3{k1x

2 + k2x + k3 + k4x
2lnx + k5x

2(lnx)2 + k6xlnx} (4.3)

where,
k1 = 2 1

θ2 m11β
3 − 4 1

θ m12β
2 + 2 1

θ m12β + 2m22β − 2m22

k2 = −4 1
θ2 m11β

3 + 2 1
θ2 m11β

2 + 8 1
θ m12β

2 − 6 1
θ m12β − 4m22β + 4m22

k3 = 2 1
θ2 m11β

3 − 2 1
θ2 m11β

2 − 4 1
θ m12β

2 + 4 1
θ m12β + 2m22β − 2m22

k4 = 4 1
θ m12β

2 − 4m22β + 2m22

k5 = 2m22β
k6 = −4 1

θ m12β
2 + 2 1

θ m12β + 4m22β − 2m22 = 2(1− 2β)(β
θ m12 −m22).

We notice that d
′
(ξ, x,θ) is composed of two Tchebycheff systems (Lemma

1 of Appendix) as indicated below:
T1 = {1, x, x2, x2lnx, x2(lnx)2} and T2 = {1, x, x2, x2lnx, xlnx}.

We consider two circumstances for β in studying

(
β

θ
m12 −m22) =

1
θ2

1
|Iξ|

n∑

i=1

β2ωix
2β−2
i (1− xi)xilnxi. (4.4)

Recall that β(= 1
1−λ ) is either greater than 1 or smaller than 0. Consequently

(β
θ m12 −m22) is less than 0 for all feasible values of β. Therefore k5 is positive

for β > 1 and negative for β < 0 while k6 is positive when β > 1 and negative
when β < 0.

Since both T1 and T2 are T-systems with positive determinant, any positive
linear combination of the two systems is also a T-system.

For β > 1, {1, x, x2, x2lnx, k5x
2(lnx)2 + k6xlnx} is also a T-system with

k5 > 0, k6 > 0.
For β < 0, {1, x, x2, x2lnx,−[k5x

2(lnx)2 + k6xlnx]} is also a T-system with
−k5 > 0,−k6 > 0.
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For both cases, there are at most 4 roots for d
′
(ξ, x,θ) = 0. Thus there are

at most two local maximal points in (0, T ). On the other hand,
for β > 1, when t → 0, d(ξ, x,θ) → 0; t → T , d(ξ, x,θ) → 0, T is the upper
bound. And for β < 0, when t → 0, d(ξ, x,θ) → 0; t → T , d(ξ, x,θ) → 0.
Consequently, the two boundary points cannot be the support points. Thus, a
D-optimal design is precisely supported on 2 points.

When 0 < λ < 1, we are able to extend our result to any arbitrary optimal
design. To make Model 4.2 meaningful, 1− (1− λ)θt needs to be positive, i.e.,
0 < t < 1

(1−λ)θ .
For any arbitrary design ξ = (ti, ωi), i = 1, . . . , n, it can be shown that the

Fisher information matrix Iξ can be written as follows:

Iξ = P (θ)C(ξ, θ)P (θ)T . (4.5)

P (θ) =
(

β
θ 0
−1 1

)
and C(ξ, θ) =

n∑

i=1

ωi

(
x2β

i (1− 1
xi

)2 x2β
i (1− 1

xi
)lnxi

x2β
i (1− 1

xi
)lnxi x2β

i ln2xi

)
,

with xi = 1− θ
β ti and β = 1

1−λ , where 0 < xi < 1.
Let Ψ1(x) =

∫ x

0
2z2β−2(1 − 1/z)dz, Ψ2(x) = x2β(1 − 1

x )2, Ψ3(x) = x2β(1 −
1
x )lnx, and Ψ4(x) = x2βln2x. We can verify that for any 0 < x < 1,

(a) Ψ′1(x) < 0;

(b)
(

Ψ′2(x)
Ψ′1(x)

)′
> 0;

(c)
((

Ψ′3(x)
Ψ′1(x)

)′
/

(
Ψ′2(x)
Ψ′1(x)

)′)′
> 0.

On the other hand, h(x) is not always positive for all x ∈ (0, 1), where

h(x) =

(((
Ψ′4(x)
Ψ′1(x)

)′
/

(
Ψ′2(x)
Ψ′1(x)

)′)′

/

((
Ψ′3(x)
Ψ′1(x)

)′
/

(
Ψ′2(x)
Ψ′1(x)

)′)′)′

.

However, we can show that h(x) > 0 for x ∈ [L(λ), U(λ)] with L(λ) > 0 and
U(λ) < 1. L(λ) and U(λ) depend on the value of λ, and consequently of β.
We do not have the explicit expression for L(λ) and U(λ) due to the rather
complicated expression of h(x). However, for a given λ, it is relatively easy to
determine the value of L(λ) and U(λ) MAPLE(Waterloo, Canada).

Table 3 shows that L(λ) is closed to 0 and U(λ) is closed to 1. Even when λ is
closed to either 0 or 1, it seems Table 3 still holds. For example, [L(λ), U(λ)] =
[0.0110, 0.9959] and [0.0250, 0.9963] when λ = 0.001 and 0.999, respectively.
Now using Theorem 2 of Yang (2010), we have the following theorem.

Theorem 4.2. Under Model (4.2), suppose that 0 < λ < 1 and the induced
design space is [L(λ), U(λ)]. For any arbitrary design ξ, there exists a design ξ∗

such that Iξ(θ) ≤ Iξ∗(θ). Here, ξ∗ is based on two design points.
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Table 3
L(λ) and U(λ) for some selected λ

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L(λ) 0.0120 0.0131 0.0142 0.0154 0.0168 0.0182 0.0197 0.0213 0.0231
U(λ) 0.9958 0.9959 0.9967 0.9962 0.9961 0.9957 0.9966 0.9959 0.9959

Table 4
D-optimal designs for θ for some selected λ

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t∗1 0.6348 0.6363 0.6372 0.6375 0.6375 0.6371 0.6366 0.6358 0.6350
t∗2 1.0927 1.1920 1.2997 1.4167 1.5439 1.6821 1.8324 1.9957 2.1731

Theorem 4.2 allows us to limit our search on two-point designs for any opti-
mality when the induced design space is a subinterval of [L(λ), U(λ)], regardless
of parameters of interest. This makes it relatively easy to obtain a specific op-
timal design numerically. Although the result is not for entire induced design
interval, [L(λ), U(λ)] is closed to the whole induced space in general. Likely, an
optimal design in the restricted space is also optimal in the entire design space.
We can derive a specific optimal design in the restricted design space and then
verify whether it is optimal in the entire design space via the general equivalence
theorem. Notice that D-optimal designs have equal weights on the two points.
Based on the information matrix, such optimal designs (after transformation)
do not depend on the value of θ. For example, let t∗1 and t∗2 be the two support
points of the D-optimal design for θ with some λ and θ1. Then for the same λ
but different θ2, the two support points of the D-optimal design for θ are t∗1

θ1
θ2

and t∗2
θ1
θ2

. For convenience, we choose θ = 1 and use the original scale to present
the design (see Table 4). All optimal designs have been verified through general
equivalence theorem in the entire design space (0, 1

(1−λ)θ ).
Table 5 gives A-optimal designs for θ. Such designs depend on the values of

both θ and λ. We have taken θ = 1 in preparing Table 5.

5. 2n-parameter Compartment Models

Compartment models are important for the evaluation of efficacy and toxicity
in drug developments. There is substantial literature investigating the nature

Table 5
A-optimal designs for θ for some selected λ

λ 0.1 0.2 0.3 0.4
(t∗1, ω∗1) ( 0.5295, 0.6265) (0.5200, 0.5661) (0.5108, 0.5162) (0.5018, 0.4748)
(t∗2, ω∗2) (1.1020, 0.3735) (1.2171, 0.4339) (1.3474, 0.4838) (1.4952, 0.5252)

λ 0.5 0.6 0.7 0.8
(t∗1, ω∗1) (0.4932, 0.4417) ( 0.4856, 0.4159) ( 0.4789, 0.3963) ( 0.4731, 0.3813)
(t∗2, ω∗2) (1.6623, 0.5583) (1.8509, 0.5841) (2.0626, 0.6037) ( 2.2998, 0.6187)
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of locally D-optimal designs for such models, see for example, Li and Majum-
dar (2008) and Fang and Hedayat (2008) from both theoretical and applied
perspective.

2n-parameter compartment models is the sum of n open one-compartment
model with zero-order input and first-order output. The process is described as
follows. Drug is introduced into the compartment by a constant zero-order input,
with rate of input k0; then the drug is eliminated from the compartment by the
first-order elimination rate, with rate of output KA. At the start, the amount
of drug is low and gradually the amount increases and the rate of elimination
increases accordingly, and eventually the rate of input and the rate of output
are equal. Therefore, the amount or concentration of drug remains constant.
The following differential equation defines the rate of accumulation of drug in
the compartment during a single infusion with constant rate:

dA

dt
= k0 −KA. (5.1)

Given the initial amount of the drug: A(t = 0) = 0, we obtain integrated
form:

A =
k0

K
(1− e−Kt). (5.2)

Compartment models are also extremely useful in modeling HIV dynamics,
especially those multiple compartment models with large numbers of parame-
ters. In modeling HIV dynamics within a host, biomathematicians and theoret-
ical biologists have made great advances in the development of mathematical
models to study the characteristics of HIV replication and HIV evolution. Most
of these models are differential equations or compartmental models. See, for ex-
ample, Ding and Wu (2000) and Han and Chaloner (2003). Here we start with
4-parameter compartment model (5.3).

Carathéodory’s theorem provides an upper bound for any k-parameter D-
optimal design formulation. From the above discussion of chemical kinetic model,
we know d

′
(ξ, t, θ) is very important in studying the numbers of support points.

Here we also follow the same idea and study the upper bounds of the number
of support points for compartment models.

y = η(t,θ) + ε = a1(1− e−λ1t) + a2(1− e−λ2t) + ε, (5.3)

where, 0 ≤ t, λ1, λ2 > 0, a1, a2 ∈ R, θ′ = (a1, a2, λ1, λ2).

Theorem 5.1. Under model (5.3), the minimum upper bound of the number of
support points for a locally D-optimal design is 6.

Proof. After simplification, we obtain
d′(ξ, t,θ)

= e−2λ1t[−2λ1m33t
2+(2m33+4λ1m13)t−(2m13+2λ1m11)]+e−2λ2t[−2λ2m44t

2+
(2m44 +4λ2m24)t− (2m24 +2λ2m22)]+ e−(λ1+λ2)t[−2(λ1 +λ2)m34t

2 +{4m34 +
(λ1 + λ2)(2m24 + 2m23)}t−{2m14+2m23+2(λ1+λ2)m12}]+e−λ1t[−λ1(2m13+
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2m33)t+{2m13+2m33+λ1(2m11+2m12)}]+e−λ2t[−λ2(2m14+2m24)t+{2m14+
2m24 + λ2(2m22 + 2m12)}].

We follow the same idea of the approach used in Fang and Hedayat (2008)
to obtain the upper bound of the number of support points. We need to know
the upper bounds for the numbers of roots for d′(ξ, t, θ) = 0. We will simplify
d′(ξ, t,θ) by taking derivative several times and what we obtain after the last
derivative step is a linear combination of a T-system. Based on this, then we
revisit the problem to determine bounds on the number of roots for d′(ξ, t,θ) =
0.

1) Divide both sides by e−λ1t and take derivative twice.
2) Divide both sides by e(λ1−λ2)t and take derivative twice.
3) Divide both sides by e−λ1t and take derivative three times.
Then solving d′(ξ, t,θ) = 0 is equivalent to solving g1(t), where

g1(t) =λ2
1(λ2 − 2λ1)2(λ2 − λ1)3e(λ2−λ1)t[−2λ1m33t

2 + b1

′
t + c1

′
]

+ (λ2)2(λ1 − 2λ2)2(λ1 − λ2)3e(λ1−λ2)t[−2λ2m44t
2 + b2

′
t + c2

′
]

(5.4)

Note that g1(t) is a linear combination of the following T-systems:
{e(λ2−λ1)t, te(λ2−λ1)t, t2e(λ2−λ1)t, e(λ1−λ2)t, te(λ1−λ2)t, t2e(λ1−λ2)t}
and g1(t) has at most 5 roots (see Appendix).
We now revisit d′(ξ, t,θ) = 0. Since t = 0 is a local minimum point for

d(ξ, t,θ) and g1(t) has at most 5 roots, then d′(ξ, t, θ) = 0 has at most (5-
1)+2+2+3=11 roots in (0,∞) excluding t = 0. Here 2, 2 and 3 represent the
numbers of times the derivatives are taken in steps 1), 2) and 3) respectively.
Since as t → 0, d(ξ, t, θ) → 0; t → ∞, d(ξ, t,θ) → c, where c = m11 + m22 +
2m12 > 0. There are at most 6 support points(5(local maximum)+1(counting in
the right boundary as a possible support point)) for the D-optimal design.

This upper bound of 6 which we obtained here is much smaller than the upper
bound provided by Carathéodory’s theorem, which is k(k+1)

2 +1 = 4(4+1)
2 +1 =

11.
Finally we consider the general case of compartment models with 2n param-

eters:

y = η(t,θ) + ε =
n∑

i=1

ai(1− e−λit) + ε (5.5)

where, t ≥ 0, λi > 0, ai ∈ R, θ = (a1, a2...an, λ1, λ2...λn)′.

Theorem 5.2. Under model (5.5), the smallest upper bound of the number of
support points for a locally D-optimal design can be as few as 3n2+7n

4 when
3n2+7n−4

2 is even and 3n2+7n−2
4 when 3n2+7n−4

2 is odd for n = 1, 2, 3....

Proof. Borrowing the same idea as in the proof of Theorem 5.1, we need to
decide on the number of roots for d′(ξ, t, θ) = 0 for the case of general n. This
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time we have

d
′
(ξ, t,θ) =

n∑

i=1

e−2λit[at2+bt+c]+
∑

1≤i<j≤n

∑
e−(λi+λj)t[dt2+et+f ]+

n∑

i=1

e−λit[gt+h],

(5.6)
where a, b, c, d, e, f , g and h are the coefficients. Numbers of roots for d

′
(ξ, t, θ) =

0 in (0,∞] is [5 + 3(n− 2)]− 1 + 3
(
n
2

)
+ 2n = 3n2+7n−4

2 .
When 3n2+7n−4

2 is even, the number of support points is 3n2+7n
4 .

When 3n2+7n−4
2 is odd, the number of support points is 3n2+7n−2

4 .

Both the upper bounds 3n2+7n
4 and 3n2+7n−2

4 are smaller than those from
Carathéodory’s theorem and the differences are of quadratic order.

6. Locally D-optimal Designs and D-efficiency for Parameter
Misspecifications

Based on the initial guess of the unknown parameters, we can run the algorithm
proposed in Yang, Biedermann, and Tang (2013) to obtain the locally D-optimal
design ξ evaluated at this guess value. To speed up the search, we also utilize
the results in Sections 3 to 5 to set up the initial design points. The optimality
results have been verified by the general equivalence theorem.

The D-efficiency of design ξ1 relative to design ξ2, according to Hedayat, Yan,
and Pezzuto (1997), is given by the following index

effD(ξ1, ξ2) = (
|I(ξ1,θ)|
|I(ξ2,θ)| )

1
k . (6.1)

The efficiency index (6.1) is a tool to check if the design is robust to minor
and major parameter misspecifications.

6.1. Klimpel’s Flotation Recovery Model

A D-optimal design has 2 support points with equal weights and the right
boundary point is always a support point. Table 6 shows the D-efficiency by
varying b with a = 89% for the design space of (0, 100] (the true value of b is
assumed to be 0.1).

6.2. 2-parameter Chemical Kinetic Model

Table 7 shows the D-efficiency by varying β > 0 with θ = 0.15 (the true value
of β is assumed to be 1.5) in the design space of (0, β

θ ). It is clear the loss
in efficiency is substantial if β > 1.5. If the initial guess for β is 2.0, then
the efficiency has fallen to 40%. However, the loss in efficiency is even worse if
β < 1.5. The efficiency for β < 0 in the design space of (0, 400) in Table 8 is
much better than that of β > 0 since with the same magnitude of changes, we
still have about 91% efficiency (assuming β = −0.5 is the true value).
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Table 6
D-efficiency when b > 0 deviates from the true value for a = 89%

b Locally D-optimal design points D-efficiency

0.02 t∗1 = 38.31 t∗2 = 100.00 62.55%
0.04 t∗1 = 29.31 t∗2 = 100.00 80.57%

0.06 t∗1 = 22.91 t∗2 = 100.00 92.67%

0.08 t∗1 = 18.61 t∗2 = 100.00 98.44%
0.1 t∗1 = 15.51 t∗2 = 100.00 100%

0.20 t∗1 = 8.41 t∗2 = 100.00 86.59%
0.4 t∗1 = 4.31 t∗2 = 100.00 58.70%
0.6 t∗1 = 2.91 t∗2 = 100.00 43.68%

0.8 t∗1 = 2.21 t∗2 = 100.00 34.84%
1.0 t∗1 = 1.81 t∗2 = 100.00 29.33%

1.8 t∗1 = 1.01 t∗2 = 100.00 17.31%

2.4 t∗1 = 0.71 t∗2 = 100.00 12.41%

Table 7
D-efficiency when β > 0 deviates from the true value for θ = 0.15

β Locally D-optimal design points D-efficiency

1.3 t∗1 = 2.52 t∗2 = 5.00 28.64%
1.5 t∗1 = 4.25 t∗2 = 8.92 100%
1.8 t1 = 4.25 t∗2 = 9.81 57.88%

2.0 t∗1 = 4.25 t∗2 = 10.29 43.18%
2.5 t∗1 = 4.25 t∗2 = 11.21 24.07%
3.0 t∗1 = 4.25 t∗2 = 11.88 15.34%

3.5 t∗1 = 4.24 t∗2 = 12.37 10.63%
4.0 t∗1 = 4.24 t∗2 = 12.75 7.80%

Table 8
D-efficiency when β < 0 deviates from the true value for θ = 0.15

β Locally D-optimal design points D-efficiency
-0.15 t∗1 = 3.01 t∗2 = 349.91 82.38%

-0.2 t∗1 = 3.40 t∗2 = 279.91 87.74%
-0.25 t∗1 = 3.61 t∗2 = 199.91 93.22%

-0.3 t∗1 = 3.71 t∗2 = 149.91 96.77%

-0.5 t∗1 = 4.11 t∗2 = 86.41 100%
−0.8 t∗1 = 4.11 t∗2 = 45.41 95.11%

−1.0 t∗1 = 4.14 t∗2 = 36.75 91.05%
−1.5 t∗1 = 4.17 t∗2 = 27.73 83.58%
−2.0 t∗1 = 4.21 t2 = 24.11 78.88%

−3.5 t∗1 = 4.21 t∗2 = 20.11 72.14%
−4.0 t∗1 = 4.21 t∗2 = 19.51 70.93%
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Table 9
D-efficiency when λ1 deviates from the true value for {a1 = 0.1, a2 = 3.5, λ2 = 4.0}

λ1 Locally D-optimal design points D-efficiency
0.2 t1 = 0.23 t∗2 = 1.04 t∗3 = 4.34 t∗4 = 10 70.19%

0.4 t1 = 0.22 t∗2 = 0.93 t∗3 = 3.33 t∗4 = 10 88.79%

0.6 t1 = 0.21 t∗2 = 0.85 t∗3 = 2.68 t∗4 = 10 97.82%
0.8 t1 = 0.2 t∗2 = 0.78 t∗3 = 2.27 t∗4 = 10 100%

1.0 t1 = 0.19 t∗2 = 0.73 t∗3 = 2.01 t∗4 = 10 98.88%

1.5 t∗1 = 0.17 t∗2 = 0.63 t∗3 = 1.60 t∗4 = 10 90.84%
1.8 t1 = 0.16 t∗2 = 0.55 t∗3 = 1.42 t∗4 = 10 83.28%

2.0 t∗1 = 0.16 t∗2 = 0.56 t∗3 = 1.38 t∗4 = 10 82.19%

6.3. 2n-parameter Compartment Models

For the 4-parameter compartment model, the investigation is done only for
nonlinear parameters since the design does not depend on ”linear” parameters.

Table 9 shows the performance of the D-efficiency in the design space of (0, 10)
by varying the initial guess value of λ1 while fixing the other 3 parameter values
(assuming the true value of λ1 is 0.8). It is obvious that the locally D-optimal
design for 4-parameter compartment model is very robust to the parameter
misspecification which may happen in both directions. If the initial guess is 1.0,
we still have 99% efficiency, which is very high.

For the 6-parameter compartment model, the locally D-optimal design is sup-
ported on six points. The right boundary point is always a support point, which
is similar to the 2-parameter and 4-parameter compartment models. Table 10
shows the performance of the D-efficiency in the design space of (0, 10) assum-
ing the true value of λ1 is 0.5. The locally D-optimal design for 6-parameter
compartment model is also robust to the parameter misspecifications in both
directions.

For 4-parameter compartment model, we show how the D-efficiency changes
when λ1 and/or λ2 change in Table 11 assuming λ1 = 0.8 and λ2 = 4.0 is the
true value.

7. Real Examples in the Mining Industry

7.1. Local Designs

We presents two examples with real-life application in the mineral industry from
Saleh (2010) and Yuan et al. (1996). In Saleh (2010), seven models (six flotation
models and a 2n-parameter compartment model) were discussed. The iron ore
sample was used to evaluate the fitting of six flotation models to experimental
data. The optimal flotation model parameters were determined by the criteria
of minimization of the absolute sum of squares of the deviation at given time
between observed (experiment) and calculated recovery. In Yuan et al. (1996),
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Table 10
D-efficiency when λ1 deviates from the true value for
{a1 = 0.1, λ2 = 4.0, a2 = 3.5, a3 = 0.9, λ3 = 1.7}

λ1 Locally D-optimal design points D-efficiency

0.1 t∗1 = 0.17 t∗2 = 0.61 t∗3 = 1.41 t∗4 = 2.96 t∗5 = 6.34 t∗6 = 10 87.95%

0.2 t∗1 = 0.15 t∗2 = 0.55 t∗3 = 1.37 t∗4 = 2.78 t∗5 = 5.93 t∗6 = 10 93.97%
0.3 t∗1 = 0.15 t∗2 = 0.53 t∗3 = 1.27 t∗4 = 2.64 t∗5 = 5.56 t∗6 = 10 97.76%

0.5 t∗1 = 0.15 t∗2 = 0.53 t∗3 = 1.24 t∗4 = 2.51 t∗5 = 4.97 t∗6 = 10 100%

0.8 t∗1 = 0.50 t∗2 = 0.51 t∗3 = 1.16 t∗4 = 2.28 t∗5 = 4.27 t∗6 = 10 97.56%
1.0 t∗1 = 0.50 t∗2 = 0.50 t∗3 = 1.11 t∗4 = 2.14 t∗5 = 3.94 t∗6 = 10 93.91%

1.5 t∗1 = 0.13 t∗2 = 0.49 t∗3 = 1.01 t∗4 = 1.92 t∗5 = 3.40 t∗6 = 10 83.95%

2.0 t∗1 = 0.12 t∗2 = 0.43 t∗3 = 0.94 t∗4 = 1.75 t∗5 = 3.07 t∗6 = 10 75.10%
2.5 t∗1 = 0.11 t∗2 = 0.38 t∗3 = 0.90 t∗4 = 1.62 t∗5 = 2.84 t∗6 = 10 67.16%

3.0 t∗1 = 0.11 t∗2 = 0.38 t∗3 = 0.82 t∗4 = 1.53 t∗5 = 2.67 t∗6 = 10 60.91%

Table 11
D-efficiency when λ1 and/or λ2 deviates from the true value for {a1 = 0.1, a2 = 3.5}

λ2 λ1

0.2 0.6 0.8 1.2 1.6
2.0 42.19% 72.48% 80.88% 88.03% 92.45%
3.0 60.42% 90.65% 96.55% 98.53% 98.63%
4.0 70.19% 97.79% 100% 98.86% 94.97%
5.0 73.86% 98.17% 98.00% 94.77% 89.99%
6.0 74.42% 96.10% 93.70% 89.13% 84.75%

six kinetic flotation models were tested for applicability to batch flotation time-
recovery profiles for a complex sulphide ore.

For both examples, assuming the estimated parameters as true value, the
corresponding optimal design, A or D-optimal was obtained through the sim-
ulation. The optimal design was compared with the design of the conducted
experiment by the efficiency index (6.1) to demonstrate if the optimal design is
used, how much we can improve the estimation precision. The results are shown
in Tables 12 and 13.

Table 12
D- and A- efficiencies for Saleh (2010) paper

Parameters a=0.5221 b=2.0522 Efficiency
Design in Saleh (2010) t∗1 = 0.5 t∗2 = 1.0 t∗3 = 2.0 t∗4 = 4.0 t∗5 = 6.0 t∗6 = 8.0 81.50%(D-)

ω∗1 = ω∗2 = ω∗3 = ω∗4 = ω∗5 = ω∗6 = 0.1667 56.22%(A-)
D-optimal Design t∗1 = 0.8044 t∗2 = 8

ω∗1 = 0.5 ω∗2 = 0.5

A-optimal Design t∗1 = 0.6173 t∗2 = 8

ω∗1 = 0.6814 ω∗2 = 0.3186
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Table 13
D- and A- efficiencies for Yuan et al. (1996) paper

Parameters a=0.9581 b=5.411 Efficiency
Design in Yuan et al. (1996) t∗1 = 1 t∗2 = 2.5 t∗3 = 5.5 45.54%(D-)

ω∗1 = ω∗2 = ω∗2 = 0.333 13.35%(A-)

D-optimal Design t∗1 = 0.3174 t∗2 = 5.5

ω∗1 = 0.5 ω∗2 = 0.5

A-optimal Design t∗1 = 0.2427 t∗2 = 5.5

ω∗1 = 0.6841 ω∗2 = 0.3159

Table 14
Two-Stage D- and A-optimal Designs for Saleh (2010) paper

Parameters a=0.5221 b=2.0522

1st Stage Design(Existing Design) t∗1 = 0.5 t∗2 = 1.0 t∗3 = 2.0 t∗4 = 4.0 t∗5 = 6.0 t∗6 = 8.0
ω∗1 = ω∗2 = ω∗3 = ω∗4 = ω∗5 = ω∗6 = 0.1667

2nd Stage D-optimal Design t∗1 = 0.7804 t∗2 = 8.0
ω∗1 = 0.5225 ω∗2 = 0.4775

2nd Stage A-optimal Design t∗1 = 0.6173 t∗2 = 8.0

ω∗1 = 0.7701 ω∗2 = 0.2299

7.2. Adaptive Designs

Locally optimal design approach is based on the ”best guess” of the unknown
parameters. How can we obtain most reliable ”best guess”? A natural way is to
implement adaptive designs. An initial experiment is conducted to obtain the
working idea about the unknown parameters. The estimate at one stage can
serve as the ”best guess” on which the next stage design can be based. At a
second stage, the question then becomes how to select design ξ2 such that the
total information matrix Iξ1(θ) + rIξ2(θ) is optimized under some pre-specified
optimality criterion. Here r refers to the ratio of the sample size of the second
stage to that of the first stage. We implement two-stage adaptive D- and A-
optimal designs for the two real examples by adding 10 points to the given
designs, where the first-stage designs are the designs used in the experiment in
the papers by Saleh (2010) and Yuan et al. (1996). The results are shown in
tables 14 and 15.

Table 15
Two-Stage D- and A-optimal Design for Yuan (1996) paper

Parameters a=0.9581 b=5.411
1st Stage Design(Existing Design) t∗1 = 1 t∗2 = 2.5 t∗3 = 5.5

ω∗1 = ω∗2 = ω∗3 = 0.3333

2nd Stage D-optimal Design t∗1 = 0.3097 t∗2 = 5.5
ω∗1 = 0.5884 ω∗2 = 0.4116

2nd Stage A-optimal Design t∗1 = 0.2427 t∗2 = 5.5

ω∗1 = 0.8028 ω∗2 = 0.1972
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7.3. Simulation Study

Clearly the derived adaptive designs depend on the estimated parameter val-
ues from the first stage design. This implies that the adaptive designs are not
uniquely determined since the estimated parameter values are random variables.
A simulation study is conducted to evaluate the performance of the derived
adaptive designs. We use the designs in Saleh (2010) and Yuan et al. (1996) as
the first stage designs. We also use the estimated parameters in Saleh (2010)
and Yuan et al. (1996) as the true parameters values. The simulation study
consists of three steps: (i) drawing a random variable from the multivariable
normal distribution based on the estimation from the first stage design; (ii) de-
riving the adaptive optimal design based on the drawn parameter values; and
(iii) evaluating the efficiency of the derived adaptive design using a local optimal
design as a benchmark. We repeated the process 1000 times and we obtained
the distribution of efficiency. The mean and the standard deviation of D- and A-
efficiencies are reported respectively for both examples: they are 0.86(0.08)and
0.54(0.02) for Saleh (2010); 0.88(0.07) and 0.38(0.01) for Yuan et al. (1996). The
histograms of the efficiencies are presented in Fig.1.

Another interesting question is, what is the relative efficiency if we use the
existing design in the paper at both the first and the second stages compared
to the situation that if we use the adaptive optimal design at the second stage?
We found, after running the similar simulation study, the relative D-efficiencies
for Saleh and Yuan’s paper are 0.78(0.17) and 0.35(0.10) and the relative A-
efficiencies are 0.30(0.07) and 0.14(0.01). Both examples show that using adap-
tive designs at the second stage is better than using the existing designs at both
stages.

8. Discussion

Searching for optimal designs is important and also complicated. Knowing the
upper-bound of the number of support points can greatly simplify the search pro-
cess, numerically or analytically. We have a complete answer for the Klimpel’s
flotation recovery model. However, we only have partial answer for 2-parameter
chemical kinetic model as well as compartment models. Extensive numerical
studies suggest that optimal designs can be based on saturated designs. How to
prove this conclusion remains an open problem.

Optimal designs for compartment models are less sensitive, while both Klimpel’s
flotation recovery model and 2-parameter chemical kinetic model suffer signif-
icant efficiency loss when parameters are moderately deviated from their true
values. Bayesian or minimax optimal designs could be a remedy for this problem.

Adaptive designs are promising since with any existing design at the first
stage and initial information about parameter values, adaptive optimal designs
can be derived for the second stage for certain optimality criterion. Our simu-
lation also shows adaptive designs are comparable to local optimal designs in
some cases. Given the first stage existing designs, using adaptive designs at the
second stage is also efficient than using the existing design at the second stage.
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(a) D-efficiency: Saleh (2010) (b) A-efficiency: Saleh (2010)

(c) D-efficiency: Yuan et al. (1996) (d) A-efficiency: Yuan et al. (1996)

Fig 1. Distribution of D- and A- Efficiencies
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Appendix

Lemma 1. The following two systems are ECT-systems.
1) T1 = {1, x, x2, x2lnx, x2(lnx)2} is an ECT-system with W1(u0, u1, ..., uk)(x) >

0.
2) T2 = {1, x, x2, x2lnx, xlnx} is an ECT-system with W2(u0, u1, ..., uk)(x) >

0.

Proof. We give a detailed proof for T1. Similar proof for T2 can be derived
similarly. It can be shown that

W1(u0)(x) = 1 > 0,
W1(u0, u1)(x) = 1 > 0,

W1(u0, u1, u2)(x) =

∣∣∣∣∣∣

1 0 0
x 1 0
x2 2x 2

∣∣∣∣∣∣
= 2 > 0,

W1(u0, u1, u2, u3)(x) =

∣∣∣∣∣∣∣∣

1 0 0 0
x 1 0 0
x2 2x 2 0

x2lnx 2xlnx + x 2lnx + 3 2
x

∣∣∣∣∣∣∣∣
=

4
x

> 0,

and W1(u0, u1, u2, u3, u4)(x)

=

∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0
x 1 0 0 0
x2 2x 2 0 0

x2lnx 2xlnx + x 2lnx + 3 2
x − 2

x2

x2(lnx)2 2x(lnx)2 + 2xlnx 2(lnx)2 + 6lnx + 2 4
x lnx + 6

x − 4
x2 lnx− 2

x2

∣∣∣∣∣∣∣∣∣∣

=
16
x3

> 0.

Therefore, {1, x, x2, x2lnx, x2(lnx)2} is a ECT-System, which is also a T-
System.

Lemma 2. g1(t) defined in (5.4) is a linear combination of T-Systems and has
at most 5 roots.

Proof. Let g1(t) = a1t
2e(λ2−λ1)t + b1te

(λ2−λ1)t + c1e
(λ2−λ1)t + a2t

2e(λ1−λ2)t +
b2te

(λ1−λ2)t + c2e
(λ1−λ2)t,

which can be re-written as
g1(t) = 1

e(λ2−λ1)t [e2(λ2−λ1)t(a1t
2 + b1t + c1) + a2t

2 + b2t + c2].
To find out the number of roots for g1(t) = 0, consider
g̃2(t) = [e2(λ2−λ1)t(a1t

2 + b1t + c1) + a2t
2 + b2t + c2] = 0.

Since d3g̃2(t)
dt3 = e2(λ2−λ1)t(a

′
1t

2 + b
′
1t + c

′
1), has at most 2 roots, g1(t) has at

most 5 roots. Therefore, it is a T-system.
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