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Some design aspects related to three complex nonlinear models are studied in this paper.
For Klimpel's flotation recovery model, it is proved that regardless of model parameter
and optimality criterion, any optimal design can be based on two design points and the
right boundary is always a design point. For this model, an analytical solution for a
D-optimal design is derived. For the 2-parameter chemical kinetics model, it is found that
the locally D-optimal design is a saturated design. Under a certain situation, any optimal
design under this model can be based on two design points. For the 2n-parameter
compartment model, compared to the upper bound by Carathe ́odory's theorem, the upper
bound of the maximal support size is significantly reduced by the analysis of related
Tchebycheff systems. Some numerically calculated A-optimal designs for both Klimpel's
flotation recovery model and 2-parameter chemical kinetic model are presented. For each
of the three models discussed, the D-efficiency when the parameter misspecification
happens is investigated. Based on two real examples from the mining industry, it is
demonstrated how the estimation precision can be improved if optimal designs would be
adopted. A simulation study is conducted to investigate the efficiencies of adaptive
designs.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Optimal designs based on nonlinear models have wide and important applications in many areas of science. A good
example of the application is the optimal design based on PK/PD models which are widely used in pharmaceutical industries
for the examination of absorption, distribution, metabolism, elimination, efficacy and toxicity parameters in drug
developments, see Gieschke and Steimer (2000) and Meibohm and Derendorf (2002).

We study and explore optimal designs for three complex nonlinear models. These are the 2-parameter chemical kinetic
model, the 2n-parameter compartment model and the 2-parameter Klimpel's flotation recovery model. These three models
have been shown to have extensive applications in real life situations (Godfrey, 1983; Jacquez, 1985; Parekh and Miller, 1999;
Saleh, 2010; Yuan et al., 1996).

We concentrate on the nonlinear model y¼ ηðx; θÞþε, where θ¼ ðθ1; θ2;…; θkÞT is a vector of k unknown parameters and x
is the explanatory variable defined on a design space χ in R. The error ε is postulated to be distributed as Nð0; s2Þ and
without loss of generality we let s¼ 1. Further, we assume that all observations are independent.
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Typically, the optimal nonlinear design studies are under approximate theory, i.e., instead of exact sample sizes for
design points, design weights are used. Let ξ be any n-point approximate design,

ξ¼
t1 t2 …tn
ω1 ω2 …ωn

 !
:

Here 0oωio1 represents the proportion of the number of points studied at ti with ∑n
i ¼ 1ωi ¼ 1. The Fisher information

matrix for y¼ ηðt; θÞþε can be written as

Iξ ¼ ∑
n

i ¼ 1
ωi

∂ηðt; θÞ
∂θ

� �
∂ηðt; θÞ
∂θ

� �T

: ð1:1Þ

How to compare two designs? There are variety of optimality criteria. Two popular optimality criteria are D-optimality and
A-optimality, which are to maximize jIξj and minimize TrðI�1

ξ Þ over all possible designs, respectively. A D-optimal design
minimizes the volume of an asymptotic confidence ellipsoid for θ, and an A-optimal design minimizes the average of the
asymptotic variances for the estimators of the individual parameters.

2. Preliminaries

In this paper, we shall use and deal with Extended Tchebycheff systems and Extended Complete Tchebysheff systems.
The Tchebycheff systems were first introduced by the Russian mathematicians Chebyshev (1859) and Bernshtein (1937).
In Karlin and Studden (1966), the theory of the Tchebycheff systems and its applicability in optimal design of experiments
theory is introduced and studied.

Let fu0;u1;…;ung be nþ1 continuous real-valued functions on ½a; b�. fugnk ¼ 0 ¼ fu0;u1;…;ung is called a Tchebycheff system
(T-system) if the following determinant is strictly positive whenever art0ot1o⋯otnrb

U
0; 1; …; n

t0; t1; …; tn

 !
¼

u0ðt0Þ u0ðt1Þ ⋯ u0ðtnÞ
u1ðt0Þ u1ðt1Þ ⋯ u1ðtnÞ

⋮ ⋮ ⋮ ⋮
unðt0Þ unðt1Þ ⋯ unðtnÞ

���������

���������
40:

fugnk ¼ 0 is called a Complete Tchebycheff system (CT-system) if fugmk ¼ 0 is a T-system on ½a; b� for eachm¼ 0;1;…;n. In the sequel,
we shall deal with Extended Tchebycheff system and Extended Complete Tchebysheff system, which are defined below:
(i)
 fugnk ¼ 0 on ½a; b� is called an Extended Tchebycheff system (ET-system) of order p, provided uiACp�1½a; b�, i¼ 0;1;…;n
and

Un
0; 1; …; n

t0; t1; …; tn

 !
40

for all choices art0rt1r⋯rtnrb, where equality occurs in groups of at most p consecutive ti values. Here,

Un
0; 1; …; n
t0; t1; …; tn

 !

has the same definition as

U
0; 1; …; n

t0; t1; …; tn

 !

except that, for each set of equality ti, we replace successive columns by their successive derivatives. For example,
suppose art0 ¼ t1 ¼⋯¼ tqotqþ1o⋯otn�1 ¼ tnrb then

Un
0; 1; …; n

t0; t1; …; tn

 !
¼

u0ðt0Þ uð1Þ
0 ðt0Þ ⋯ uðqÞ

0 ðt0Þ u0ðtqþ1Þ ⋯ u0ðtn�1Þ uð1Þ
0 ðtn�1Þ

u1ðt0Þ uð1Þ
1 ðt0Þ ⋯ uðqÞ

1 ðt0Þ u1ðtqþ1Þ ⋯ u1ðtn�1Þ uð1Þ
1 ðtn�1Þ

⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮
unðt0Þ uð1Þ

n ðt0Þ ⋯ uðqÞ
n ðt0Þ unðtqþ1Þ ⋯ unðtn�1Þ uð1Þ

n ðtn�1Þ

�����������

�����������
:

In the above, uðjÞ
k ðtÞ denotes the jth order derivative of uk.
(ii)
 fugnk ¼ 0 is called an Extended Complete Tchebysheff system (ECT-system) if fugmk ¼ 0 is an ET-system on ½a; b� for each
m¼ 0;1;…;n.

The following results are known and we skip the proofs.
(a)
 fugnk ¼ 0 on ½a;b� is a Tchebysheff system if and only if every non-trivial linear combination gðtÞ ¼∑n
i ¼ 0ciuiðtÞ has at most n

zeros, where ðc0; c1;…; cnÞa ð0;0;…;0Þ.
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(b)
 fugnk ¼ 0 on ½a;b� is an ECT-system if and only if for k¼ 0;1;…;n,

Wðu0;u1;…;ukÞðtÞ ¼

u0ðtÞ uð1Þ
0 ðtÞ ⋯ uðkÞ

0 ðtÞ
u1ðtÞ uð1Þ

1 ðtÞ ⋯ uðkÞ
1 ðtÞ

⋮ ⋮ ⋮ ⋮
ukðtÞ uð1Þ

k ðtÞ ⋯ uðkÞ
k ðtÞ

�����������

�����������
40

where Wðu0;u1;…;ukÞðtÞ is the Wronskian determinant, see Hartman (1964).
3. Klimpel's flotation recovery model

Flotation model is a gravity separation process that originated from processing of minerals. They are widely used in
mining engineering and have found wide application in industrial waste-water treatment. It is also useful in the
concentration of a variety of dissolved chemical species often following a sorption process. They are based on an
observation that was made in the earliest experimental kinetic studies of flotation, namely, that not all particles will be
recovered by flotation no matter how much time they have in the flotation environment. Each particle type has an ultimate
recovery that is less than 100 percent. The particles that do float are recovered at a rate that is governed by a simple first-
order kinetic law. Thus two kinetic parameters are required for each type of particle: the ultimate recovery and the kinetic
constant. There are three types of flotation recovery models: exponential flotation recovery model, Klimpel's flotation
recovery model and Agar's flotation recovery model. We will discuss and treat Klimpel's flotation recovery model.

The 2-parameter Klimpel's flotation recovery model is widely used in environmental science for metal recovery:

R t;Rmax; kð Þ ¼ Rmax 1� 1
kt

1�e�kt
� �� �

þε: ð3:1Þ

Rðt;Rmax; kÞ refers to the recovery of mineral or metal of interest; t refers to time and Rmax is the ultimate recovery while k
is constant first-order rate.

For an easy presentation, we rewrite Model (3.1) in the following form:

y¼ η t; θð Þþε¼ a 1� 1
bt

1�e�bt
� �� �

þε ð3:2Þ

where θ¼ ða; bÞ0.

Theorem 3.1. Under Model (3.2), for any arbitrary design ξ, there exists a design ξn such that IξðθÞr Iξn ðθÞ (here and elsewhere,
matrix inequalities are under the Loewner ordering). Here, ξn is based on two design points including the upper bound point T of
the design space. When IξðθÞr Iξn ðθÞ, it means design ξn is not inferior to ξ under commonly used matrix based optimality criteria.
An optimal design under Loewner ordering criterion does not exist in general. We have to consider optimal design under less
restrictive criteria.

Proof. For any arbitrary design ξ¼ ðti;ωiÞ, i¼ 1;…;n, it can be shown that the Fisher information matrix Iξ can be written in
the form:

Iξ ¼ PðθÞCðξ; θÞPðθÞT : ð3:3Þ
Here

P θð Þ ¼
1 0
�a

b
a
b

 !
and C ξ; θð Þ ¼ ∑

n

i ¼ 1
ωi

ð1þ xi
lnð1� xiÞÞ

2 xi 1þ xi
lnð1�xiÞ

� �
xi 1þ xi

lnð1� xiÞ

� �
x2i

0
B@

1
CA;

with xi ¼ 1�e�bti . Since 0otrT , we have 0oxio1�e�bT .
Let Ψ1ðxÞ ¼ x2, Ψ2ðxÞ ¼ xð1þx=lnð1�xÞÞ, and Ψ3ðxÞ ¼ ð1þx=lnð1�xÞÞ2. We can verify that for any 0oxo1,
(a)
 Ψ 0
1ðxÞ40;
(b)
 ðΨ 0
2ðxÞ=Ψ 0

1ðxÞÞ040;

(c)
 ððΨ 0

3ðxÞ=Ψ 0
1ðxÞÞ0=ðΨ 0

2ðxÞ=Ψ 0
1ðxÞÞ0Þ040;
(d)
 limx↑ð1� e� bT ÞðΨ 0
2ðxÞ=Ψ 0

1ðxÞÞðΨ1ð1�e�bT Þ�Ψ1ðxÞÞ ¼ 0.
The above inequalities are rather difficult to verify by hand since involving manipulation of derivative, therefore we use
symbolic computational software MAPLE(Waterloo, Canada) to verify them. By Corollary 3 of Yang and Stufken (2009), there
exists a design with two design points including the upper bound T, say ξn, such that one diagonal element and the off-
diagonal element of Cðξn; θÞ are the same as that of Cðξ; θÞ, and the remaining diagonal element is larger. Thus the conclusion
follows. □



Table 1
xn for the D-optimal design for θ under Model (3.2).

b 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

xn 8.3817 4.3395 2.9253 2.2060 1.7705 1.4786 1.2693 1.1119

Table 2
ðxn;ωnÞ for the A-optimal design for θ under Model (3.2).

b 0.2 0.4 0.6 0.8

ðxn;ωnÞ (7.1165, 0.3903) (3.6294, 0.5283) (2.3780, 0.5929) (1.7594, 0.6261)

b 1.0 1.2 1.4 1.6

ðxn;ωnÞ (1.3951, 0.6449) (1.1558, 0.6563) (0.9869, 0.6638) (0.8612, 0.6689)
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Theorem 3.1 shows that no matter what optimal designs we are looking for, we can always restrict ourself to two-points
design including the upper bound T, irrespective of parameters of interest or the optimality criterion. Consequently, we are
able to obtain analytical expression for some specific optimal designs.

Corollary 3.1. Under Model (3.2), ξn is the D-optimal design for θ, where ξn ¼ fðT ;0:5Þ; ðtn;0:5Þg, where tn ¼ � lnð1�xnÞ=b and
xn is the unique solution of the following equation:

1�e�bT
� � ln 1�xð Þþ x

1�x
ln2ð1�xÞ

0
B@

1
CA� 1� 1

bT
1�e�bT
� �� �

¼ 0:

Proof. By Theorem 3.1, a D-optimal design, which maximizes determinant of Iξ, for θ must only have two design points
including the upper bound T. Consequently, it must have equal weights on each support point (Silvey, 1980). Thus a
D-optimal design for θ must maximize g2ðxÞ, where

g xð Þ ¼ 1�e�bT
� �

1þ x
lnð1�xÞ

� �
�x 1� 1

bT
1�e�bT
� �� �

:

Clearly gðxÞ ¼ 0 when x¼ 1�e�bT . We can show that limx↓0gðxÞ ¼ 0. Now let us consider the first derivative of g(x),

g0 xð Þ ¼ 1�e�bT
� � ln 1�xð Þþ x

1�x
ln2ð1�xÞ

0
B@

1
CA� 1� 1

bT
1�e�bT
� �� �

:

With some simple algebra, we can show that (i) g0ðxÞ is a strictly increasing function on ð0;1Þ; (ii) limx↓0g0ðxÞo0 and
(iii) g0ðxÞ40 when x¼ 1�e�bT . Thus, there must exist a unique solution xn such that g0ðxnÞ ¼ 0, g0ðxÞo0 when 0oxoxn,
and g0ðxÞ40 when xnoxr1�e�bT . So g(x) is minimized at x¼ xn. Combining the fact the gðxÞ ¼ 0 when x¼ 1�e�bT and
limx↓0gðxÞ ¼ 0, g2ðxÞ must be maximized at xn. □

From Theorem 3.1, we notice that the D-optimal design does not depend on parameter a. Once the values of upper bound
T and the parameter b are given, the value of xn can be easily computed. For example, when T¼100, Table 1 provides the
value of xn for some selected b values.

Although it may not be easy to derive other optimal designs, we may be able to derive any optimal design numerically
due to the simple format of ξn in Theorem 3.1. For example, let us consider A-optimal designs for θ, which minimizes the
trace of I�1

ξ . With the explicit optimal weight formula provided by Biedermann et al. (2006), the numerical search turns out
to be one dimension which can be easily carried out. Table 2 provides the optimal designs for T¼100, a¼1 under some
selected b values.
4. 2-Parameter chemical kinetic model

Kinetic models related to chemical reactions are widely used in chemical engineering and chemistry. The models are
usually in the form of differential equations with two groups of parameters, the rate and the order of reaction; see
Boroujerdi (2001).
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Consider the consecutive reaction: A⟶B, with reaction order λ and reaction rate θ. The kinetic model is given by the
differential equation:

d½A�
dt

¼ �θ½A�λ; ð4:1Þ

where tZ0 is the reaction time, λ40 is the reaction order, θ40 is the reaction rate.
Given (4.1), with the initial conditions A¼1, B¼0 at t¼0, the model is determined as follows:

½A� ¼ ηðt; θ; λÞþε¼ ½1�ð1�λÞθt�1=ð1� λÞ þε: ð4:2Þ

Theorem 4.1. Under Model (4.2), a D-optimal design for all parameters is supported on two points.

Proof. By the extended equivalence theorem of Kiefer (1974) established by White (1973), it is enough to verify that there
are at most 2 maximal points for dðξ; x; θÞ, directional derivative, which will be introduced shortly.
Let 1=ð1�λÞ ¼ β, 1�ðθ=βÞt ¼ x, and θ0 ¼ ðθ; βÞ. Note that a D-optimal design for λ and θ is the same as that for β and θ. The

Fisher information matrix for ξ is

Iξ ¼
1
θ2
∑n

i ¼ 1ωiβ
2x2β�2

i ðxi�1Þ2 1
θ∑

n
i ¼ 1ωiβx

2β�1
i xi�1ð Þ ln xiþ 1

xi
�1

� �
1
θ∑

n
i ¼ 1ωiβx

2β�1
i xi�1ð Þ ln xiþ 1

xi
�1

� �
∑n

i ¼ 1ωiðln xiþ 1
xi
�1Þ2x2βi

0
B@

1
CA:

We tacitly assume that nZ2 and that xi's are all distinct. This ensures the existence of the inverse of the Fisher information
matrix,

I�1
ξ ¼

m11 m12

m21 m22

 !

with m12 ¼m21.
Then,

d ξ; x; θð Þ ¼ tr
1
θ2
β2x2β�2ðx�1Þ2 β

θx
2β�1 x�1ð Þ ln xþ1

x�1
	 


β
θx

2β�1 x�1ð Þ ln xþ1
x�1

	 
 ðln xþ1
x�1Þ2x2β

0
@

1
A m11 m12

m21 m22

 !

¼m11

θ2
β2x2β�2ðx�1Þ2þ2

θ
m12βx2β�1 x�1ð Þ ln xþ1

x
�1

� �
þm22x2β ln xþ1

x
�1

� �2

:

We obtain the first order derivative of dðξ; x; θÞ with respect to x, which is denoted by d0ðξ; x; θÞ:

d0ðξ; x; θÞ ¼ x2β�3fk1x2þk2xþk3þk4x2ln xþk5x2ðln xÞ2þk6x ln xg ð4:3Þ
where k1 ¼ 2ð1=θ2Þm11β

3�4ð1=θÞm12β
2þ2ð1=θÞm12βþ2m22β�2m22, k2 ¼ �4ð1=θ2Þm11β

3þ2ð1=θ2Þm11β
2þ8ð1=θÞm12β

2�
6ð1=θÞm12β�4m22βþ4m22, k3 ¼ 2ð1=θ2Þm11β

3�2ð1=θ2Þm11β
2�4ð1=θÞm12β

2þ4ð1=θÞm12βþ2m22β�2m22, k4 ¼ 4ð1=θÞ m12β
2

�4m22βþ 2m22, k5 ¼ 2m22β, k6 ¼ �4ð1=θÞm12β
2þ2ð1=θÞm12βþ4m22β�2m22 ¼ 2ð1�2βÞððβ=θÞm12�m22Þ.

We notice that d0ðξ; x; θÞ is composed of two Tchebycheff systems (Lemma 1 of Appendix) as indicated below:
T1 ¼ f1; x; x2; x2 ln x; x2ðln xÞ2g and T2 ¼ f1; x; x2; x2 ln x; x ln xg.
We consider two circumstances for β in studying

β

θ
m12�m22

� �
¼ 1
θ2

1
jIξj

∑
n

i ¼ 1
β2ωix

2β�2
i 1�xið Þxi ln xi: ð4:4Þ

Recall that β ð ¼ 1=ð1�λÞÞ is either greater than 1 or smaller than 0. Consequently ððβ=θÞm12�m22Þ is less than 0 for all
feasible values of β. Therefore k5 is positive for β41 and negative for βo0 while k6 is positive when β41 and negative
when βo0.
Since both T1 and T2 are T-systems with positive determinant, any positive linear combination of the two systems is also a

T-system.
For β41, f1; x; x2; x2 ln x; k5x2ðln xÞ2þk6x lnj; xg is also a T-system with k540; k640.
For βo0, f1; x; x2; x2 ln x; �½k5x2ðln xÞ2þk6x ln x�g is also a T-system with �k540; �k640.
For both cases, there are at most 4 roots for d0ðξ; x; θÞ ¼ 0. Thus there are at most two local maximal points in ð0; TÞ. On the

other hand, for β41, when t-0, dðξ; x; θÞ-0; t-T , dðξ; x; θÞ-0, T is the upper bound. And for βo0, when t-0,
dðξ; x; θÞ-0; t-T , dðξ; x; θÞ-0. Consequently, the two boundary points cannot be the support points. Thus, a D-optimal
design is precisely supported on 2 points. □

When 0oλo1, we are able to extend our result to any arbitrary optimal design. To make Model (4.2) meaningful,
1�ð1�λÞθt needs to be positive, i.e., 0oto ð1=ð1�λÞÞθ.



Table 3
LðλÞ and UðλÞ for some selected λ.

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LðλÞ 0.0120 0.0131 0.0142 0.0154 0.0168 0.0182 0.0197 0.0213 0.0231
UðλÞ 0.9958 0.9959 0.9967 0.9962 0.9961 0.9957 0.9966 0.9959 0.9959

Table 4
D-optimal designs for θ for some selected λ.

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tn1 0.6348 0.6363 0.6372 0.6375 0.6375 0.6371 0.6366 0.6358 0.6350
tn2 1.0927 1.1920 1.2997 1.4167 1.5439 1.6821 1.8324 1.9957 2.1731
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For any arbitrary design ξ¼ ðti;ωiÞ; i¼ 1;…;n, it can be shown that the Fisher information matrix Iξ can be written as
follows:

Iξ ¼ PðθÞCðξ; θÞPðθÞT : ð4:5Þ

P θð Þ ¼
β
θ 0

�1 1

 !
and C ξ; θð Þ ¼ ∑

n

i ¼ 1
ωi

x2βi ð1� 1
xi
Þ2 x2βi 1� 1

xi

� �
ln xi

x2βi 1� 1
xi

� �
ln xi x2βi ln2xi

0
B@

1
CA;

with xi ¼ 1�ðθ=βÞti and β¼ 1=ð1�λÞ, where 0oxio1.
Let Ψ1ðxÞ ¼

R x
0 2z2β�2ð1�1=zÞ dz, Ψ2ðxÞ ¼ x2βð1�1=xÞ2, Ψ3ðxÞ ¼ x2βð1�1=xÞln x, and Ψ4ðxÞ ¼ x2βln2 x. We can verify that for

any 0oxo1,
(a)
 Ψ 0
1ðxÞo0;
(b)
 ðΨ 0
2ðxÞ=Ψ 0

1ðxÞÞ040;

(c)
 ððΨ 0

3ðxÞ=Ψ 0
1ðxÞÞ0=ðΨ 0

2ðxÞ=Ψ 0
1ðxÞÞ0Þ040.
On the other hand, h(x) is not always positive for all xAð0;1Þ, where

h xð Þ ¼ Ψ 0
4ðxÞ

Ψ 0
1ðxÞ

� �0 Ψ 0
2ðxÞ

Ψ 0
1ðxÞ

� �0�0 Ψ 0
3ðxÞ

Ψ 0
1ðxÞ

� �0 Ψ 0
2ðxÞ

Ψ 0
1ðxÞ

� �0�0�0
:

������

However, we can show that hðxÞ40 for xA ½LðλÞ;UðλÞ� with LðλÞ40 and UðλÞo1. LðλÞ and UðλÞ depend on the value of λ, and
consequently of β. We do not have the explicit expression for LðλÞ and UðλÞ due to the rather complicated expression of h(x).
However, for a given λ, it is relatively easy to determine the value of LðλÞ and UðλÞ MAPLE(Waterloo, Canada).

Table 3 shows that LðλÞ is closed to 0 and UðλÞ is closed to 1. Even when λ is closed to either 0 or 1, it seems Table 3 still
holds. For example, ½LðλÞ;UðλÞ� ¼ ½0:0110;0:9959� and ½0:0250;0:9963� when λ¼ 0:001 and 0.999, respectively. Now using
Theorem 2 of Yang (2010), we have the following theorem.

Theorem 4.2. Under Model (4.2), suppose that 0oλo1 and the induced design space is ½LðλÞ;UðλÞ�. For any arbitrary design ξ,
there exists a design ξn such that IξðθÞr Iξn ðθÞ. Here, ξn is based on two design points.

Theorem 4.2 allows us to limit our search on two-point designs for any optimality when the induced design space is a
subinterval of ½LðλÞ;UðλÞ�, regardless of parameters of interest. This makes it relatively easy to obtain a specific optimal design
numerically. Although the result is not for entire induced design interval, ½LðλÞ;UðλÞ� is closed to the whole induced space in
general. Likely, an optimal design in the restricted space is also optimal in the entire design space. We can derive a specific
optimal design in the restricted design space and then verify whether it is optimal in the entire design space via the general
equivalence theorem. Notice that D-optimal designs have equal weights on the two points. Based on the information matrix,
such optimal designs (after transformation) do not depend on the value of θ. For example, let tn1 and tn2 be the two support
points of the D-optimal design for θ with some λ and θ1. Then for the same λ but different θ2, the two support points of the
D-optimal design for θ are tn1θ1=θ2 and tn2θ1=θ2. For convenience, we choose θ¼ 1 and use the original scale to present the
design (see Table 4). All optimal designs have been verified through general equivalence theorem in the entire design space
ð0;1=ð1�λÞθÞ.

Table 5 gives A-optimal designs for θ. Such designs depend on the values of both θ and λ. We have taken θ¼ 1 in
preparing Table 5.



Table 5
A-optimal designs for θ for some selected λ.

λ 0.1 0.2 0.3 0.4

ðtn1 ;ωn

1Þ (0.5295, 0.6265) (0.5200, 0.5661) (0.5108, 0.5162) (0.5018, 0.4748)
ðtn2 ;ωn

2Þ (1.1020, 0.3735) (1.2171, 0.4339) (1.3474, 0.4838) (1.4952, 0.5252)

λ 0.5 0.6 0.7 0.8

ðtn1 ;ωn

1Þ (0.4932, 0.4417) (0.4856, 0.4159) (0.4789, 0.3963) (0.4731, 0.3813)
ðtn2 ;ωn

2Þ (1.6623, 0.5583) (1.8509, 0.5841) (2.0626, 0.6037) (2.2998, 0.6187)
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5. 2n-Parameter compartment models

Compartment models are important for the evaluation of efficacy and toxicity in drug developments. There is substantial
literature investigating the nature of locally D-optimal designs for such models, see for example, Li and Majumdar (2008)
and Fang and Hedayat (2008) from both theoretical and applied perspectives.

2n-Parameter compartment models are the sum of n open one-compartment model with zero-order input and first-
order output. The process is described as follows. Drug is introduced into the compartment by a constant zero-order input,
with rate of input k0; then the drug is eliminated from the compartment by the first-order elimination rate, with rate of
output KA. At the start, the amount of drug is low and gradually the amount increases and the rate of elimination increases
accordingly, and eventually the rate of input and the rate of output are equal. Therefore, the amount or concentration of
drug remains constant. The following differential equation defines the rate of accumulation of drug in the compartment
during a single infusion with constant rate:

dA
dt

¼ k0�KA: ð5:1Þ

Given the initial amount of the drug: Aðt ¼ 0Þ ¼ 0, we obtain integrated form:

A¼ k0
K

1�e�Kt	 

: ð5:2Þ

Compartment models are also extremely useful in modeling HIV dynamics, especially those multiple compartment
models with large numbers of parameters. In modeling HIV dynamics within a host, biomathematicians and theoretical
biologists have made great advances in the development of mathematical models to study the characteristics of HIV
replication and HIV evolution. Most of these models are differential equations or compartmental models. See, for example,
Ding and Wu (2000) and Han and Chaloner (2003). Here we start with 4-parameter compartment model (5.3).

Carathe
0
odory's theorem provides an upper bound for any k-parameter D-optimal design formulation. From the above

discussion of chemical kinetic model, we know d0ðξ; t; θÞ is very important in studying the numbers of support points. Here
we also follow the same idea and study the upper bounds of the number of support points for compartment models.

y¼ ηðt; θÞþε¼ a1ð1�e� λ1tÞþa2ð1�e� λ2tÞþε; ð5:3Þ
where 0rt, λ1; λ240, a1; a2AR, θ0 ¼ ða1; a2; λ1; λ2Þ.

Theorem 5.1. Under Model (5.3), the minimum upper bound of the number of support points for a locally D-optimal design is 6.

Proof. After simplification, we obtain

d0ðξ; t; θÞ ¼ e�2λ1t ½�2λ1m33t2þð2m33þ4λ1m13Þt�ð2m13þ2λ1m11Þ�þe�2λ2t ½�2λ2m44t2

þð2m44þ4λ2m24Þt�ð2m24þ2λ2m22Þ�þe�ðλ1 þ λ2Þt ½�2ðλ1þλ2Þm34t2þf4m34

þðλ1þλ2Þð2m24þ2m23Þgt�f2m14þ2m23þ2ðλ1þλ2Þm12g�þe� λ1t ½�λ1ð2m13

þ2m33Þtþf2m13þ2m33þλ1ð2m11þ2m12Þg�þe� λ2t ½�λ2ð2m14

þ2m24Þtþf2m14þ2m24þλ2ð2m22þ2m12Þg�:
We follow the same idea of the approach used in Fang and Hedayat (2008) to obtain the upper bound of the number of

support points. We need to know the upper bounds for the numbers of roots for d0ðξ; t; θÞ ¼ 0. We will simplify d0ðξ; t; θÞ by
taking derivative several times and what we obtain after the last derivative step is a linear combination of a T-system. Based
on this, then we revisit the problem to determine bounds on the number of roots for d0ðξ; t; θÞ ¼ 0.
(1)
 Divide both sides by e� λ1t and take derivative twice.

(2)
 Divide both sides by eðλ1 � λ2Þt and take derivative twice.

(3)
 Divide both sides by e� λ1t and take derivative three times.



Table 6
D-efficiency when b40 deviates from the true value for a¼ 89%.

b Locally D-optimal design points D-efficiency (%)

0.02 tn1 ¼ 38:31; tn2 ¼ 100:00 62.55
0.04 tn1 ¼ 29:31; tn2 ¼ 100:00 80.57
0.06 tn1 ¼ 22:91; tn2 ¼ 100:00 92.67
0.08 tn1 ¼ 18:61; tn2 ¼ 100:00 98.44
0.1 tn1 ¼ 15:51; tn2 ¼ 100:00 100
0.20 tn1 ¼ 8:41; tn2 ¼ 100:00 86.59
0.4 tn1 ¼ 4:31; tn2 ¼ 100:00 58.70
0.6 tn1 ¼ 2:91; tn2 ¼ 100:00 43.68
0.8 tn1 ¼ 2:21; tn2 ¼ 100:00 34.84
1.0 tn1 ¼ 1:81; tn2 ¼ 100:00 29.33
1.8 tn1 ¼ 1:01; tn2 ¼ 100:00 17.31
2.4 tn1 ¼ 0:71; tn2 ¼ 100:00 12.41

A.S. Hedayat et al. / Journal of Statistical Planning and Inference 154 (2014) 102–115 109
Then solving d0ðξ; t; θÞ ¼ 0 is equivalent to solving g1ðtÞ, where

g1ðtÞ ¼ λ21ðλ2�2λ1Þ2ðλ2�λ1Þ3eðλ2 � λ1Þt ½�2λ1m33t2þb01tþc01�
þðλ2Þ2ðλ1�2λ2Þ2ðλ1�λ2Þ3eðλ1 � λ2Þt ½�2λ2m44t2þb02tþc02� ð5:4Þ

Note that g1ðtÞ is a linear combination of the following T-systems:

feðλ2 � λ1Þt ; teðλ2 � λ1Þt ; t2eðλ2 � λ1Þt ; eðλ1 � λ2Þt ; teðλ1 � λ2Þt ; t2eðλ1 � λ2Þtg
and g1ðtÞ has at most 5 roots (see Appendix).
We now revisit d0ðξ; t; θÞ ¼ 0. Since t¼0 is a local minimum point for dðξ; t; θÞ and g1ðtÞ has at most 5 roots, then

d0ðξ; t; θÞ ¼ 0 has at most (5�1)þ2þ2þ3¼11 roots in ð0;1Þ excluding t¼0. Here 2, 2 and 3 represent the numbers of times
the derivatives are taken in steps (1), (2) and (3) respectively. Since as t-0, dðξ; t; θÞ-0; t-1, dðξ; t; θÞ-c, where
c¼m11þm22þ2m1240. There are at most 6 support points (5(local maximum)þ1(counting in the right boundary as a
possible support point)) for the D-optimal design. □

This upper bound of 6 which we obtained here is much smaller than the upper bound provided by Carathe ́odory's
theorem, which is kðkþ1Þ=2þ1¼ 4ð4þ1Þ=2þ1¼ 11.

Finally we consider the general case of compartment models with 2n parameters:

y¼ ηðt; θÞþε¼ ∑
n

i ¼ 1
aið1�e� λi tÞþε ð5:5Þ

where tZ0, λi40, aiAR, θ¼ ða1; a2…an; λ1; λ2…λnÞ0.

Theorem 5.2. Under Model (5.5), the smallest upper bound of the number of support points for a locally D-optimal design can be
as few as ð3n2þ7nÞ=4 when ð3n2þ7n�4Þ=2 is even and ð3n2þ7n�2Þ=4 when ð3n2þ7n�4Þ=2 is odd for n¼ 1;2;3… .

Proof. Borrowing the same idea as in the proof of Theorem 5.1, we need to decide on the number of roots for d0ðξ; t; θÞ ¼ 0
for the case of general n. This time we have

d0ðξ; t; θÞ ¼ ∑
n

i ¼ 1
e�2λi t ½at2þbtþc�þ ∑

1r io jrn
∑e�ðλi þ λjÞt ½dt2þetþ f �þ ∑

n

i ¼ 1
e� λi t ½gtþh�; ð5:6Þ

where a, b, c, d, e, f, g and h are the coefficients. Numbers of roots for d0ðξ; t; θÞ ¼ 0 in ð0;1� are 5þ3 n�2ð Þ½ �
�1þ3ðn2Þþ2n¼ 3n2þ7n�4

	 

=2.

When ð3n2þ7n�4Þ=2 is even, the number of support points is ð3n2þ7nÞ=4.
When ð3n2þ7n�4Þ=2 is odd, the number of support points is ð3n2þ7n�2Þ=4. □

Both the upper bounds ð3n2þ7nÞ=4 and ð3n2þ7n�2Þ=4 are smaller than those from Carathe ́odory's theorem and the
differences are of quadratic order.

6. Locally D-optimal designs and D-efficiency for parameter misspecifications

Based on the initial guess of the unknown parameters, we can run the algorithm proposed in Yang et al. (2013) to
obtain the locally D-optimal design ξ evaluated at this guess value. To speed up the search, we also utilize the results in
Sections 3–5 to set up the initial design points. The optimality results have been verified by the general equivalence
theorem.
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The D-efficiency of design ξ1 relative to design ξ2, according to Hedayat et al. (1997), is given by the following index:

eff D ξ1; ξ2ð Þ ¼ jIðξ1; θÞj
jIðξ2; θÞj

� �1=k

: ð6:1Þ

The efficiency index (6.1) is a tool to check if the design is robust to minor and major parameter misspecifications.

6.1. Klimpel's flotation recovery model

A D-optimal design has 2 support points with equal weights and the right boundary point is always a support point.
Table 6 shows the D-efficiency by varying b with a¼ 89% for the design space of ð0;100� (the true value of b is assumed to
be 0.1).

6.2. 2-Parameter chemical kinetic model

Table 7 shows the D-efficiency by varying β40 with θ¼ 0:15 (the true value of β is assumed to be 1.5) in the design space
of ð0; β=θÞ. It is clear that the loss in efficiency is substantial if β41:5. If the initial guess for β is 2.0, then the efficiency has
fallen to 40%. However, the loss in efficiency is even worse if βo1:5. The efficiency for βo0 in the design space of ð0;400Þ in
Table 7
D-efficiency when β40 deviates from the true value for θ¼ 0:15.

β Locally D-optimal design points D-efficiency (%)

1.3 tn1 ¼ 2:52; tn2 ¼ 5:00 28.64
1.5 tn1 ¼ 4:25; tn2 ¼ 8:92 100
1.8 t1 ¼ 4:25; tn2 ¼ 9:81 57.88
2.0 tn1 ¼ 4:25; tn2 ¼ 10:29 43.18
2.5 tn1 ¼ 4:25; tn2 ¼ 11:21 24.07
3.0 tn1 ¼ 4:25; tn2 ¼ 11:88 15.34
3.5 tn1 ¼ 4:24; tn2 ¼ 12:37 10.63
4.0 tn1 ¼ 4:24; tn2 ¼ 12:75 7.80

Table 8
D-efficiency when βo0 deviates from the true value for θ¼ 0:15.

β Locally D-optimal design points D-efficiency (%)

�0.15 tn1 ¼ 3:01; tn2 ¼ 349:91 82.38
�0.2 tn1 ¼ 3:40; tn2 ¼ 279:91 87.74
�0.25 tn1 ¼ 3:61; tn2 ¼ 199:91 93.22
�0.3 tn1 ¼ 3:71; tn2 ¼ 149:91 96.77
�0.5 tn1 ¼ 4:11; tn2 ¼ 86:41 100
�0.8 tn1 ¼ 4:11; tn2 ¼ 45:41 95.11
�1.0 tn1 ¼ 4:14; tn2 ¼ 36:75 91.05
�1.5 tn1 ¼ 4:17; tn2 ¼ 27:73 83.58
�2.0 tn1 ¼ 4:21; t2 ¼ 24:11 78.88
�3.5 tn1 ¼ 4:21; tn2 ¼ 20:11 72.14
�4.0 tn1 ¼ 4:21; tn2 ¼ 19:51 70.93

Table 9
D-efficiency when λ1 deviates from the true value for fa1 ¼ 0:1; a2 ¼ 3:5; λ2 ¼ 4:0g.

λ1 Locally D-optimal design points D-efficiency (%)

0.2 t1 ¼ 0:23; tn2 ¼ 1:04; tn3 ¼ 4:34; tn4 ¼ 10 70.19
0.4 t1 ¼ 0:22; tn2 ¼ 0:93; tn3 ¼ 3:33; tn4 ¼ 10 88.79
0.6 t1 ¼ 0:21; tn2 ¼ 0:85; tn3 ¼ 2:68; tn4 ¼ 10 97.82
0.8 t1 ¼ 0:2; tn2 ¼ 0:78; tn3 ¼ 2:27; tn4 ¼ 10 100
1.0 t1 ¼ 0:19; tn2 ¼ 0:73; tn3 ¼ 2:01; tn4 ¼ 10 98.88
1.5 tn1 ¼ 0:17; tn2 ¼ 0:63; tn3 ¼ 1:60; tn4 ¼ 10 90.84
1.8 t1 ¼ 0:16; tn2 ¼ 0:55; tn3 ¼ 1:42; tn4 ¼ 10 83.28
2.0 tn1 ¼ 0:16; tn2 ¼ 0:56; tn3 ¼ 1:38; tn4 ¼ 10 82.19



Table 10
D-efficiency when λ1 deviates from the true value for fa1 ¼ 0:1; λ2 ¼ 4:0; a2 ¼ 3:5; a3 ¼ 0:9; λ3 ¼ 1:7g.

λ1 Locally D-optimal design points D-efficiency (%)

0.1 tn1 ¼ 0:17; tn2 ¼ 0:61; tn3 ¼ 1:41; tn4 ¼ 2:96; tn5 ¼ 6:34; tn6 ¼ 10 87.95
0.2 tn1 ¼ 0:15; tn2 ¼ 0:55; tn3 ¼ 1:37; tn4 ¼ 2:78; tn5 ¼ 5:93; tn6 ¼ 10 93.97
0.3 tn1 ¼ 0:15; tn2 ¼ 0:53; tn3 ¼ 1:27; tn4 ¼ 2:64; tn5 ¼ 5:56; tn6 ¼ 10 97.76
0.5 tn1 ¼ 0:15; tn2 ¼ 0:53; tn3 ¼ 1:24; tn4 ¼ 2:51; tn5 ¼ 4:97; tn6 ¼ 10 100
0.8 tn1 ¼ 0:50; tn2 ¼ 0:51; tn3 ¼ 1:16; tn4 ¼ 2:28; tn5 ¼ 4:27; tn6 ¼ 10 97.56
1.0 tn1 ¼ 0:50; tn2 ¼ 0:50; tn3 ¼ 1:11; tn4 ¼ 2:14; tn5 ¼ 3:94; tn6 ¼ 10 93.91
1.5 tn1 ¼ 0:13; tn2 ¼ 0:49; tn3 ¼ 1:01; tn4 ¼ 1:92; tn5 ¼ 3:40; tn6 ¼ 10 83.95
2.0 tn1 ¼ 0:12; tn2 ¼ 0:43; tn3 ¼ 0:94; tn4 ¼ 1:75; tn5 ¼ 3:07; tn6 ¼ 10 75.10
2.5 tn1 ¼ 0:11; tn2 ¼ 0:38; tn3 ¼ 0:90; tn4 ¼ 1:62; tn5 ¼ 2:84; tn6 ¼ 10 67.16
3.0 tn1 ¼ 0:11; tn2 ¼ 0:38; tn3 ¼ 0:82; tn4 ¼ 1:53; tn5 ¼ 2:67; tn6 ¼ 10 60.91

Table 11
D-efficiency when λ1 and/or λ2 deviates from the true value for fa1 ¼ 0:1; a2 ¼ 3:5g.

λ2 λ1 (%)

0.2 0.6 0.8 1.2 1.6

2.0 42.19 72.48 80.88 88.03 92.45
3.0 60.42 90.65 96.55 98.53 98.63
4.0 70.19 97.79 100 98.86 94.97
5.0 73.86 98.17 98.00 94.77 89.99
6.0 74.42 96.10 93.70 89.13 84.75
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Table 8 is much better than that of β40 since with the same magnitude of changes, we still have about 91% efficiency
(assuming β¼ �0:5 is the true value).
6.3. 2n-Parameter compartment models

For the 4-parameter compartment model, the investigation is done only for nonlinear parameters since the design does
not depend on “linear” parameters.

Table 9 shows the performance of the D-efficiency in the design space of ð0;10Þ by varying the initial guess value of λ1
while fixing the other 3 parameter values (assuming the true value of λ1 is 0.8). It is obvious that the locally D-optimal
design for 4-parameter compartment model is very robust to the parameter misspecification which may happen in both
directions. If the initial guess is 1.0, we still have 99% efficiency, which is very high.

For the 6-parameter compartment model, the locally D-optimal design is supported on six points. The right boundary
point is always a support point, which is similar to the 2-parameter and 4-parameter compartment models. Table 10 shows
the performance of the D-efficiency in the design space of ð0;10Þ assuming the true value of λ1 is 0.5. The locally D-optimal
design for 6-parameter compartment model is also robust to the parameter misspecifications in both directions.

For 4-parameter compartment model, we show how the D-efficiency changes when λ1 and/or λ2 change in Table 11
assuming λ1 ¼ 0:8 and λ2 ¼ 4:0 is the true value.
7. Real examples in the mining industry

7.1. Local designs

We present two examples with real-life application in the mineral industry from Saleh (2010) and Yuan et al. (1996).
In Saleh (2010), seven models (six flotation models and a 2n-parameter compartment model) were discussed. The iron ore
sample was used to evaluate the fitting of six flotation models to experimental data. The optimal flotation model parameters
were determined by the criteria of minimization of the absolute sum of squares of the deviation at given time between
observed (experiment) and calculated recovery. In Yuan et al. (1996), six kinetic flotation models were tested for
applicability to batch flotation time-recovery profiles for a complex sulphide ore.

For both examples, assuming the estimated parameters as true value, the corresponding optimal design, A or D-optimal
was obtained through the simulation. The optimal design was compared with the design of the conducted experiment by
the efficiency index (6.1) to demonstrate if the optimal design is used, how much we can improve the estimation precision.
The results are shown in Tables 12 and 13.



Table 12
D- and A-efficiencies for Saleh (2010) paper.

Parameters a¼0.5221, b¼2.0522 Efficiency (%)

Design in Saleh (2010) tn1 ¼ 0:5; tn2 ¼ 1:0; tn3 ¼ 2:0; tn4 ¼ 4:0; tn5 ¼ 6:0; tn6 ¼ 8:0 81.50 (D-)
ωn

1 ¼ωn

2 ¼ωn

3 ¼ωn

4 ¼ωn
5 ¼ωn

6 ¼ 0:1667 56.22 (A-)

D-optimal design tn1 ¼ 0:8044; tn2 ¼ 8
ωn

1 ¼ 0:5; ωn

2 ¼ 0:5

A-optimal design tn1 ¼ 0:6173; tn2 ¼ 8
ωn

1 ¼ 0:6814; ωn

2 ¼ 0:3186

Table 13
D- and A-efficiencies for Yuan et al. (1996) paper.

Parameters a¼0.9581 b¼5.411 Efficiency (%)

Design in Yuan et al. (1996) tn1 ¼ 1; tn2 ¼ 2:5; tn3 ¼ 5:5 45.54 (D-)
ωn
1 ¼ωn

2 ¼ωn
2 ¼ 0:333 13.35 (A-)

D-optimal design tn1 ¼ 0:3174; tn2 ¼ 5:5
ωn

1 ¼ 0:5; ωn

2 ¼ 0:5

A-optimal design tn1 ¼ 0:2427; tn2 ¼ 5:5
ωn

1 ¼ 0:6841; ωn

2 ¼ 0:3159

Table 14
Two-stage D- and A-optimal designs for Saleh (2010) paper.

Parameters a¼0.5221, b¼2.0522

1st Stage design(existing design) tn1 ¼ 0:5; tn2 ¼ 1:0; tn3 ¼ 2:0; tn4 ¼ 4:0; tn5 ¼ 6:0; tn6 ¼ 8:0
ωn
1 ¼ωn

2 ¼ωn
3 ¼ωn

4 ¼ωn
5 ¼ωn

6 ¼ 0:1667

2nd Stage D-optimal design tn1 ¼ 0:7804; tn2 ¼ 8:0
ωn

1 ¼ 0:5225; ωn

2 ¼ 0:4775

2nd Stage A-optimal design tn1 ¼ 0:6173; tn2 ¼ 8:0
ωn

1 ¼ 0:7701; ωn

2 ¼ 0:2299

Table 15
Two-stage D- and A-optimal design for Yuan (1996) paper.

Parameters a¼0.9581, b¼5.411

1st Stage design(existing design) tn1 ¼ 1; tn2 ¼ 2:5; tn3 ¼ 5:5
ωn

1 ¼ωn

2 ¼ωn

3 ¼ 0:3333

2nd Stage D-optimal design tn1 ¼ 0:3097; tn2 ¼ 5:5
ωn

1 ¼ 0:5884; ωn

2 ¼ 0:4116

2nd Stage A-optimal design tn1 ¼ 0:2427; tn2 ¼ 5:5
ωn
1 ¼ 0:8028; ωn

2 ¼ 0:1972
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7.2. Adaptive designs

Locally optimal design approach is based on the “best guess” of the unknown parameters. How can we obtain most
reliable “best guess”? A natural way is to implement adaptive designs. An initial experiment is conducted to obtain the
working idea about the unknown parameters. The estimate at one stage can serve as the “best guess” on which the next
stage design can be based. At a second stage, the question then becomes how to select design ξ2 such that the total
information matrix Iξ1 ðθÞþrIξ2 ðθÞ is optimized under some pre-specified optimality criterion. Here r refers to the ratio of the
sample size of the second stage to that of the first stage. We implement two-stage adaptive D- and A-optimal designs for
the two real examples by adding 10 points to the given designs, where the first-stage designs are the designs used in the
experiment in the papers by Saleh (2010) and Yuan et al. (1996). The results are shown in Tables 14 and 15.



Fig. 1. Distribution of D- and A-efficiencies. (a) D-efficiency: Saleh (2010), (b) A-efficiency: Saleh (2010), (c) D-efficiency: Yuan et al. (1996), (d) A-efficiency:
Yuan et al. (1996).
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7.3. Simulation study

Clearly the derived adaptive designs depend on the estimated parameter values from the first stage design. This implies
that the adaptive designs are not uniquely determined since the estimated parameter values are random variables.
A simulation study is conducted to evaluate the performance of the derived adaptive designs. We use the designs in Saleh
(2010) and Yuan et al. (1996) as the first stage designs. We also use the estimated parameters in Saleh (2010) and Yuan et al.
(1996) as the true parameters values. The simulation study consists of three steps: (i) drawing a random variable from the
multivariable normal distribution based on the estimation from the first stage design; (ii) deriving the adaptive optimal
design based on the drawn parameter values; and (iii) evaluating the efficiency of the derived adaptive design using a local
optimal design as a benchmark. We repeated the process 1000 times and we obtained the distribution of efficiency.
The mean and the standard deviation of D- and A-efficiencies are reported respectively for both examples: they are 0.86
(0.08)and 0.54(0.02) for Saleh (2010); 0.88(0.07) and 0.38(0.01) for Yuan et al. (1996). The histograms of the efficiencies are
presented in Fig. 1.

Another interesting question is, what is the relative efficiency if we use the existing design in the paper at both the first
and the second stages compared to the situation that if we use the adaptive optimal design at the second stage? We found,
after running the similar simulation study, the relative D-efficiencies for Saleh and Yuan's paper are 0.78(0.17) and 0.35(0.10)
and the relative A-efficiencies are 0.30(0.07) and 0.14(0.01). Both examples show that using adaptive designs at the second
stage is better than using the existing designs at both stages.

8. Discussion

Searching for optimal designs is important and also complicated. Knowing the upper-bound of the number of support
points can greatly simplify the search process, numerically or analytically. We have a complete answer for Klimpel's flotation
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recovery model. However, we only have partial answer for 2-parameter chemical kinetic model as well as compartment
models. Extensive numerical studies suggest that optimal designs can be based on saturated designs. How to prove this
conclusion remains an open problem.

Optimal designs for compartment models are less sensitive, while both Klimpel's flotation recovery model and
2-parameter chemical kinetic model suffer significant efficiency loss when parameters are moderately deviated from their
true values. Bayesian or minimax optimal designs could be a remedy for this problem.

Adaptive designs are promising since with any existing design at the first stage and initial information about parameter
values, adaptive optimal designs can be derived for the second stage for certain optimality criterion. Our simulation also
shows that adaptive designs are comparable to local optimal designs in some cases. Given the first stage existing designs,
using adaptive designs at the second stage is also efficient than using the existing design at the second stage.
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Appendix
Lemma 1. The following two systems are ECT-systems:
(1)
 T1 ¼ f1; x; x2; x2 ln x; x2ðln xÞ2g is an ECT-system with W1ðu0;u1;…;ukÞðxÞ40.

(2)
 T2 ¼ f1; x; x2; x2 ln x; x ln xg is an ECT-system with W2ðu0;u1;…;ukÞðxÞ40.
Proof. We give a detailed proof for T1. Similar proof for T2 can be derived similarly. It can be shown that
W1ðu0ÞðxÞ ¼ 140,
W1ðu0;u1ÞðxÞ ¼ 140,

W1 u0;u1;u2ð Þ xð Þ ¼
1 0 0
x 1 0
x2 2x 2

�������
�������¼ 240;

W1 u0;u1;u2;u3ð Þ xð Þ ¼

1 0 0 0
x 1 0 0
x2 2x 2 0
x2 ln x 2x ln xþx 2 ln xþ3 2

x

����������

����������
¼ 4

x
40;

and

W1 u0;u1;u2;u3;u4ð Þ xð Þ

¼

1 0 0 0 0
x 1 0 0 0
x2 2x 2 0 0
x2 ln x 2x ln xþx 2 ln xþ3 2

x � 2
x2

x2ðln xÞ2 2xðln xÞ2þ2x ln x 2ðln xÞ2þ6 ln xþ2 4
x ln xþ6

x � 4
x2 ln x� 2

x2

�������������

�������������
¼ 16

x3
40:
Therefore, f1; x; x2; x2 ln x; x2ðln xÞ2g is an ECT-system, which is also a T-system. □

Lemma 2. g1ðtÞ defined in (5.4) is a linear combination of T-systems and has at most 5 roots.

Proof. Let g1ðtÞ ¼ a1t2eðλ2 � λ1Þtþb1teðλ2 � λ1Þtþc1eðλ2 � λ1Þtþa2t2eðλ1 � λ2Þtþb2teðλ1 � λ2Þtþc2eðλ1 � λ2Þt , which can be re-written as
g1ðtÞ ¼ ð1=eðλ2 � λ1ÞtÞ½e2ðλ2 � λ1Þtða1t2þb1tþc1Þþa2t2þb2tþc2�.
To find out the number of roots for g1ðtÞ ¼ 0, consider ~g2 ðtÞ ¼ ½e2ðλ2 � λ1Þtða1t2þb1tþc1Þþa2t2þb2tþc2� ¼ 0.
Since d3 ~g2 ðtÞ=dt3 ¼ e2ðλ2 � λ1Þtða01t2þb01tþc01Þ, has at most 2 roots, g1ðtÞ has at most 5 roots. Therefore, it is a T-system. □
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