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We develop general theory for finding locally optimal designs in a class
of single-covariate models under any differentiable optimality criterion. Yang
and Stufken [Ann. Statist. 40 (2012) 1665–1681] and Dette and Schorning
[Ann. Statist. 41 (2013) 1260–1267] gave complete class results for optimal
designs under such models. Based on their results, saturated optimal designs
exist; however, how to find such designs has not been addressed. We develop
tools to find saturated optimal designs, and also prove their uniqueness under
mild conditions.

1. Introduction. We consider the problem of finding locally optimal designs
for a class of single-covariate models under differentiable optimality criteria. In
order to avoid intricacies caused by the discreteness of the problem, we will work
with approximate designs (see Section 2). Because the information matrix usu-
ally depends on the unknown parameters, we consider locally optimal designs by
plugging in values for the parameters in the information matrix. This gives good
designs when prior knowledge of the parameters is available, and it also provides
a benchmark for evaluating other designs. For the sake of simplicity, we omit the
word locally hereafter.

We provide general theoretical results that help to find saturated optimal de-
signs for many of the models for which previous results, such as in Yang and
Stufken (2012) and Dette and Schorning (2013), have established so-called com-
plete class results. While efficient numerical algorithms, even without using the
complete class results, can be developed to approximate optimal designs, theory
provides unified results, both with respect to models and optimality criteria, and
offers insights that cannot be obtained from algorithms. In some instances the the-
ory enables us to find closed-form optimal designs; moreover, it can be used to
develop faster and better algorithms. For example, because of the theory we can
avoid having to discretize the design space. We also use the theory to develop
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uniqueness results under mild conditions, which cannot be obtained from an algo-
rithm approach.

Our work is based on the complete class results given in a series of papers, in-
cluding most recently Yang and Stufken (2012) and Dette and Schorning (2013).
Based on their results, optimal designs can be found in a small class of designs
called the complete class, and in many cases, this complete class only contains
designs with at most d design points, where d is the number of parameters. How-
ever, theory and tools to identify optimal designs for multiple optimality crite-
ria within the complete class have not been developed. So in Section 2, we will
present theorems to find optimal designs in these classes and prove their unique-
ness. Section 3 applies the theorems to a variety of different models including
polynomial regression models, nonlinear regression models and generalized linear
models. The computational benefits will be shown in Section 4. Finally, Section 5
gives a short discussion about limitations of the approach. The technical proofs
have been relegated to the Appendix.

2. Locally optimal design. The models under consideration include polyno-
mial regression models, nonlinear regression models and generalized linear mod-
els, with a univariate response y and a single covariate x which belongs to the de-
sign space [L,U ] (L or U could be −∞ or ∞, resp., with [L,U ] being half open
or open). The unknown parameter is a d × 1 vector denoted as θ = (θ1, . . . , θd)T .
To be specific, for polynomial regression models and nonlinear models θ is the
unknown parameter in the mean response η(x, θ) = E(y). We assume the variance
to be constant unless otherwise specified, and take its value to be 1 since it does
not affect the optimal design. For generalized linear models, θ is the unknown
parameter in the linear predictor η(x, θ) = h(E(y)), where h is the link function.

In approximate design context, a design ξ with at most q design points can be
written as ξ = {(xi,ωi)}qi=1, where xi ∈ [L,U ],ωi ≥ 0, i = 1, . . . , q , xi ’s and ωi’s
are the design points and corresponding design weights, and

∑q
i=1 ωi = 1. If the

weight of a certain design point is positive, then that design point is a support point
of the design, and the number of support points is the support size of the design.

Under the assumption of independent responses, the Fisher information matrix
for θ under design ξ can be written as n

∑q
i=1 ωiMxi

(θ), where n is the total sam-
ple size and Mxi

(θ) is the information matrix of a single observation at xi . Since n

is only a multiplicative factor, we prefer using the normalized information matrix,
which is Mξ (θ) = ∑q

i=1 ωiMxi
(θ).

An optimal design is a design that maximizes the Fisher information matrix
Mξ (θ) under a certain criterion �. In this paper, we focus on a general class of
differentiable optimality criteria. Specifically, let NND(d) be the set of all d × d

nonnegative definite matrices, PD(d) be the set of all d × d positive definite matri-
ces, and � be any function defined on NND(d) that satisfies Assumption A below
[see Pukelsheim (1993), page 115].
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ASSUMPTION A. Suppose the optimality criterion � is a nonnegative, non-
constant function defined on NND(d) such that:

(1) it is concave, that is, �(αM1 + (1 − α)M2) ≥ α�(M1) + (1 − α)�(M2),
where α ∈ (0,1),M1,M2 ∈ NND(d);

(2) it is isotonic, that is, �(M1) ≥ �(M2) if M1 ≥ M2 under the Loewner
ordering, M1,M2 ∈ NND(d);

(3) it is smooth on PD(d). By smooth, we mean the function is differentiable
and the first-order partial derivatives are continuous [for matrix differentiation,
� is to be interpreted as a function of the d(d + 1)/2-dimensional vector of ele-
ments in the upper triangle of M].

A design ξ∗ is �-optimal if it maximizes �(Mξ (θ)) with respect to ξ .
This class of optimality criteria is very broad and includes, for example, the

well-known �p-optimality criteria with −∞ < p ≤ 1, which are defined as
follows. Suppose we are interested in estimating a smooth function of θ , say
g(θ) :Rd → R

v , where v ≤ d and K(θ) = (∂g(θ)/∂θ)T has full column rank v.
It can be estimated as long as the columns of K(θ) are contained in the range
of Mξ (θ). The information matrix for g(θ) under design ξ is then defined as
Iξ (θ) = (K(θ)T Mξ (θ)−K(θ))−1, where Mξ (θ)− is a generalized inverse if Mξ (θ)

is singular. Then a �p-optimal design for g(θ) is defined to maximize

�
(
Mξ (θ)

) = �p

(
Iξ (θ)

) =
(

1

v
trace

(
Ip
ξ (θ)

))1/p

, p ∈ (−∞,1].

However, E-optimality where g(θ) = θ and p = −∞, is not included here since
generally it does not satisfy the smoothness condition on PD(d); a short discussion
about this can be found in Section 5. In addition to the �p-optimality criteria, our
general �-optimality criteria also include compound optimality criteria, criteria
for evaluating a mixture of information matrices obtained from nested models [see
Pukelsheim (1993), Chapter 11] and so on.

2.1. Preliminary results. While finding optimal designs is an optimization
problem, the dimensionality of the optimization problem is unknown since the
number of design points, q , is unknown. However, it has been observed in the
literature that optimal designs are often saturated designs. This phenomenon was
first discovered in de la Garza (1954), and was generalized to a class of models in
Yang and Stufken (2009, 2012), Yang (2010) as well as in Dette and Melas (2011)
and Dette and Schorning (2013), where the latter two papers provided a different
perspective on this phenomenon using Chebyshev systems. Based on these results,
optimal designs can be found in a small complete class of designs, denoted as 	,
and in many cases 	 only consists of designs with at most d design points. Here,
we briefly introduce a fundamental theorem from Yang and Stufken (2012) for our
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later use. Using the techniques there, we decompose the Fisher information matrix
in the following way (an example is given at the end of Section 2.1):

Mξ (θ) = P(θ)Cξ (θ)P(θ)T , Cξ (θ) =
( q∑

i=1

ωiC(θ, ci)

)
,(2.1)

where C(θ , c) is a d × d symmetric matrix,

C(θ, c) =

⎛
⎜⎜⎜⎜⎝


11(θ, c)


21(θ, c) 
22(θ , c)
...

...
. . .


d1(θ , c) 
d2(θ , c) · · · 
dd(θ , c)

⎞
⎟⎟⎟⎟⎠ ,

P(θ) is a d × d nonsingular matrix that only depends on θ , and c ∈ [A,B] is a
smooth monotonic transformation of x that depends on θ . For the sake of simplic-
ity, we drop θ from the notation of matrix C(θ, c) and its elements hereafter [in
fact, in many cases a nice decomposition can be found so that C(θ , c) only depends
on θ through c, and θ becomes redundant in the notation].

For some d1, 1 ≤ d1 < d , define C22(c) as the lower d1 ×d1 principal submatrix
of C(c), that is,

C22(c) =
⎛
⎜⎝


d−d1+1,d−d1+1(c) · · · 
d−d1+1,d(c)

...
. . .

...


d,d−d1+1(c) · · · 
dd(c)

⎞
⎟⎠ .

Choose a maximal set of linearly independent nonconstant functions from the first
d − d1 columns of the matrix C(c), let the number of functions in this set be k − 1,
and rename them as 
�(c), � = 1, . . . , k − 1. Let 
k(c) = C22(c), and define the
functions f�,t (c), 1 ≤ t ≤ � ≤ k, to be
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1,1 = 
 ′
1

f2,1 = 
 ′
2 f2,2 =

(
f2,1

f1,1

)′

f3,1 = 
 ′
3 f3,2 =

(
f3,1

f1,1

)′
f3,3 =

(
f3,2

f2,2

)′

f4,1 = 
 ′
4 f4,2 =

(
f4,1

f1,1

)′
f4,3 =

(
f4,2

f2,2

)′
f4,4 =

(
f4,3

f3,3

)′

...
...

...
...

. . .

fk,1 = 
 ′
k fk,2 =

(
fk,1

f1,1

)′
fk,3 =

(
fk,2

f2,2

)′
fk,4 =

(
fk,3
f3,3

)′
· · · fk,k =

(
fk,k−1

fk−1,k−1

)′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the entries in the last row are matrices, and the derivatives of matri-
ces are element-wise derivatives (assuming all derivatives exist). Define matrix
F(c) = ∏k

�=1 f�,�(c). Then the following theorem due to Yang and Stufken (2012)
is available [see also Dette and Schorning (2013), Theorem 3.1].
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THEOREM 2.1 [Yang and Stufken (2012)]. For a regression model with a
single covariate, suppose that either F(c) or −F(c) is positive definite for all
c ∈ [A,B]. Then the following results hold:

(a) If k = 2m − 1 is odd and F(c) < 0, then designs with at most m design
points, including point A, form a complete class 	.

(b) If k = 2m − 1 is odd and F(c) > 0, then designs with at most m design
points, including point B , form a complete class 	.

(c) If k = 2m is even and F(c) < 0, then designs with at most m design points,
form a complete class 	.

(d) If k = 2m − 2 is even and F(c) > 0, then designs with at most m design
points, including both A and B , form a complete class 	.

It is helpful to sketch how Theorem 2.1 is proved. For some carefully cho-
sen d1 (see example below) where one of the conditions in Theorem 2.1 holds, it
can be proved that for any design ξ /∈ 	, we can find a design ξ̃ ∈ 	 such that
Cξ̃ (θ) ≥ Cξ (θ) under the Loewner ordering, hence Mξ̃ (θ) ≥ Mξ (θ). To be spe-
cific, Cξ̃ (θ) − Cξ (θ) has a positive definite lower d1 × d1 principal submatrix, and
is 0 everywhere else. So the search for optimal designs can be restricted within 	.

Theorem 2.1 also applies to generalized linear models. Besides, while it is stated
in terms of the “transformed design point” c, the result can be easily translated back
into x using the relationship between them, and we will state results in x unless
otherwise specified.

In Theorem 2.1, there are four different types of complete classes, the difference
being whether one or both of the endpoints are fixed design points (note however
a fixed design point can have weight 0 so that it need not be a support point). To
make it easier to distinguish, let fix(	) denote the set of fixed design points for the
designs in the complete class 	. For example, fix(	) = ∅ and {L,U} refers to the
complete classes in Theorem 2.1(c) and (d), respectively.

Applications of Theorem 2.1 can be found in Yang and Stufken (2009, 2012)
and Yang (2010). Obviously, m ≥ d , however, in many applications we actually
find m = d . Take the LINEXP model from Yang and Stufken (2012) as an example.

The LINEXP model is used to characterize tumor growth delay and regrowth.
The natural logarithm of tumor volume is modeled using a nonlinear regression
model with mean

η(x, θ) = θ1 + θ2e
θ3x + θ4x,(2.2)

where x ∈ [L,U ] is the time, θ1 + θ2 is the logarithm of initial tumor volume,
θ3 < 0 is the rate at which killed cells are eliminated, θ4 > 0 is the final growth
rate.
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The information matrix for θ can be written in the form of (2.1) with

P(θ) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 θ2/θ3

0 0 1/θ3 0

⎞
⎟⎟⎟⎠ , C(c) =

⎛
⎜⎜⎜⎝

1
ec e2c

c cec c2

cec ce2c c2ec c2e2c

⎞
⎟⎟⎟⎠ ,

where c = θ3x ∈ [A,B] = [θ3U,θ3L]. Let d1 = 2, C22(c) be the lower 2 × 2
principal submatrix of C(c), and 
1(c) = c,
2(c) = ec,
3(c) = cec,
4(c) =
e2c,
5(c) = ce2c be the set of linearly independent nonconstant functions from
the first two columns of C(c). Then k = 6, f1,1 = 1, f2,2 = ec, f3,3 = 1, f4,4 =
4ec, f5,5 = 1, and

f6,6(c) =
(

2e−2c e−c/2
e−c/2 2

)
, F(c) =

6∏
�=1

f�,�(c) =
(

8 2ec

2ec 8e2c

)
.

Because F(c) > 0, Theorem 2.1(d) can be applied with m = 4 = d , and 	 consists
of designs with at most four design points including both endpoints, thus fix(	) =
{L,U}.

2.2. Identifying the optimal design. If one of the cases in Theorem 2.1 holds,
an optimal design exists of the form ξ = {(xi,ωi)}mi=1, where xi ’s are strictly in-
creasing, with x1 or xm possibly fixed to be L or U , respectively; ωi’s are nonnega-
tive, and ω1 = 1−∑m

i=2 ωi . Let Z be the vector of unknown design points (i.e., ex-
clude x1 or xm if fixed to be the endpoint) and m−1 unknown weights ω2, . . . ,ωm.
For example, for the LINEXP model in (2.2), Z = (x2, x3,ω2,ω3,ω4)

T since
m = 4 and x1 = L,x4 = U . Thus we can use Z to represent the design ξ . Now
the objective function �(Mξ (θ)) is a function of Z, denoted as �̃(Z), and it is
smooth by the smoothness of �. To find an optimal design, we need to maximize
�̃(Z) with respect to Z. The simplest way is to find the critical points, specifically,
the feasible critical points, as defined below.

DEFINITION 2.1. A critical point of �̃(Z), Zc, is a feasible critical point if all
the design points in Zc are within [L,U ] and all m − 1 weights are positive with
summation less than 1.

With Definition 2.1, a feasible critical point gives a design with m support
points. Moreover, Theorem 2.2 states the conditions such that a feasible critical
point gives a globally optimal design.

THEOREM 2.2. Assume one of the cases in Theorem 2.1 holds, then for any
feasible critical point of �̃(Z), its corresponding design is a �-optimal design.
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PROOF. See the Appendix. �

Theorem 2.2 gives an implicit solution of an optimal design if there exists a
feasible critical point. Such a point can be given explicitly in special situations,
but not in general due to the complexity of the objective function. Nevertheless,
we have an implicit solution and it can be easily solved using Newton’s algorithm.
However, we need to guarantee the existence of a feasible critical point in the first
place. Theorem 2.3 gives some sufficient conditions that a feasible critical point
exists.

THEOREM 2.3. Suppose one of the cases in Theorem 2.1 holds and any �-
optimal design has at least m support points. Further assume one of the following
four conditions holds:

(a) fix(	) = {L}, and the information matrix MU(θ) is 0;
(b) fix(	) = {U}, and ML(θ) = 0;
(c) fix(	) =∅, and MU(θ) = ML(θ) = 0;
(d) fix(	) = {L,U}.

Then a feasible critical point of �̃(Z) must exist, and by Theorem 2.2, any such
point gives a �-optimal design.

PROOF. Let ξ∗ ∈ 	 be a �-optimal design, then ξ∗ has at least m support
points. By Theorem 2.1, designs in the complete class have at most m support
points, hence ξ∗ has exactly m support points. Let Z∗ be the vector correspond-
ing to ξ∗ according to the definition in the beginning of Section 2.2. For each of
conditions (a)∼(d), we know the design points in Z∗ do not include any of the
endpoints (recall the fixed design points are excluded in Z∗), hence they all belong
to the open interval (L,U). The weights in Z∗ are all positive, hence all belong to
the open interval (0,1), so Z∗ is not on the boundary and must be a critical point
of �̃(Z). This proves the existence. �

The condition in Theorem 2.3 that every �-optimal design has at least m support
points is met with m = d for many models and optimality criteria. For example,
when K(θ) is a nonsingular matrix, any �-optimal design has at least d support
points for commonly used optimality criteria. On the other hand, as we have stated,
for many models, the complete class given by Theorem 2.1 only consists of designs
with at most d support points. The condition (d) is found to be satisfied for several
models, as we will see in Section 3. For condition (a), usually MU(θ) = 0 only
when U = ∞, so the condition fails if we are interested in a finite design region,
and so do conditions (b) and (c). This issue will be addressed later in Theorem 2.6.

Useful results can be obtained by applying Theorem 2.3 to the most commonly
used �p-optimality criteria. In particular, we are interested in �p-optimal designs
for θ or aT θ , where a = (a1, . . . , ad)T is a d × 1 vector such that aT θ is only
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estimable with at least d support points. Adopting the notation in Kiefer and Wol-
fowitz (1965), define

A∗ = {
a|aT θ is only estimable with at least d support points

}
.

Now Corollary 2.4 gives applications of Theorem 2.3 to �p-optimal designs.

COROLLARY 2.4. Suppose that one of the cases in Theorem 2.1 holds with
m = d , and one of the four conditions in Theorem 2.3 is met. Consider �p-optimal
design for g(θ) where g(θ) satisfies either case (i) or (ii) below:

(i) g(θ) = θ or a reparameterization of θ ;
(ii) g(θ) = aT θ ,a ∈ A∗.

Then a feasible critical point of �̃(Z) exists, and any such point gives a �p-optimal
design for g(θ).

REMARK 2.1. In Corollary 2.4(i), a special case of a reparameterization is
g(θ) = Wθ , where W is a diagonal matrix with positive diagonal elements. This
makes cov(g(θ̂)) a rescaled version of cov(θ̂), and it makes sense when var(θ̂i)’s
are of different orders of magnitude. For example, in Dette (1997), the author
proposed “standardized” optimality criteria, where the matrix W has diagonal

elements Wii =
√

1/(M−1
ξ∗
i

)ii, ξ∗
i is the c-optimal design for estimating θi alone,

i = 1, . . . , d . Under the conditions of Corollary 2.4(i), finding such optimal de-
signs is easy after we find ξ∗

i ’s.

REMARK 2.2. Corollary 2.4(ii) considers c-optimality. When a ∈ A∗, the c-
optimal design is supported at the full set of Chebyshev points in many cases [see
Studden (1968)], but our method gives another way of finding c-optimal designs.
When a /∈ A∗, sometimes a feasible critical point still exists, and it still gives an op-
timal design. However, if there is no such critical point, then the c-optimal design
must be supported at fewer points, which may not be the Chebyshev points, and
this problem becomes harder. Nevertheless, we can approximate such c-optimal
designs. Suppose a1 
= 0, consider gε(θ) = (aT θ , εθ2, . . . , εθd)T , ε > 0. A �p-
optimal design for gε(θ) can be found easily by Corollary 2.4(i). Let ε → 0, it
can be shown that these �p-optimal designs will eventually converge to the c-
optimal design for aT θ (i.e., the efficiencies of these �p-optimal designs under
c-optimality will converge to 1), for any p ≤ −1. Some examples are provided in
Section 3.2.
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To verify the condition a ∈ A∗, let f(x, θ) = (f1(x, θ), . . . , fd(x, θ)) =
∂η(x, θ)/∂θ . The condition a ∈ A∗ is equivalent to∣∣∣∣∣∣∣∣∣∣

f1(x1, θ) · · · f1(xd−1, θ) a1

f2(x1, θ) · · · f2(xd−1, θ) a2
...

. . .
...

...

fd(x1, θ) · · · fd(xd−1, θ) ad

∣∣∣∣∣∣∣∣∣∣

= 0(2.3)

for all L ≤ x1 < x2 < · · · < xd−1 ≤ U (this is also true for generalized linear mod-
els). In particular, if we are interested in estimating the individual parameter θi ,
that is, a = ei where ei = (0, . . . ,0,1,0, . . . ,0)T denotes the ith unit vector, then
ei ∈ A∗ is equivalent to f−i = {fj |j ∈ {1, . . . , d} \ {i}} being a Chebyshev system
[see Karlin and Studden (1966)], which is easier to verify. Here, the traditional def-
inition of a Chebyshev system is used, which only requires the determinant in (2.3)
to be nonzero instead of positive.

Next, the uniqueness of optimal designs can also be established under mild
conditions. We first introduce some additional terminology. A criterion � is called
strictly isotonic on PD(d) if

�(M1) > �(M2) for any M1 ≥ M2 > 0 and M1 
= M2.

It is called strictly concave on PD(d) if

�
(
αM1 + (1 − α)M2

)
> α�(M1) + (1 − α)�(M2),

for any α ∈ (0,1),M1 > 0,M2 ≥ 0 and M2 
∝ M1.

For example, �p-optimality criteria are both strictly isotonic and strictly concave
on PD(d) when g(θ) is θ or a reparameterization of θ and p ∈ (−∞,1) [see
Pukelsheim (1993), page 151]. Moreover, a compound optimality criterion which
involves a strictly isotonic and strictly concave criterion is also strictly isotonic and
strictly concave. For these criteria, we have Theorem 2.5.

THEOREM 2.5. Assume that one of the cases in Theorem 2.1 holds. If � is
both strictly isotonic and strictly concave on PD(d) and there exists a �-optimal
design ξ∗ which has at least d support points, then ξ∗ is the unique �-optimal
design. In particular, the �p-optimal design under Corollary 2.4(i) is unique for
p ∈ (−∞,1).

PROOF. See the Appendix. �

REMARK 2.3. The c-optimality criterion with g(θ) = aT θ maybe neither
strictly concave nor strictly isotonic on PD(d). However, if a ∈ A∗ and f(x, θ)

is a Chebyshev system, the uniqueness is proved in Studden (1968).
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The uniqueness is not only of interest in itself, but also has implications for
finding optimal designs. As we have stated earlier, conditions (a), (b) and (c) in
Theorem 2.3 may only hold on a large design region, call it the full design region.
Let ξ∗∗ be a �-optimal design on the full design region with smallest support point
x∗∗

min and largest support point x∗∗
max. Then for a smaller design region [L,U ], under

the same optimality criterion �, we have Theorem 2.6.

THEOREM 2.6. Assume that one of the cases in Theorem 2.1 holds for the full
design region, and both �-optimal designs on [L,U ] and the full design region
are unique with support size m, then we have:

(a) under fix(	) = {L}, if U < x∗∗
max, then the �-optimal design on [L,U ] has

both L and U as support points; otherwise, the optimal design is ξ∗∗;
(b) under fix(	) = {U}, if x∗∗

min < L, then the �-optimal design on [L,U ] has
both L and U as support points; otherwise, the optimal design is ξ∗∗;

(c) under fix(	) = ∅, if x∗∗
min < L or U < x∗∗

max, then the �-optimal design on
[L,U ] has at least one endpoint as a support point; otherwise, the optimal design
is ξ∗∗.

PROOF. We only give the proof for case (a), others being similar. When U ≥
x∗∗

max, the design ξ∗∗ is still a feasible design on the region [L,U ], and it is optimal
because it is optimal on the full design region. When U < x∗∗

max, ξ∗∗ is no longer
a feasible design, let ξ∗ be the optimal design on [L,U ]. A complete class of the
same type exists for design region [L,U ] because, for example, F(c) > 0 on the
full design region implies F(c) > 0 on the smaller design region. So x∗

1 = L. If
the largest support point x∗

m < U , then Z∗ = (x∗
2 , . . . , x∗

m,ω∗
2, . . . ,ω

∗
m)T must be a

critical point of �̃(Z). Now if we consider the optimal design problem on the full
design region again, Z∗ is a feasible critical point, and by Theorem 2.2, ξ∗ must
be an optimal design on the full design region. However, ξ∗ 
= ξ∗∗, this contradicts
the uniqueness assumption. �

3. Application. The theorems we have established can be used to find optimal
designs for many models. In Sections 3.1 through 3.3, we consider �p-optimal
designs for models with two, three and four or six parameters, respectively. In
Section 3.4, we consider polynomial regression models with arbitrary d parameters
under more general optimality criteria.

3.1. Models with two parameters. Yang and Stufken (2009) considered com-
plete class results for two-parameter models, including logistic/probit regression
model, Poisson regression model and Michaelis–Menten model. The theorems we
have established can be used to find the optimal designs. Take the Poisson regres-
sion model as an example (the applications to other models are similar). It has the
following form:

η(x, θ) = log
(
E(y)

) = θ1 + θ2x, x ∈ [L,U ].
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TABLE 1
A-optimal designs for Poisson regression model on [0,∞)

A-optimal

θ2 (x1, x2) (ω1,ω2)

−1 (0, 2.261) (0.444, 0.556)
−2 (0, 1.193) (0.320, 0.680)

Theorem 2.1(b) can be applied to this model, and a complete class consists of de-
signs with at most 2 design points including one boundary point [see Yang and
Stufken (2009), Theorem 4]. Specifically, when θ2 > 0, U is a fixed design point,
and M−∞(θ) = 0 [since Mx(θ) = eθ1+θ2x(1, x)T (1, x)]; when θ2 < 0, L is a fixed
design point, and M∞(θ) = 0. Thus, on any one-sided restricted region (−∞,U ]
(when θ2 > 0) or [L,∞) (when θ2 < 0), �p-optimal designs for θ can be found by
solving for the critical points, according to Corollary 2.4(i). For c-optimality, re-
call f(x, θ) = ∂η(x, θ)/∂θ = (1, x), thus f−2 = {1} is a Chebyshev system, which
means θ2 can only be estimated with at least d = 2 support points. Therefore, ac-
cording to Corollary 2.4(ii), an e2-optimal design (c-optimal design for θ2) can
also be found by solving for the critical points.

In particular, D- and e2-optimal designs can be found analytically through sym-
bolic computation software (e.g., by using the solve function in Matlab) and are
listed in (3.1) and (3.2). Note that they do not depend on θ1 since eθ1 is merely a
multiplicative factor in Mx(θ):

ξ∗
D =

{{
(U − 2/θ2,1/2), (U,1/2)

}
, θ2 > 0,{

(L − 2/θ2,1/2), (L,1/2)
}
, θ2 < 0,

(3.1)

ξ∗
e2

=
{{

(U − 2.557/θ2,0.782), (U,0.218)
}
, θ2 > 0,{

(L − 2.557/θ2,0.782), (L,0.218)
}
, θ2 < 0.

(3.2)

However, A-optimal designs do not have explicit forms. Nevertheless, the solu-
tions can be found easily using Newton’s algorithm. For the case of θ2 < 0, some
examples are listed in Table 1 (again the optimal designs do not depend on θ1).

In addition, the �p-optimal design for θ and e2-optimal design are unique,
due to Theorem 2.5. For finite design regions, Theorem 2.6 can be applied. For
example, the A-optimal design for θ = (1,−1)T on [0,U ] when U ≥ 2.261 is
{(0,0.444), (2.261,0.556)}; when U < 2.261, the optimal design is supported at
exactly two points 0 and U , and the weights can be determined easily.

3.2. Models with three parameters. Dette et al. (2008, 2010) considered op-
timal designs for the Emax and log-linear models. These models, often used to
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TABLE 2
A-optimal designs for the Emax model on [0,150]

θ2 θ3 (x1, x2, x3) (ω1,ω2,ω3)

7/15 15 (0, 12.50, 150) (0.250, 0.500, 0.250)
7/15 25 (0, 18.75, 150) (0.250, 0.500, 0.250)
10/15 25 (0, 18.75, 150) (0.250, 0.500, 0.250)

model dose-response curves, are nonlinear regression models with means

η(x, θ) =
{

θ1 + θ2x/(x + θ3), Emax,

θ1 + θ2 log(x + θ3), log-linear.

Here, x ∈ [L,U ] ⊆ (0,∞) is the dose range, θ2 > 0 and θ3 > 0. Theorem 2.1(d)
can be applied to both models, and a complete class consists of designs with at
most 3 design points including both endpoints [Yang (2010), Theorem 3]. Hence,
Corollary 2.4 is applicable on design space [L,U ]. In particular, D-optimal de-
signs can be computed explicitly using symbolic computation software, and are
listed in (3.3). They are consistent with the results in Dette et al. (2010):

ξ∗
D =

{{
(L,1/3),

(
x∗
E,1/3

)
, (U,1/3)

}
, Emax,{

(L,1/3),
(
x∗
l ,1/3

)
, (U,1/3)

}
, log-linear,

(3.3)

where

x∗
E = L(U + θ3) + U(L + θ3)

L + U + 2θ3
,

(3.4)

x∗
l = (L + θ3)(U + θ3)

U − L
log

(
U + θ3

L + θ3

)
− θ3.

For A-optimality, numerical solutions can be obtained easily by Newton’s algo-
rithm. Table 2 gives some examples for the Emax model using parameter settings
in Dette et al. (2008) (the optimal designs do not depend on θ1 since it is not in-
volved in the information matrix; and although it seems that the optimal weights
are constant, they do change gradually with θ2 and θ3).

For c-optimality, Dette et al. (2010) gave explicit solutions for EDp-optimal
designs, where an EDp-optimal design is a design that is optimal for estimating
the dose that achieves 100p% of the maximum effect in dose range [L,U ], 0 <

p < 1. In fact, EDp-optimality is equivalent to e3-optimality regardless of p, and
we can find the optimal designs using our method. First, we have

f(x, θ) =
{(

1, x/(x + θ3),−θ2x/(x + θ3)
2)

, Emax,(
1, log(x + θ3), θ2/(x + θ3)

)
, log-linear.

It is easy to prove for both the Emax and log-linear models that f−3 is a Cheby-
shev system, which means that θ3 is only estimable with at least d = 3 support
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points. So e3-optimal designs can be found by solving for the critical points, by
Corollary 2.4(ii). The solutions can be found explicitly using symbolic computa-
tion software and are listed in (3.5). They are consistent with the results in Dette
et al. (2010):

ξ∗
e3

= ξ∗
EDp

=
{{

(L,1/4),
(
x∗
E,1/2

)
, (U,1/4)

}
, Emax,{(

L,ω∗
l

)
,
(
x∗
l ,1/2

)
,
(
U,1/2 − ω∗

l

)}
, log-linear,

(3.5)

where x∗
E and x∗

l are the same as in (3.4), and

ω∗
l = log(x∗

l + θ3) − log(U + θ3)

2(log(L + θ3) − log(U + θ3))
.

Regarding f−2, it can be shown that it is always a Chebyshev system for the
log-linear model, and it is a Chebyshev system for the Emax model if θ3 /∈ (L,U).
In such cases, e2-optimal designs can be found according to Corollary 2.4(ii), and
the solutions can be derived analytically as shown in (3.6):

ξ∗
e2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
L,

1

4
− (U − L)θ3

8(θ2
3 − LU)

)
,

(
x∗
E,

1

2

)
,

(
U,

1

4
+ (U − L)θ3

8(θ2
3 − LU)

)}
,

Emax, θ3 /∈ (L,U),{(
L,

(U − x∗
l )(L + θ2)

2(U − L)(x∗
l + θ2)

)
,

(
x∗
l ,

1

2

)
,

(
U,

(x∗
l − L)(U + θ2)

2(U − L)(x∗
l + θ2)

)}
,

log-linear.

(3.6)

When θ3 ∈ (L,U), f−2 is no longer a Chebyshev system for the Emax model.
However, if |(U − L)θ3| < |2(θ2

3 − LU)|, the weights of ξ∗
e2

in (3.6) are still pos-
itive, and the design is still e2-optimal; otherwise, the optimal design is supported
at fewer than 3 points, which may not be the Chebyshev points. Nevertheless,
we can approach the optimal design using the method in Remark 2.2. To show
this, consider the setting where the dose range is [0,150], θ2 = 7/15 and θ3 = 25.
The exact e2-optimal design can be found to be ξ∗

e2
= {(θ2

3 /U,0.5), (U,0.5)} =
{(25/6,0.5), (150,0.5)} using Elfving’s method [Elfving (1952)]. Now let ε =
10−5,10−6,10−7; the �p-optimal designs for estimating gε(θ) = (εθ1, θ2, εθ3)

T

can be found by Corollary 2.4(i) and are used to approximate the e2-optimal de-
sign. Table 3 shows the errors and 1− efficiencies of the approximation for p = −1
and −3. As we can see, the error gets sufficiently small after a few iterations, es-
pecially when |p| is larger; however, due to singularity issues, the error cannot be
made arbitrary small.

3.3. Models with four or six parameters. Demidenko (2004) used a double
exponential model to characterize the regrowth of tumor after radiation. The natu-
ral logarithm of tumor volume can be modeled using a nonlinear regression model
with mean

η(x, θ) = θ1 + log
(
θ2e

θ3x + (1 − θ2)e
−θ4x

)
,
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TABLE 3
Approximating two point e2-optimal design using three point designs for the Emax model

p ε |x2 − 25
6 |/ 25

6 |ω1| |ω2 − 0.5| |ω3 − 0.5| 1 − eff

−1 10−5 10−2 4 · 10−3 4 · 10−3 2 · 10−4 6 · 10−4

10−6 10−3 4 · 10−4 4 · 10−4 2 · 10−5 6 · 10−5

10−7 10−4 4 · 10−5 4 · 10−5 2 · 10−6 6 · 10−6

−3 10−5 3 · 10−4 1 · 10−4 9 · 10−5 4 · 10−6 2 · 10−5

10−6 8 · 10−6 3 · 10−6 3 · 10−6 5 · 10−8 5 · 10−7

10−7 7 · 10−7 3 · 10−7 2 · 10−7 1 · 10−8 4 · 10−8

where 0 ≤ x ∈ [L,U ] is the time, θ1 is the logarithm of the initial tumor volume,
0 < θ2 < 1 is the proportional contribution of the first compartment, and θ3, θ4 > 0
are cell proliferation and death rates.

Demidenko (2006) used the LINEXP model to characterize tumor growth delay
and regrowth. The model was described in Section 2.1 and re-presented below:

η(x, θ) = θ1 + θ2e
θ3x + θ4x.

Li and Balakrishnan (2011) considered D- and c-optimal designs for these two
models, but our approach yields more general results. For both models, Theo-
rem 2.1(d) can be applied, and a complete class consists of designs with at most
four design points including both endpoints [see Yang and Stufken (2012)]. Thus,
Corollary 2.4 can again be applied on the design space [L,U ], and �p-optimal
designs for θ and certain c-optimal designs can be found by solving for the critical
points. In particular, f−3 and f−4 are Chebyshev systems under both models [see
Li and Balakrishnan (2011)], thus e3- and e4-optimal designs for both models can
be found by solving for the critical points.

There is no explicit solution for the optimal designs, but numerical solutions can
be easily found using Newton’s algorithm. Here, we give some A-optimal designs
for the LINEXP model in Table 4 (the optimal designs for the LINEXP model do
not depend on θ1 and θ4 since they are not involved in the information matrix). For
D- and c-optimality, our approach gives the same results as in Li and Balakrishnan
(2011).

Consider one more example. Dette, Melas and Wong (2006) studied D-optimal
designs for exponential regression models, which are nonlinear regression models
with mean

η(x, θ) =
S∑

s=1

θ2s−1e
−θ2sx, 0 ≤ x ∈ [L,U ],(3.7)

where θ2s−1 
= 0, s = 1, . . . , S,0 < θ2 < · · · < θ2S . When S = 2 and θ4/θ2 < 61.98
or S = 3,2θ4 = θ2 + θ6 and θ4/θ2 < 23.72, Theorem 2.1(b) can be applied, and a
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TABLE 4
A-optimal designs for the LINEXP model on [0,1]

θ2 θ3 (x1, x2, x3, x4) (ω1,ω2,ω3,ω4)

0.5 −1 (0, 0.220, 0.717, 1) (0.156, 0.324, 0.344, 0.176)
1 −1 (0, 0.220, 0.717, 1) (0.151, 0.319, 0.349, 0.181)
1 −2 (0, 0.195, 0.681, 1) (0.146, 0.315, 0.355, 0.184)

complete class consists of designs with at most 2S design points including the
lower endpoint L [see Yang and Stufken (2012), Theorems 3 and 4]. Moreover, it
is easy to see that the information matrix Mx goes to 0 when x approaches infinity,
thus Corollary 2.4 can be applied on any design region [L,∞). Table 5 gives some
A-optimal designs for S = 2.

For c-optimality, first we have

f(x, θ)

=
{(

e−θ2x,−θ1xe−θ2x, e−θ4x,−θ3xe−θ4x
)
, S = 2,(

e−θ2x,−θ1xe−θ2x, e−θ4x,−θ3xe−θ4x, e−θ6x,−θ5xe−θ6x
)
, S = 3.

Both are Chebyshev systems. In addition, we can show that f−2s, s = 1, . . . , S are
Chebyshev systems for S = 2 and S = 3, so the c-optimal designs for θ2s, s =
1, . . . , S on [L,∞) can be found by solving for the critical points. Table 5 gives
some e2-optimal designs for S = 2.

Moreover, the �p-optimal designs for θ and c-optimal design for θ2s ’s are
unique by Theorem 2.5. For a finite design region, Theorem 2.6 can be applied.
For example, the A-optimal design for θ = (1,1,1,2)T on [0,U ] when U ≥ 3.416
is the same as in Table 5; when U < 3.416, the optimal design is supported at 4
design points including both 0 and U .

3.4. Polynomial regression model with d parameters. Yang (2010) considered
the general (d − 1)th degree polynomial regression model Pd−1 with variance

TABLE 5
A- and e2-optimal designs for exponential regression model on [0,∞) when S = 2, θ1 = θ2 = 1

Criterion θ3 θ4 (x1, x2, x3, x4) (ω1,ω2,ω3,ω4)

A-optimality 1 2 (0,0.275,1.196,3.416) (0.078, 0.178, 0.251, 0.493)
1 4 (0,0.170,0.768,2.472) (0.118, 0.261, 0.287, 0.334)
3 4 (0,0.172,0.760,2.450) (0.083, 0.199, 0.296, 0.422)

e2-optimality 1 2 (0,0.273,1.197,3.425) (0.054, 0.124, 0.200, 0.623)
1 4 (0,0.168,0.769,2.492) (0.033, 0.082, 0.201, 0.683)
3 4 (0,0.168,0.769,2.492) (0.033, 0.082, 0.201, 0.683)
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σ 2/λ(x) and mean

η(x, θ) = θ1 +
d∑

i=2

θix
i−1.(3.8)

For different choices of the efficiency function λ(x), Theorem 2.1 gives the fol-
lowing complete class results [see Yang (2010), Theorem 9]:

(a) When (i) λ(x) = 1 − x, x ∈ [−1,1] or (ii) λ(x) = e−x, x ∈ [0,∞), a com-
plete class consists of designs with at most d design points including the left end-
point. Moreover, the information matrix MU(θ) = 0.

(b) When λ(x) = 1 + x, x ∈ [−1,1], a complete class consists of designs with
at most d design points including the right endpoint. Moreover, the information
matrix ML(θ) = 0.

(c) When (i) λ(x) = (1 − x)u+1(1 + x)v+1, x ∈ [−1,1], u + 1 > 0, v + 1 > 0
or (ii) λ(x) = xu+1e−x, x ∈ [0,∞), u + 1 > 0 or (iii) λ(x) = e−x2

, x ∈ (−∞,∞)

or (iv) λ(x) = (1 + x2)−t , x ∈ (−∞,∞), d ≤ t , a complete class consists of de-
signs with at most d design points. Moreover, the information matrices ML(θ) =
MU(θ) = 0.

(d) When λ(x) ≡ 1, x ∈ [L,U ], a complete class consists of designs with at
most d design points including both endpoints.

Corollary 2.4 can be applied to the above models on the respective (full) design
regions, thus �p-optimal designs for θ and c-optimal designs for θd can be found
by solving for the critical points. Furthermore, those designs are unique, so Theo-
rem 2.6 can be used when the design regions are small.

Finally, we apply our theorems to more general optimality criteria. Dette and
Studden (1995) considered optimal designs under nested polynomial regression
models. To be specific, suppose the degree of the polynomial regression model
is an unknown integer between 1 and d − 1. The D-optimal design ξ�

D under a
given model P�, 1 ≤ � ≤ d − 1, may not be efficient under another model with a
different degree. To take this uncertainty into consideration, the authors proposed
the following weighted optimality criteria �p′,β :

�p′,β(Mξ ) =
[

d−1∑
�=1

β�

(
eff�D(ξ)

)p′
]1/p′

,(3.9)

where p′ ∈ [−∞,1], β = {β1, . . . , βd−1} is a prior on the set {1, . . . , d − 1} with
βd−1 > 0,

eff�D(ξ) =
( det M�

ξ

det M�

ξ�
D

)1/(�+1)

, � = 1, . . . , d − 1,

M�
ξ is the information matrix of ξ under model P�, and eff�D(ξ) is the D-efficiency

of ξ under model P�.
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TABLE 6
�p,p′,β -optimal designs for polynomial regression models

p′ (x1, x2, x3, x4) (ω1,ω2,ω3,ω4) (eff1
A(ξ), eff2

A(ξ), eff3
A(ξ))

0 (−0.860, −0.346, 0.346, 0.860) (0.263, 0.237, 0.237, 0.263) (0.692, 0.745, 0.902)
−1 (−0.854, −0.343, 0.343, 0.854) (0.268, 0.232, 0.232, 0.268) (0.701, 0.753, 0.879)
−3 (−0.846, −0.339, 0.339, 0.846) (0.273, 0.227, 0.227, 0.273) (0.714, 0.759, 0.846)

Dette and Studden (1995) gave the solution of �p′,β -optimal design for λ(x) ≡
1, x ∈ [−1,1]. The solution is rather complicated, and it requires knowledge of
canonical moments. An alternative way is to use Theorem 2.3, and it can be applied
to more general settings.

First, the D-efficiency in the definition of �p′,β can be generalized to any �p-
efficiency, p ∈ (−∞,1] (e.g., A-efficiency when p = −1), and we denote the re-
sulting optimality criteria as �p,p′,β . Second, the efficiency function λ(x) can be
generalized to any function in cases (a)∼(d) in this subsection, where x belongs to
the respective (full) design regions.

Under this general setting, �p,p′,β always satisfies Assumption A about opti-
mality criteria in Section 2 [see Pukelsheim (1993), page 285]. Moreover, while
this optimality criterion is defined on a mixture of different models, these models
are nested within the largest model Pd−1, thus our complete class result for Pd−1
can be applied to �p,p′,β . Finally, to use Theorem 2.3, any �p,p′,β -optimal design
must have at least d support points. This requirement is reasonable since other-
wise the optimal design will not be able to estimate the model Pd−1, which may
be the true model. To meet the requirement, it is sufficient to restrict ourselves
to p,p′ ∈ (−∞,0], since any singular matrix will result in �p,p′,β to be 0. So
by Theorem 2.3, �p,p′,β -optimal designs for models in cases (a)∼(d) of this sub-
section can be found by solving for the critical points. Some examples are given
in Table 6 for the case λ(x) = 1 − x2, x ∈ [−1,1],p = −1 [i.e., for A-efficiency
in (3.9)], d = 4 and β a uniform prior.

In addition, �p,p′,β -optimality is strictly isotonic and strictly concave on PD(d)
since βd−1 > 0 and the �p-efficiency under model Pd−1 is strictly isotonic and
strictly concave on PD(d) for p ∈ (−∞,0]. Hence by Theorem 2.5, the optimal
designs are unique. However, for smaller design regions, the optimality criterion
�p,p′,β changes as the design region changes. For example, when p = 0, the de-
sign ξ�

D changes when the design region changes, which causes �p,p′,β to change.
So the optimal design on the full design region cannot be used to obtain the optimal
design on a smaller region as we did in Theorem 2.6.

4. Computational advantages. Although it is not the main motivation, our
method does provide computational advantages over other algorithms, as Newton’s
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TABLE 7
Computation time (seconds) for A- and D-optimal designs for the LINEXP model

A-optimal D-optimal

κ = 100 κ = 1000 κ = 10,000 κ = 100 κ = 1000 κ = 10,000

Newton’s 0.08 0.08 0.08 0.08 0.08 0.08
OWEA I 0.19 0.22 0.63 0.24 0.37 1.28
OWEA II 0.17 0.18 0.21 0.20 0.23 0.29

algorithm is well studied, easy to program and fast. For comparison, we choose the
optimal weight exchange algorithm (OWEA) proposed in Yang, Biedermann and
Tang (2013), which is among the most general and fastest algorithms.

OWEA algorithm starts with an initial design on a grid of the design space, then
iterates between optimizing the weights for the current set of support points and
adding a new grid point to the current support points, until the condition for opti-
mality in general equivalence theorem is satisfied. The computing time increases
as the grid size κ becomes larger. So to reduce the computing time, the authors pro-
posed a modified algorithm. The modified algorithm starts with a coarse grid and
finds the optimal design on the coarse grid. Based on that, the grid near the support
points of the optimal design is refined and a more accurate optimal design is found
on the finer grid. We refer to their original and modified algorithm as OWEA I
and OWEA II, respectively. All algorithms are coded using SAS IML and run on a
Dell Desktop (2.5 GHz and 4 Gb RAM). Comparisons are made for different grid
sizes, different models and under both A- and D-optimality criterion.

First, we consider the LINEXP model given in (2.2). The parameters are set to
be θ = (1,0.5,−1,1)T , and the design space is [0,1]. Three different grid sizes,
κ = 100,1000 and 10,000, are used for OWEA I and II; and for OWEA II, the
initial coarse grid sizes are chosen to be 10, 100 and 100, respectively. The com-
puting times are shown in Table 7. Note the grid size κ is irrelevant for the speed
of Newton’s algorithm.

From Table 7, we can see all three algorithms are very efficient in finding op-
timal designs. Newton’s algorithm is at least twice as fast as the other two algo-
rithms. The speed gain is more prominent when comparing to OWEA I, especially
when the grid size κ is large.

Second, we consider a polynomial regression model given in (3.8) with d = 6
and λ(x) = 1 − x2, x ∈ [−1,1]. It has more parameters than the previous example
so finding optimal designs takes longer. The results are shown in Table 8, with a
similar conclusion as in the previous example.

5. Discussion. In this paper, we present a general theory for finding saturated
optimal designs based on the complete class results in Yang and Stufken (2012) as
well as Dette and Schorning (2013). While we focus on locally optimal designs,
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TABLE 8
Computation time (seconds) for A- and D-optimal designs for polynomial regression model

A-optimal D-optimal

κ = 100 κ = 1000 κ = 10,000 κ = 100 κ = 1000 κ = 10,000

Newton’s 0.17 0.17 0.17 0.14 0.14 0.14
OWEA I 0.33 0.61 3.49 0.48 1.09 4.83
OWEA II 0.34 0.48 0.89 0.44 0.72 1.35

Theorem 2.2 also applies in a multistage design setting, and we have constructed
optimal two-stage designs for the Michaelis–Menten model using this approach.
However, unlike in the locally optimal design case, we cannot guarantee the ex-
istence of a feasible critical point in the multistage design context, so there is no
guarantee this approach always works in that case.

For E-optimality, as long as the smallest eigenvalue of the information matrix
Mξ∗

E
has multiplicity 1, where ξ∗

E is the E-optimal design, we have that �−∞ is
smooth in a neighborhood of Mξ∗

E
, and E-optimal designs can still be found by

solving for the critical points. For nonlinear models, we find the smallest eigen-
value of Mξ∗

E
often does have multiplicity 1, but we usually do not know this

ahead of time. On the other hand, we can approach E-optimal designs using �p-
optimal designs as |p| → ∞. We can show whenever |p| ≥ − logd/ log 0.95, the
�p-optimal design has at least 95% E-efficiency. This is not a tight bound; in
practice, we find a much smaller |p| is enough.

We now point out models that cannot be accommodated. First, this occurs when
the complete class given by Theorem 2.1 is not small enough. For example, in
Dette et al. (2010), D-optimal designs for a nonlinear model with mean η(x, θ) =
θ1 + θ2 exp(x/θ3), x ∈ [L,U ] are found to be 3-point designs with both endpoints,
whereas a complete class consists of designs with at most 3 design points including
only the upper endpoint as a fixed design point [Yang (2010), Theorem 3]. So the
D-optimal designs are actually on the boundary of the Z-space, hence no feasible
critical points can be found, and the approach fails.

Second, the method fails when the model contains multiple covariates. In gen-
eral, theoretical results are very hard to obtain for multi-covariate models, and
only a couple of papers have provided some theoretical guidance. Specific to our
approach, complete class results similar to Theorem 2.1 are not available. The
reason is that complete class results are built upon Chebyshev systems. However,
there is no satisfactory multidimensional generalization of the Chebyshev system
yet. While Yang, Zhang and Huang (2011) gave complete class results for logistic
and probit models with multiple covariates, the complete classes are not derived
using multidimensional Chebyshev systems, and they are not small enough for our
method to be applied.



SATURATED OPTIMAL DESIGNS UNDER DIFFERENTIABLE CRITERIA 49

APPENDIX: PROOFS

We will prove Theorems 2.2 and 2.5. Before proving Theorem 2.2, we first
provide a lemma. This lemma is easier stated in terms of c, but it can be translated
into x. Recall that Theorem 2.1 gives the form of a complete class. For any design
ξ , we can find a design ξ̃ = {(c̃j , ω̃j )}mj=1 in the complete class that is noninferior
(Mξ̃ ≥ Mξ ).

In particular, for ξ specified in Lemma A.1, let 
0(c) ≡ 1, a design ξ̃ can be
found by solving the following nonlinear equation system [see Yang and Stufken
(2012) and Dette and Schorning (2013)]:∑

i

ωi
�(ci) = ∑
j

ω̃j
�(c̃j ), � = 0,1, . . . , k − 1,(A.1)

where c̃1 and c̃m may be fixed to be boundary points (see Lemma A.1). Multiply
both sides of (A.1) by a positive constant, the equation system still holds, so we
can remove the constraint of

∑
i wi = 1 for ξ and allow

∑
i wi to be any positive

number in the following Lemma A.1; similarly for ξ̃ (but we still refer to them
as designs for convenience). Let X = (cT ,ωT )T be the vector of all ci ’s and ωi’s
in ξ . Let S1 and S2 be the sets of all possible vectors X corresponding to designs in
cases (1a)∼(1d) and (2) of Lemma A.1, respectively. Further, let Y be the vector
of all c̃j ’s except those fixed as boundary points (if any) and all ω̃j ’s in design ξ̃

given in the following Lemma A.1. We will define function H , H(X) = Y , where
X ∈ S = S1 ∪ S2, and show this function is smooth on S under certain conditions.

LEMMA A.1. Suppose one of the conditions in Theorem 2.1 holds.

(1a) If k = 2m − 1 and F(c) < 0, then for any design ξ = {(ci,ωi)}mi=1,A <

c1 < · · · < cm ≤ B,ωi > 0 for i ≥ 1, there exists a noninferior design ξ̃ =
{(c̃j , ω̃j )}mj=1, where c̃1 = A, ω̃j > 0 for j ≥ 1, that solves (A.1).

(1b) If k = 2m − 1 and F(c) > 0, then for any design ξ = {(ci,ωi)}mi=1,A ≤
c1 < · · · < cm < B,ωi > 0 for i ≥ 1, there exists a noninferior design ξ̃ =
{(c̃j , ω̃j )}mj=1, where c̃m = B, ω̃j > 0 for j ≥ 1, that solves (A.1).

(1c) If k = 2m and F(c) < 0, then for any design ξ = {(ci,ωi)}m+1
i=1 ,A ≤

c1 < · · · < cm+1 ≤ B,ωi > 0 for i ≥ 1, there exists a noninferior design ξ̃ =
{(c̃j , ω̃j )}mj=1, where ω̃j > 0 for j ≥ 1, that solves (A.1).

(1d) If k = 2m − 2 and F(c) > 0, then for any design ξ = {(ci,ωi)}m−1
i=1 ,A <

c1 < · · · < cm−1 < B,ωi > 0 for i ≥ 1, there exists a noninferior design ξ̃ =
{(c̃j , ω̃j )}mj=1, where c̃1 = A, c̃m = B, ω̃j > 0 for j ≥ 1, that solves (A.1).

Such solution is unique under each case, hence H is well defined on S1.

(2) For each case of (1a)∼(1d), let ξ be similarly defined as above except that
there is exactly one 0 weight and all other weights are positive. Then rewriting ξ
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in the form of ξ̃ in each corresponding case solves (A.1) and defines H on S2.
Moreover, H is smooth on S = S1 ∪ S2.

PROOF. We only prove for case (a), others being similar. First, let us con-
sider (1a). From Lemma 1 in Yang (2010) [see also Dette and Schorning (2013),
Theorem 3.1], we know that a solution to (A.1) exists with c̃1 = A, ω̃j > 0, j ≥ 1.
Moreover, F(c) < 0 implies that {
0,
1, . . . ,
2m−2} is a Chebyshev system [see
Yang and Stufken (2012), Proposition 4], thus such solution is unique. So H is
well defined on S1. Now we show the smoothness on S1.

We have X = (c1, . . . , cm,ω1, . . . ,ωm)T ,Y = (c̃2, . . . , c̃m, ω̃1, . . . , ω̃m)T by
definition (c̃1 is excluded in Y since it is fixed to be A). Subtract the left-hand side
from the right-hand side in (A.1), we get an equation system G(X,Y) = 0, where
G is smooth. So Y = H(X) is the implicit function defined by G(X,Y) = 0. By
implicit function theorem, to ensure H to be smooth, we only need the Jacobian
matrix GY(X,Y) = ∂G(X,Y)/∂Y to be nonsingular, that is,

detGY(X,Y)

=

∣∣∣∣∣∣∣∣∣∣

0 · · · 0 1 · · · 1
ω̃2


′
1(c̃2) · · · ω̃m
 ′

1(c̃m) 
1(A) · · · 
1(c̃m)

...
. . .

...
...

...
. . .

ω̃2

′
2m−2(c̃2) · · · ω̃m
 ′

2m−2(c̃m) 
2m−2(A) · · · 
2m−2(c̃m)

∣∣∣∣∣∣∣∣∣∣
=

(
m∏

j=2

w̃j

)
d(c̃) 
= 0,

where

d(c̃) =

∣∣∣∣∣∣∣∣∣∣

1 · · · 1 0 · · · 0

1(A) · · · 
1(c̃m) 
 ′

1(c̃2) · · · 
 ′
1(c̃m)

...
. . .

...
...

. . .
...


2m−2(A) · · · 
2m−2(c̃m) 
 ′
2m−2(c̃2) · · · 
 ′

2m−2(c̃m)

∣∣∣∣∣∣∣∣∣∣
.(A.2)

Since w̃j > 0 for all 1 ≤ j ≤ m, we only need to show d(c̃) 
= 0. We first do
some column manipulations to the matrix in (A.2). Subtract the first column from
the second to the mth column, then for the resulting matrix, subtract the second
column from the third to the mth column, continue doing this until finally subtract
the (m − 1)th column from the mth column. Because the determinant does not
change during this process,

d(c̃) =
∣∣∣∣∣∣∣


1(c̃2) − 
1(A) · · · 
1(c̃m) − 
1(c̃m−1)

...
. . .

... D

2m−2(c̃2) − 
2m−2(A) · · · 
2m−2(c̃m) − 
2m−2(c̃m−1)

∣∣∣∣∣∣∣ ,(A.3)



SATURATED OPTIMAL DESIGNS UNDER DIFFERENTIABLE CRITERIA 51

where D is the (2m − 2) × (m − 1) matrix,

D =
⎛
⎜⎝


 ′
1(c̃2) · · · 
 ′

1(c̃m)

...
. . .

...


 ′
2m−2(c̃2) · · · 
 ′

2m−2(c̃m)

⎞
⎟⎠ .

Treat A in the first column of the matrix in (A.3) as a variable and fix everything
else, then the determinant becomes a real-valued function of A. Using the mean
value theorem, we get

d(c̃) = (c̃2 − A)

×
∣∣∣∣∣∣∣


 ′
1(ĉ1) 
1(c̃3) − 
1(c̃2) · · ·
...

...
. . .


 ′
2m−2(ĉ1) 
2m−2(c̃3) − 
2m−2(c̃2) · · ·

(A.4)


1(c̃m) − 
1(c̃m−1)

... D

2m−2(c̃m) − 
2m−2(c̃m−1)

∣∣∣∣∣∣∣ ,

where A < ĉ1 < c̃2. Let ε = signd(c̃) be the sign of d(c̃), treat c̃2 in the second
column of the matrix in (A.4) as a variable, and use the mean value theorem again
to obtain

ε = sign

∣∣∣∣∣∣∣

 ′

1(ĉ1) 
 ′
1(ĉ2) · · · 
1(c̃m) − 
1(c̃m−1)

...
...

. . .
... D


 ′
2m−2(ĉ1) 
 ′

2m−2(ĉ2) · · · 
2m−2(c̃m) − 
2m−2(c̃m−1)

∣∣∣∣∣∣∣ ,

where c̃2 < ĉ2 < c̃3. Keep on doing this, and finally get

ε = sign

∣∣∣∣∣∣∣

 ′

1(ĉ1) · · · 
 ′
1(ĉm−1) 
 ′

1(c̃2) · · · 
 ′
1(c̃m)

...
. . . · · · · · · . . . · · ·


 ′
2m−2(ĉ1) · · · 
 ′

2m−2(ĉm−1) 
 ′
2m−2(c̃2) · · · 
 ′

2m−2(c̃m)

∣∣∣∣∣∣∣ ,

and A = c̃1 < ĉ1 < c̃2 < ĉ2 < · · · < ĉm−1 < c̃m. Since {
 ′
1, . . . ,


′
2m−2} is a

Chebyshev system, ε 
= 0. Hence, the Jacobian matrix is invertible, and the func-
tion H is smooth on S1.

Turning to case (2), without loss of generality, assume ω1 = 0,ωi > 0 for i ≥ 2.
If we can show the function H(X) is continuous on S2 and its partial derivatives
can be extended continuously to S2, then it can be proved that H(X) is also differ-
entiable on S2. So first, we prove its continuity.

To show this, for any sequence Xn = (cn
1 , . . . , cn

m,ωn
1, . . . ,ωn

m)T , n ≥ 1, ωn > 0
and Xn approaching X0 = (c1, . . . , cm,0,ω2, . . . ,ωm)T , we need to show Yn =
(c̃n

2 , . . . , c̃n
m, ω̃n

1, . . . , ω̃n
m)T approaches Y0 = (c2, . . . , cm,0,ω2, . . . ,ωm)T .
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By definition, we have

m∑
i=1

ωn
i 
�

(
cn
i

) =
m∑

j=1

ω̃n
j 
�

(
c̃n
j

)
, � = 0, . . . ,2m − 2.(A.5)

Suppose we have Yn
j1

does not converge to Y0
j1

for some j1, then because Yn is
a bounded sequence, there exists a subsequence {nt |t = 1,2, . . .} such that Ynt

converges to some Ȳ0 = (c̄2, . . . , c̄m, ω̄1, . . . , ω̄m)T and Ȳ0
j1


= Y0
j1

.
Now let nt → ∞, take the limit of (A.5) on both sides, we get

m∑
i=2

ωi
�(ci) =
m∑

j=1

ω̄j
�(c̄j ), � = 0, . . . ,2m − 2.(A.6)

Since {
0, . . . ,
2m−2} is a Chebyshev system and the maximum number of differ-
ent support points in (A.6) is 2m − 1, (A.6) only holds if ω̄1 = 0, ω̄i = ωi, c̄i = ci

for i ≥ 2, which means Ȳ0 = Y0, leading to a contradiction.
Next, we show the partial derivatives can be extended continuously to S2. Using

the implicit function theorem, we know

∂H(X)

∂X
= −G−1

Y
(
X,H(X)

)
GX

(
X,H(X)

)
,

GX(X,Y) = ∂G(X,Y)

∂X
,

for X ∈ S1. When X → X0, H(X) → H(X0) by continuity, hence GY(X,

H(X)) → GY(X0,H(X0)) since GY(X,Y) is continuous. Furthermore,
GY(X0,H(X0)) is nonsingular by the similar argument as previously, there-
fore, G−1

Y (X,H(X)) → G−1
Y (X0,H(X0)). It is easy to see GX(X,H(X)) →

GX(X0,H(X0)), therefore, the derivative ∂H(X)/∂X → −G−1
Y (X0,H(X0)) ×

GX(X0,H(X0)), that is, the derivative can be extended continuously to S2.
So H(X) is differentiable on S2 and the partial derivatives are continuous.

�

Now we are ready to prove Theorem 2.2; the proof is stated in terms of x to be
consistent with the theorem.

PROOF OF THEOREM 2.2. We only prove the case where the complete class
consists of designs with at most m points including L, other cases being similar.
Assume the design ξc given by a feasible critical point is not an optimal design,
and an optimal design exists as ξ∗ = {(L,1 − ∑m

i=2 ω∗
i ), {(x∗

i ,ω∗
i )}mi=2}, where

L < x∗
2 < · · · < x∗

m is a strictly increasing sequence (some of the weights ω∗
i may

be 0 if the support size of ξ∗ is less than m). We have �(Mξ∗) > �(Mξc ). Con-
sider the linear combination of the two designs, ξε = εξ∗ + (1 − ε)ξc, 0 ≤ ε ≤ 1,
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so

ξε =
{(

L,1 − (1 − ε)

m∑
i=2

ωc
i − ε

m∑
i=2

ω∗
i

)
,
{(

xc
i , (1 − ε)ωc

i

)}m
i=2,

{(
x∗
i , εω∗

i

)}m
i=2

}
.

By the concavity of the optimality criterion �, we have

�(Mξε ) ≥ (1 − ε)�(Mξc ) + ε�(Mξ∗).(A.7)

Utilizing (A.7), we can get

�(Mξε ) − �(Mξc )

ε
≥ �(Mξ∗) − �(Mξc ) > 0.(A.8)

Now, if we can find a series of designs with m support points, ξ̃ε = {(L,1 −∑m
i=2 ωi,ε), {(xi,ε,ωi,ε)}mi=2}, ε ≥ 0 belongs to a neighborhood of 0, such that:

1. �(Mξ̃ε
) ≥ �(Mξε );

2. Zε = (xε,ωε) depends smoothly on ε, where xε = (x2,ε, . . . , xm,ε), ωε =
(ω2,ε, . . . ,ωm,ε);

3. Z0 = Zc = (xc,ωc), thus ξ̃0 = ξc.

Then, applying (A.8), we obtain

�(Mξ̃ε
) − �(Mξ̃0

)

ε
≥ �(Mξε ) − �(Mξc )

ε
≥ �(Mξ∗) − �(Mξc ) > 0.

Because ξ̃ε has m ≥ d support points, Mξ̃ε
must belong to PD(d). By our smooth-

ness assumption of �, �(Mξ̃ε
) is a smooth function of ε. Take the limit as ε → 0,

it gives

∂�(Mξ̃ε
)

∂ε

∣∣∣∣
ε=0

> 0.(A.9)

On the other hand, by our definition, �(Mξ̃ε
) = �̃(Zε). Applying the chain

rule and using the fact that Z0 = Zc is a critical point of �̃(Z), we can
get

∂�(Mξ̃ε
)

∂ε

∣∣∣∣
ε=0

= ∂�̃(Zε)

∂ε

∣∣∣∣
ε=0

= ∂�̃(Z)

∂Z

∣∣∣∣
Z=Z0

∂Zε

∂ε

∣∣∣∣
ε=0

= 0.

This contradicts with (A.9). Hence, ξc must be an optimal design.
To find such designs ξ̃ε , first, if the design ξ∗ does not have new design points

other than those in ξc, that is, ∀2 ≤ i ≤ m, we have either ω∗
i = 0 or x∗

i ∈ xc, then
the design ξε is itself a design with m support points, we can simply let ξ̃ε = ξε ,
and conditions 1 ∼ 3 are satisfied.
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Otherwise, suppose we have r > 0 new design points x∗
i1
, . . . , x∗

ir
introduced

by ξ∗, with ω∗
ik

> 0, k = 1, . . . , r . Let δii′ = 1 if xc
i = x∗

i′ and 0 otherwise. Rewrite
the design ξε as

ξε =
{(

L,1 − (1 − ε)

m∑
i=2

ωc
i − ε

m∑
i=2

ω∗
i

)
,

{(
xc
i , (1 − ε)ωc

i + ε

m∑
i′=1

ω∗
i′δii′

)}m

i=2

}

∪ {(
x∗
ik
, εω∗

ik

)}r
k=1

= {(
L,ω

(0)
1,ε

)
,
{(

x
(0)
i,ε ,ω

(0)
i,ε

)}m
i=2

} ∪ {(
x∗
ik
, εω∗

ik

)}r
k=1,

where the second equation simply renames the design points and design weights.
It is easy to verify that conditions 2 ∼ 3 are satisfied for Z(0)

ε = (x(0)
ε ,ω

(0)
ε ) =

(x
(0)
2,ε, . . . , x

(0)
m,ε,ω

(0)
2,ε, . . . ,ω

(0)
m,ε).

To find the desired m-point design ξ̃ε , we need to reduce the number of design
points in a “smooth” way. We reduce one point at a time. First, consider the design
{(x(0)

i,ε ,ω
(0)
i,ε )}mi=2 ∪ {(x∗

i1
, εω∗

i1
)}, all the weights are positive when 0 < ε < 1, and

when ε = 0, only one weight is 0. So applying Lemma A.1 to this design we can
get a new design {(L,ω

(1)
1,ε), {(x(1)

i,ε ,ω
(1)
i,ε )}mi=2} that is noninferior, and conditions

2 ∼ 3 are satisfied for Z(1)
ε = (x(1)

ε ,ω
(1)
ε ), where ω

(1)
ε > 0 for 0 ≤ ε < 1.

Next, we add point x∗
i2

to {(x(1)
i,ε ,ω

(1)
i,ε )}mi=2 (we can always assume x∗

i2
is a new

point to x(1)
ε by taking ε small enough). Again, all the weights are positive when

ε > 0, and when ε = 0, only one weight is 0. Use the same method to reduce one
design point again. Keep on doing this until all r new points have been added and
reduced, and we finally get ξ̃ε = {(L,1 − ∑m

i=2 ω
(r)
i,ε ), {(x(r)

i,ε ,ω
(r)
i,ε )}mi=2}, that is not

inferior to ξε , with the conditions 1 ∼ 3 satisfied. �

Finally, we prove Theorem 2.5, the proof is stated in terms of c for conve-
nience.

PROOF OF THEOREM 2.5. We only consider the case of Theorem 2.1(a). First,
ξ∗ must belong to the complete class. Otherwise, we can find a design ξ̃∗ with
Mξ̃∗ ≥ Mξ∗ and Mξ̃∗ 
= Mξ∗ . Because ξ∗ has at least d support points, Mξ∗ is pos-
itive definite. Since � is strictly isotonic on PD(d), we have �(Mξ̃∗) > �(Mξ∗),
which is a contradiction.

Now suppose there is another optimal design ξ̃∗.
(i) If ξ̃∗ also has at least d support points, then it also belongs to the

complete class by previous arguments, and we can write ξ∗ = {(c∗
i ,ω

∗
i )}mi=1,

ξ̃∗ = {(c̃∗
i , ω̃

∗
i )}mi=1, c∗

1 = c̃∗
1 = A. By strict concavity, we must have Mξ∗ ∝

Mξ̃∗ since otherwise �(αMξ∗ + (1 − α)Mξ̃∗) > α�(Mξ∗) + (1 − α)�(Mξ̃∗) =
�(Mξ∗) for all α ∈ (0,1). Let Mξ∗ = δMξ̃∗ , then �(δMξ̃∗) = �(Mξ̃∗). The strict
isotonicity of � implies δ = 1, hence Mξ∗ = Mξ̃∗ and Cξ∗ = Cξ̃∗ . Then we
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have (A.1) holds. Because F(c) < 0, {
0, . . . ,
2m−2} is a Chebyshev system.
The maximum number of different support points in (A.1) is 2m−1, so (A.1) only
holds if the design points and weights on two sides of the equations are equal,
which means ξ∗ = ξ̃∗.

(ii) If ξ̃∗ has less than d support points, let ξα = αξ∗ + (1 − α)ξ̃∗,0 < α < 1.
By concavity, ξα is also an optimal design, moreover, it has at least d support
points. Thus following the arguments in case (i), we have ξα = ξ∗, which means
ξ∗ = ξ̃∗. This contradicts with the fact that ξ̃∗ has less than d support points.

�
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