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a b s t r a c t

In many toxicological assays, interactions between primary and secondary effects may

cause a downturn in mean responses at high doses. In this situation, the typical

monotonicity assumption is invalid and may be quite misleading. Prior literature

addresses the analysis of response functions with a downturn, but so far as we know,

this paper initiates the study of experimental design for this situation. A growth model

is combined with a death model to allow for the downturn in mean doses. Several

different objective functions are studied. When the number of treatments equals the

number of parameters, Fisher information is found to be independent of the model

of the treatment means and on the magnitudes of the treatments. In general, A- and

DA-optimal weights for estimating adjacent mean differences are found analytically for

a simple model and numerically for a biologically motivated model. Results on

c-optimality are also obtained for estimating the peak dose and the EC50 (the treatment

with response half way between the control and the peak response on the increasing

portion of the response function). Finally, when interest lies only in the increasing

portion of the response function, we propose composite D-optimal designs.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

A monotone response often is expected as dose increases in toxicological assays. However, strict monotonicity is
not always realistic. Interactions between primary and secondary effects may cause a downturn at high doses. In this
paper, we obtain optimal designs for such response functions.

Fan and Chaloner (2001), Rabie and Flournoy (2004), Han and Chaloner (2004), Fedorov and Wu (2007a, 2007b),
Dragalin et al. (2008) and others have studied optimal designs for experiments in which tertiary or bivariate binary
outcomes for toxicity and efficacy were observed for each subject and used to provide information on the probability of
efficacy without toxicity. Typically, this probability increases and then decreases.

In this paper, we study designs for experiments in which one continuous outcome is observed for each subject and used
to provide information on a response function with a downturn. Models for this later situation have been described by
Margolin et al. (1981), Welshons et al. (2003) and others.
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Margolin et al. (1981) studied the analysis of data from the Ames Salmonella/microsome test. Each microbe is placed on
a plate and the number of revertant colonies is observed from each plate after chemical dose. One outcome, the number
revertants, was observed from each plate and used to estimate the dose response function. They found that the number of
revertants per plate has the nonmonotonic relationship with the test chemical dose. A downturn is exhibited that is
commonly ascribed to microbial toxicity. A biologically motivated family of mathematical models was constructed to
relate plate counts, on average, to doses.

Welshons et al. (2003) presented an overview of the mechanisms of hormone action that provides the basis for
understanding how endocrine-disrupting chemicals with estrogenic activity (EEDCs) can be biologically active at low,
environmentally relevant doses. It is traditional to linearly extrapolate responses from high test doses to much lower
environmentally relevant doses. Their data calls this practice into question. They point out that this traditional testing
method has led to misinterpretations because receptor-meditated responses can first increase and then decrease as dose
increases, contradicting traditional model assumptions. Responses to hormones, including estrogens, decrease when
receptor occupancy becomes saturated, causing the response function to increase and then decrease with dose. To
exemplify this inverted-U pattern, endocrine doses of MCF-7 (human breast cancer) cells were obtained over a wide range
of doses (see Fig. 1).

These two experimental situations are similar in that they both exhibit a downturn in the response function. However,
Margolin et al. deal with a discrete outcome, i.e., the number of revertants, while Welshons et al. deal with a continuous
outcome, i.e., the percentage of cell growth. We adapt Margolin et al.’s model for a continuous response.

There are several interesting features to study when the response functions have a downturn. We obtain optimal
designs for estimating three different features in this paper. The first is successive mean differences, motivated by Brez and
Hothorn (2003). The other two are the peak dose and the EC50. The peak dose is the dose producing the maximum response
and the EC50 is the dose producing a response that is half way between the minimum response and the maximum response
on the increasing part of the response function.

In this paper, doses are taken to be fixed for estimating adjacent mean differences and the optimal allocation of
experimental units to these doses are obtained. Optimal designs for estimating adjacent mean differences are to minimize
the variances of these differences. For example, optimal designs for estimating m1�m2 is to minimize Varðm1�m2Þ. In this
case, the variance is minimized when m2 ¼ m1þd, d-0. Thus, the optimal design specifies design points as close as possible
to the dose producing m1. Placing all observations at one point provides no information about the mean function at other
points. So, this design is useless even though it minimizes the variance. To avoid this impractical design problem, we adopt
this restriction that doses are fixed. Although we do not have a rigorous proof, our intuition tells us that is true.

Optimal weights, i.e., the proportional allocation of experimental units to doses, are obtained (1) for estimating adjacent
mean differences under DA- and A-optimality criteria (see Atkinson and Donev, 1992), and (2) for estimating the peak dose
and the EC50 under c-optimality criterion, i.e., to minimize the variance of estimating the combination of the parameters.
To estimate all the parameters in the model, a composite D-optimal design is proposed which specifies the design points
and weights simultaneously.
Fig. 1. The source is Welshons et al. (2003).



S.W. Hyun et al. / Journal of Statistical Planning and Inference 141 (2011) 559–575 561
In Section 2, we introduce notation and establish a frame work for more complex situations, DA- and A-optimal weights
for estimating adjacent mean differences under a very simple model are obtained. In Section 3, optimal weights for a
biologically motivated model are derived. First, optimal designs are obtained for an interesting special case. Next, optimal
weights are obtained for three interesting features: adjacent mean differences, the peak dose, and the EC50. A composite
D-optimal design is proposed in Section 4. Finally, this paper concludes with a brief summary.

2. Designs for a simple model

Initially suppose that

yij ¼ miþeij, ð1Þ

where the eij are independent and Nð0,s2Þ, j=1,2,y,ni, i= 0,1,y,K. n1þn2þ � � � þnK ¼ n; mi is the mean response at design
point xi; mio1, 8i and s2o1 is assumed unknown. In general, the {xi} are control variables. In keeping with the
motivating biology, we call the {xi} doses. The likelihood function is

L¼
YK
i ¼ 1

Yni

j ¼ 1

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

1

2s2
ðyij�miÞ

2

� �
:

Let x¼ fðxi,wiÞ
>
gK1 denote a design, where xi is the ith dose and wi=ni/n is the associated design weight (i.e., the proportion

of subjects allocated to dose xi).
Then the normalized (i.e., per-subject) Fisher information matrix for maximum likelihood estimates m̂i and ŝ2 of mi and

s2, i=1,y,K is

Mm,s2 ¼
1

s2
diag w1,w2, . . . ,wK ,

1

2s2

� �
,

where s2 is an unknown constant. Because fm̂ig
K
1 are independent of ŝ2 and we are not interested in s2, it is sufficient to

consider the reduced information for fmig
K
1 :

Mm ¼
1

s2
diagðw1,w2, . . . ,wK Þ: ð2Þ

2.1. DA-optimal design for adjacent mean differences

Brez and Hothorn (2003) study response functions with a downturn by estimating the magnitude of each mean
difference. The information matrix for fm̂ iþ1�m̂ ig

K�1
1 is ½AM�1

m A>��1, where A is the ðK�1Þ � K matrix:

A¼

�1 1 0 � � � 0 0

0 �1 1 � � � 0 0

0 0 �1 � � � 0 0

^ ^ ^ & ^ ^

0 0 0 � � � �1 1

0
BBBBBB@

1
CCCCCCA:

The DA-optimal design for estimating fmiþ1�mig
K�1
1 given K doses at {x1,y,xK} under model (1) is

x� ¼ argmindet½AM�1
m A>� ¼ argmin½w1w2 � � �wK �

�1,

which is

x1 x2 � � � xK

1

K

1

K
� � �

1

K

0
@

1
A:

2.2. A-optimal design for adjacent mean differences

A-optimality minimizes the sum of variances for the estimators of interest. A-optimality for adjacent mean differences
minimizes

C¼ tr½AM�1
m A>� ¼

XK�1

i ¼ 1

Varðm̂ iþ1�m̂iÞ ¼
XK�1

i ¼ 1

s2 1

wi
þ

1

wiþ1

� �

¼ s2 1

w1
þ

2

w2
þ

2

w3
þ � � � þ

2

wK�1
þ

1

wK

� �
, ð3Þ

with the restriction that
PK

i ¼ 1 wi ¼ 1.
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Theorem 1. The A-optimal design for estimating fmiþ1�mig
K�1
1 given K doses {x1,y,xK} under model (1) is

x� ¼
x1 x2 � � � xK

w1 w2 � � � wK

 !
,

w2 ¼w3 ¼ � � � ¼wK�1 ¼

ffiffiffi
2
p

2�2
ffiffiffi
2
p
þK

ffiffiffi
2
p ,

w1 ¼wK ¼
1

2�2
ffiffiffi
2
p
þK

ffiffiffi
2
p :

Proof. Let w1+wK=u. Then w2þ � � � þwK�1 ¼ 1�u. Note that (3) is minimized when w1 ¼wK ¼ u=2 and wi ¼ ð1�uÞ=ðK�2Þ,
i=2,y,K�1. So the problem reduces to finding

argmin
4

u
þ

2ðK�2Þ2

1�u

 !
ð4Þ

which is

w1 ¼wK ¼
1

2�2
ffiffiffi
2
p
þK

ffiffiffi
2
p :

Now one can see that (3) is minimized when (i) n1=nK, (ii) n2 ¼ n3 ¼ � � � ¼ nK�1 and (iii)
PK

i ¼ 1 ni ¼ n. The number of
replications obtained from Theorem 1 is not typically an integer because ni=win. Thus, the number of replications are
obtained as ni ¼ bwinc, where bwinc denotes the maximum integer that does not exceed bwinc. This might lead

PK
i ¼ 1 nian.

For fixed n, the number of replications is adjusted as n1=nK or nK 71 and ni=nj or nj71 where i, j 2 ð2,3, . . . ,K�1Þ. &

3. Designs for a biologically motivated model

In our motivating applications, responses at different doses are structurally dependent. To develop a biologically
motivated relationship between the mean responses at different doses, let FðY,xÞ and GðY,xÞ be strictly monotone
increasing continuous and nonnegative functions of dose ranging from zero to one. Define H¼ ðy1,y2Þ, where
y1 ¼ ðy11,y12, . . . ,y1p1

Þ and y2 ¼ ðy21,y22, . . . ,y2p2
Þ and let fx1ox2o � � �oxKg be the set of design doses. At the doses,

define Fi ¼ Fðy1,xiÞ, Gi ¼ Gðy2,xiÞ, Now suppose

yij �NðmiðYÞ,SÞ, ð5Þ

where

miðYÞ ¼ FiGi, Gi ¼ 1�Gi, S¼ s2IK�K :

Assume s2 is unknown.

3.1. Fisher information

Because all mi are functions of the same parameters, the response densities at different doses are dependent on each
other. Set mðYÞ ¼ ðm1ðYÞ,m2ðYÞ, . . . ,mK ðYÞÞ. Since there are ni observations at each xi, the normalized Fisher information
matrix for Ŷ over the entire experiment can be written as

Mðx;YÞ ¼ muðYÞ>MmmuðYÞ,

where

muðYÞ ¼ @mðYÞ>

@y11

@mðYÞ>

@y12
� � �

@mðYÞ>

@y1p1

@mðYÞ>

@y21

@mðYÞ>

@y22
� � �

@mðYÞ>

@y2p2

� �
:

By Taylor series expansion, the covariance matrix for estimating mðYÞ is approximately SmðYÞ ¼ muðYÞM�ðx;YÞ½muðYÞ�>,
where M�ðx;YÞ denotes the generalized inverse of Mðx;YÞ, and the normalized Fisher information matrix for m̂ðYÞ is

Mðx;mðYÞÞ ¼ ½muðYÞM�ðx;YÞ½muðYÞ�>��:

Example. As an illustration, we adapt Margolin et al.’s (1981) model. Assuming model (5), set

Fi ¼ 1�exp½�ðaþbxiÞ�, Gi ¼ exp½�gxi�

and so the mean response function is

mi ¼ FiGi ¼ f1�exp½�ðaþbxiÞ�gexp½�gxi�, ð6Þ
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where a40, bZ0, gZ0. Since the mean response function is parameterized by Y, Y¼ ðy1,y2Þ, where y1 ¼ ða,bÞ and
y2 ¼ ðgÞ, the Fisher information matrix is much more complicated than for the simple model (1).

Let ji ¼ e�ðaþbxiþgxiÞ. Then the normalized information matrix for Ŷ ¼ fâ,b̂,ĝg can be written as

Mðx;YÞ ¼
1

s2

XK

i ¼ 1

wi

j2
i xij2

i �ximiji

xij2
i x2

i j
2
i �x2

i miji

�ximiji �x2
i miji ½ximi�

2

0
BB@

1
CCA,

which yields the information matrix for mðŶÞ:

Mðx;mðYÞÞ ¼ ½muðYÞM�ðx;YÞ½muðYÞ�>��,

where

muðYÞ ¼

j1 x1j1 �x1m1

j2 x2j2 �x2m2

^ ^ ^

jK xKjK �xKmK

0
BBBB@

1
CCCCA:

3.2. Optimal designs when K=p1+p2

This section provides a very general optimality result for the case when the number of doses is the same as the number
of parameters.

Theorem 2. For any optimality criterion that is a concave function of the elements on Mðx;mðYÞÞ, assuming Mðx;mðYÞÞ is of full

rank and that the number of doses is the same as the number of parameters in the model of mðYÞ, the optimal design is

independent of the magnitude of the doses and of the parameters.

Proof. There are K different doses and p1+p2 parameters in model (5). Set K=p1+p2. The Fisher information for Ŷ can be
expressed as

Mðx;YÞ ¼
1

s2

XK

i ¼ 1

wi
@mðYÞ
@y1

@mðYÞ
@y2

� � �
@mðYÞ
@yK

� �> @mðYÞ
@y1

@mðYÞ
@y2

� � �
@mðYÞ
@yK

� �
¼ muðYÞ>MmmuðYÞ, ð7Þ

where Mm is given by (2). The covariance matrix for mðŶÞ is

muðYÞMðx;YÞ�1muðYÞ> ¼ muðYÞ½muðYÞ>MmmuðYÞ��1muðYÞ>

¼ muðYÞ½muðYÞ��1M�1
m ½muðYÞ

>
��1muðYÞ> ¼M�1

m : &

Remark. The covariance matrix in this case is the same as for independent treatments. The optimal weights do not depend
on the model of the treatment means nor on the magnitudes of the doses.

3.3. Designs for estimating adjacent mean differences

This section provides an approach for deriving the optimal weights for given doses.

3.3.1. Under DA-optimality

The DA-optimality criterion is the determinant of the covariance matrix of fm̂ iþ1ðYÞ�m̂ iðYÞg
K�1
1 :

C¼ det½AM�ðx;mðYÞÞA>� ¼ det½BM�ðx;YÞB>�, ð8Þ

where B¼ AmuðYÞ. Let w=(w1,y,wK�1) because wK ¼ 1�
PK�1

i ¼ 1 wi. The minimum is obtained among all designs where the
adjacent mean differences are estimable. The generalized inverse prevents the singularity of the Fisher information matrix
for fm̂iþ1ðYÞ�m̂ iðYÞg

K�1
1 . The singularity implies DA-admissible designs for estimating the adjacent mean differences are

restricted to p1þp2rKrp1þp2þ1. However, this restriction does not apply to A-optimal designs which are the main
focus of this paper.

Theorem 3. The nonnegative solutions of ð@=@wÞ½det½BM�ðx;YÞB>�� ¼ 0 are the DA-optimal weights.

Proof. See A.1 in the appendix.
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In contrast to assuming the simple model (1), it is hard to obtain an analytical solution for optimal weights assuming (5)
and (6). However, the optimal weights usually can be found numerically using a Newton–Raphson algorithm. If no
nonnegative solution is found, we recommend initializing the smallest negative weight as zero and searching again.

Fig. 2 shows model (5) with mean response function (6); a¼ 0:11, b¼ 1 and g¼ 2. Optimal weights for selected sets of
design doses are shown in Table 1.

Note that the replications are distributed uniformly over three doses without regard to the value of the doses or the
values of the parameters. When there are less than three design points, Y is not estimable, but mðYÞ and the adjacent mean
differences can be estimated through the sample means. This is equivalent to using the simple model, which has
been addressed in Section 2. When there are more than four design points, the variance–covariance matrix of adjacent
mean differences is singular regardless of the design. It is not meaningful to consider DA-optimal designs here. However,
we can consider the A-optimality criterion. Designs 1 and 2 have the same criterion value even though they have different
doses. This illustrates Theorem 2. The designs with any three fixed doses have optimal weights that are uniformly put on
all doses and have the same criterion disregarding the levels of doses. Designs 1 and 3 both have three design points, but
they have different criterion values. To see why, define mðxÞ to be the mean response at dose x. Then Design 1 is for
estimating fmð1:00Þ�mð0:30Þ,mð0:30Þ�mð0:00Þg and Design 3 is for estimating fmð1:00Þ�mð0:70Þ,mð0:70Þ�mð0:30Þ,
mð0:30Þ�mð0:00Þg. They are optimal for different sets of contrasts. The criterion values for these design differ because
they have different interesting estimators.

In contrast, Table 2 shows DA-optimal design and criterion for selected sets of design doses under simple model (1).
Under the simple model (1), Fisher information matrices for fm̂ iþ1�m̂ ig

K�1
1 with more than four points are non-singular.

Since the mean function is not parameterized under the simple model, the Fisher information matrix is always full rank
and DA-optimal designs put equal weight on all design points. Note that there is no difference between the simple model
and the biologically motivated model when the number of design points are three.
3.3.2. Under A-optimality

The criterion function for the A-optimal design is

C¼
XK�1

i ¼ 1

Varðm̂iþ1ðYÞ�m̂ iðYÞÞ

¼ tr½AmuðYÞMðx;YÞ�1muðYÞ>A>�

¼ ½trðMðx,YÞ�1VÞ�,

where V¼
PK�1

i ¼ 1½Bi�
>Bi, Bi ¼ CimuðYÞ and Ci= ith row of the matrix A. A similar theorem to Theorem 4 under D-optimality is

given by

Theorem 4. The nonnegative solutions of ð@=@wÞ½trðMðx;YÞ�1VÞ� ¼ 0 are the A-optimal design weights.

Proof. See A.2 in the appendix.
Fig. 2. a¼ 0:11, b¼ 1 and g¼ 2.



Table 1
DA-optimal weights for estimating adjacent mean differences given selected sets of design doses for the biologically motivated model.

Design Design doses Optimal weights C

1 0.00, 0.30, 1.00 0.333, 0.333, 0.333 27.054

2 0.00, 0.50, 1.00 0.333, 0.333, 0.333 27.054

3 0.00, 0.30, 0.70, 1.00 0.333, 0.333, 0, 0.333 0.463

Table 2
DA-optimal weights for estimating adjacent mean differences given selected sets of design doses for the simple model.

Design Design doses Optimal weights C

1 0.00, 0.30, 1.00 0.333, 0.333, 0.333 27.054

2 0.00, 0.50, 1.00 0.333, 0.333, 0.333 27.054

3 0.00, 0.30, 0.70, 1.00 0.250, 0.250, 0.250, 0.250 256.410

4 0.00, 0.25, 0.50, 0.75, 1.00 0.200, 0.200, 0.200, 0.200, 0.200 3125

Table 3
A-optimal weights for estimating adjacent mean differences given selected sets of design doses for the biologically motivated model.

Design Design doses Optimal weights C

1 0.00, 0.30, 1.00 0.292, 0.414, 0.292 11.680

2 0.00, 0.50, 1.00 0.292, 0.414, 0.292 11.680

3 0.00, 0.30, 0.70, 1.00 0.324, 0.400, 0, 0.275 9.594

4 0.00, 0.25, 0.50, 0.75, 1.00 0.356, 0.407, 0, 0, 0.236 8.123

Table 4
A-optimal weights for estimating adjacent mean differences given selected sets of design doses for the simple model.

Design Design doses Optimal weights C

1 0.00, 0.30, 1.00 0.292, 0.414, 0.292 11.680

2 0.00, 0.50, 1.00 0.292, 0.414, 0.292 11.680

3 0.00, 0.30, 0.70, 1.00 0.207, 0.292, 0.292, 0.207 277.77

4 0.00, 0.25, 0.50, 0.75, 1.00 0.160, 0.226, 0.226, 0.226, 0.160 3448.27
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There is no analytical solution that satisfies Theorem 4. But the solution can be found numerically by a Newton–Raphson
algorithm. Optimal designs for given sets of doses under the biologically motivated model are shown in Table 3 with
a¼ 0:11, b¼ 1, g¼ 2.

The A-optimal designs shown in Table 3 show how replications need to be distributed over given sets of doses to
efficiently estimate adjacent mean differences. Designs 1 and 2 have different doses but have the same weights which is
not surprising because of Theorem 2. Because Designs 1 and 3 have different interesting estimators, they have the same
doses but different weights and criterion values. From the numerical results in Table 3, it seems that A-optimal designs
maybe based on only three points. Additional numerical results (not shown) support this conjecture.

In contrast, Table 4 shows optimal designs given a set of doses under the simple model (1).
Note that the criterion for the biologically motivated model is much less than one for the simple model when there are

more than three design points. This shows that parameterizing the mean function greatly increase information.

3.4. c-Optimal design for estimating the peak dose

In this section, c-optimal designs are obtained for estimating the peak dose most precisely. The peak dose is the dose
producing maximum mean response. Under mean dose model (6), the peak dose is the solution of the following equation:

@m
@x
¼ ðbþgÞexp½�ðaþbxþgxÞ��gexp½�gx� ¼ 0:

In this model, the peak dose can be expressed in an explicit form:

x� ¼�
1

b
log

g
bþg

� �
þa

� �
: ð9Þ
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The c-optimality criterion for estimating the peak dose is to minimize

Varðx̂
�
Þ ¼ x�uMðx;YÞ�1

½x�u�> ¼ tr½Mðx;YÞ�1Q �,

where

x�u ¼
@x�

@a
@x�

@b
@x�

@g

� �
¼ �

1

b
1

b2
log

g
bþg

� �
þa

� �
þ

1

bðbþgÞ
�

1

gðbþgÞ

 !

and Q ¼ ½x�u�>x�u. We have the following theorem.

Theorem 5. The nonnegative solutions of ð@=@wÞ tr½Mðx;YÞ�1Q � ¼ 0 are the A-optimal design weights.

Proof. See A.2 in the appendix. Note Q has the same property as V in Theorem 4 because both Q and V are symmetric
nonnegative definite matrices and independent of w. &

The weights can be obtained through the Newton–Raphson method. Assuming a¼ 0:11, b¼ 1, g¼ 2, c-optimal weights
are given in Table 5. This table suggests that optimal designs for estimating the peak dose under the c-optimality criterion
have three points: one point from lower bound of the range of possible design points, one from the upper bound and one
from somewhere in the interior of the range.

3.5. c-Optimal design for estimating the EC50

There is an interest in estimating EC50 under c-optimal criterion assuming mean response model (6). The peak dose is
given by (9) and the minimum dose is x=0. The mean response at the peak and minimum doses, respectively, are

mðx�Þ ¼ b
bþg

� �
exp

g
b

log
g

bþg

� �
þa

� �� �
, mð0Þ ¼ 1�exp½�a�: ð10Þ

By definition, the EC50 satisfies EC50rx� and

f1�exp½�ðaþbEC50Þ�gexp½�gEC50� ¼
1

2

b
bþg

� �
exp

g
b

log
g

bþg

� �
þa

� �� �
þ1�exp½�a�

� �
: ð11Þ

Eq. (11) cannot be solved analytically, but the solution EC50 can be obtained numerically.
The c-optimality criterion is to minimize the variance of the estimate of EC50: C¼ VarðÊC 50Þ ¼

ECu50Mðx;YÞ�1
½ECu50�

> ¼ tr½Mðx;YÞ�1Q��, where Q� ¼ ½ECu50�
>ECu50 and ECu50 ¼ ð@EC50=@a @EC50=@b @EC50=@gÞ. The challenge

is to obtain an expression for ECu50 without having an explicit expression for the EC50 which is a function of the unknown
parameters of ða,b,gÞ. The method we use has two parts: (i) take first derivatives to (11) with respect to a,b, and g; (ii) solve
for the partial derivatives of EC50. The application of this method to the problem at hand is given in Appendix A.3.

Theorem 6. The nonnegative solutions of ð@=@wÞtr½Mðx;YÞ�1Q�� ¼ 0 are the A-optimal design weights.

Proof. See Appendix A.2. Note Q* has the same property as V in Theorem 4 because both Q* and V are symmetric
nonnegative definite matrices and independent of w. &

Again set a¼ 0:11, b¼ 1, g¼ 2. Insulting mðx�Þ ¼ 0:184 and mð0Þ ¼ 0:104 into Eq. (11) yields EC50=0.073 from which it
follows that EC50u¼ ½�0:202, 0:004, 0:087�. Given this information, numerically derived c-optimal weights for estimating
EC50 are shown in Table 6.

This table also suggests that the c-optimal designs for estimating the EC50 consists of three points including the lower
bound of the range of possible design points, the upper bound and one point somewhere in the interior.

4. A composite D-optimal design for ða;bÞ

In Section 3, the doses are fixed. This restriction is sensible when interest is in estimating the adjacent mean differences.
For the peak dose and the EC50 cases, this restriction is made due to the complexity of the problem. But what about optimal
designs that determine both doses and weights? In this section, we consider this challenge. As is often the case in practice,
Table 5
c-Optimal weights for estimating the peak dose for selected sets of design doses.

Design Design doses Optimal weights C

1 0.00, 0.50, 1.00 0.246, 0.172, 0.581 18.99

2 0.00, 0.30, 0.70, 1.00 0.271, 0.145, 0, 0.584 13.74

3 0.00, 0.25, 0.50, 0.75, 1.00 0.269, 0.147, 0, 0, 0.583 12.992

4 0.00, 0.20, 0.40, 0.60, 0.80, 1.00 0.261, 0.155, 0, 0, 0, 0.583 12.364



Table 6
c-Optimal weights for estimating the EC50 for selected sets of design doses.

Design Design doses Optimal weights C

1 0.00, 0.50, 1.00 0.112, 0.185, 0.602 8.184

2 0.00, 0.30, 0.70, 1.00 0.172, 0.252, 0, 0.574 5.308

3 0.00, 0.25, 0.50, 0.75, 1.00 0.191, 0.253, 0, 0, 0.555 5.142

4 0.00, 0.20, 0.40, 0.60, 0.80, 1.00 0.214, 0.259, 0, 0, 0, 0.525 5.220
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consider the case in which interest only lies in the two parameters fa,bg. The parameter g is nuisance parameter, which we
deal with by considering a collection of fixed values of g.

So now take g¼ g0 to be fixed and known. The model for mi becomes

mi ¼ f1�exp½�ðaþbxiÞ�gexp½�g0xi�:

To efficiently estimate fa,bg, one needs only to consider the Fisher information matrix for fa,bg:

Mðx;a,bÞ ¼
1

s2

XK

i ¼ 1

wi

j1ðciÞ xij1ðciÞ

xij1ðciÞ x2
i j1ðciÞ

 !
,

where j1ðciÞ ¼ e�2ci and ci ¼ aþbxiþg0xi. Some routine algebra establishes the following result.

Lemma 7.

Mðx;a,bÞ ¼ AT
ða,bÞCðx;a,bÞAða,bÞ,

where

AT
ða,bÞ ¼

1

s

1 0

�
a

bþg0

1

bþg0

0
@

1
A,

Cðx;a,bÞ ¼

PK
i ¼ 1 wij1ðciÞ

PK
i ¼ 1 wij2ðciÞPK

i ¼ 1 wij2ðciÞ
PK

i ¼ 1 wij3ðciÞ

 !
,

j2ðciÞ ¼ cie
�2ci , and j3ðciÞ ¼ c2

i e�2ðciÞ.

Loewner ordering is adopted here. The Loewner order states that XrY if Y�X is positive semidefinite matrix. If an
information matrix Mðx;a,bÞrMðxs;a,bÞ (Loewner ordering), then design xs is not inferior to design x under commonly
used optimality criteria (such as A- and D-optimality) and xs is said to dominate x. In the locally optimal context, from
Lemma 7, it follows that Cðx;a,bÞrCðxs;a,bÞ implies that Mðx;a,bÞrMðxs;a,bÞ.

We say a design for a two parameter model has a simple format if it has two support points. If for any design x, there
exists a design xs with a simple format such that Cðx;a,bÞrCðxs;a,bÞ, then we can study the simple design xs instead of x.
Designs with a simple format greatly simplify the optimality problem.

Next, we show that there exists a design xs with a simple format such that Cðx;a,bÞrCðxs;a,bÞ. If the sample space is
normalized such that xi 2 ð0,1�, then by definition ci 2 ða,aþbþg0�. Yang and Stufken (2009) show that if C1ðcÞ, C2ðcÞ and
C3ðcÞ in Cðx;a,bÞ satisfy the following conditions, then all designs are dominated by a design with only two points, with
c1 ¼ a and c2 2 ða,aþbþg0�:
(i)
 C1ðcÞ, C2ðcÞ, and C3ðcÞ are continuous functions on [A,B] that are three times differentiable on (A,B];

(ii)
 C1uðcÞðC2uðcÞ=C1uðcÞÞuððC3uðcÞ=C1uðcÞÞu=ðC2uðcÞ=C1uðcÞÞuÞuo0 for c 2 ðA,B�; and
(iii)
 limckAC2uðcÞ=C1uðcÞðC1ðAÞ�C1ðcÞÞ ¼ 0.
Easily it can be shown that C1ðcÞ ,C2ðcÞ and C3ðcÞ satisfy these three conditions. Thus for any design x, there exists a design
xs with two points, x1=0 and x2 2 ð0,1�, such that Cðx;a,bÞrCðxs;a,bÞ. Thus, we can focus on the simple format designs to
derive some specific optimal designs.

Consider the D-optimal design for estimating (ab) using Fisher information matrix Cðxs;a,bÞ. Since ci 2 ða,aþbþg0�,
only the two point designs {(0, w1); (x2, w2)} need to be considered, where x2 2 ð0,1�. Because

detðCðxs,a,bÞÞ ¼w1w2½x2j1ðciÞ�
2,

the D-optimal design obtained is {(0, 1/2); (x*
2,1/2)}, where x�2 ¼ 1=ðbþg0Þ if bþg0Z1 or 1 if bþg0o1. Although it

is an analytical solution, the design depends on the value of g. Because the exact value of g is unknown, we propose
a composite design that is constructed from a collection of D-optimal designs with fixed g, letting g take on a range of
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values: g 2 fg1,g2, . . . ,gsg. The composite designs are constructed from the simple optimal designs

x�i ¼
0

1

bþgi

1

2

1

2

0
BBB@

1
CCCA, g¼ gi, i¼ 1,2, . . . ,s:

Suppose equal weights are given to each individual design yielding the composite design

x�c ¼
0

1

bþg1

1

bþg2

� � �
1

bþgs

1

2

1

2s

1

2s
� � �

1

2s

0
BBB@

1
CCCA: ð12Þ

The composite design protects against the uncertainty in g by using a range of g values. The efficiencies of composite design
compared to a D-optimal design at g¼ gi are

Eff i ¼
jMx�c j

jMx�i j

( )1=2

g ¼ gi

:

Then the composite optimal design is quite good compared to D-optimal design is shown in the following example.
Table 7
A composite D-optimal designs for different ranges of g.

Design Values of g used to construct the composite design x�c

1 0.00, 6.00 0:00 0:14 1:00
1

2

1

4

1

4

0
@

1
A

2 0.00, 3.00, 6.00 0:00 0:14 0:25 1:00
1

2

1

6

1

6

1

6

0
@

1
A

3 0.00, 0.80, 5.20, 6.00 0:00 0:14 0:16 0:55 1:00
1

2

1

8

1

8

1

8

1

8

0
@

1
A

4 0.00, 2.00, 4.00, 6.00 0:00 0:14 0:20 0:33 1:00
1

2

1

8

1

8

1

8

1

8

0
@

1
A

5 0.00, 1.50, 3.00, 4.50, 6.00 0:00 0:14 0:18 0:25 0:40 1:00
1

2

1

10

1

10

1

10

1

10

1

10

0
@

1
A

Fig. 3. Efficiencies of composite D-optimal designs as a function of the true value of g.



Fig. 4. Information of D-optimal design against composite D-optimal designs.
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Example. Suppose a¼ 0:11, b¼ 1:00. Table 7 shows the composite designs for different ranges of values of g. The
efficiencies of the composite designs relative to a D-optimal design at g¼ gi are shown in Fig. 3, where
g 2 f0:00,0:10,0:20, . . . ,5:90,6:00g.

Fig. 3 shows that all efficiencies from composite designs are greater than 0.6. Design 1 does not have a good efficiency

with two values of g. However, the efficiency improves a great deal when one or two more values of g are added, as is the

case for Designs 2, 3 and 4 shown in Fig. 3. Design 5 has five values of g but the efficiency does not improve much. Fig. 4

shows that how much information the composite designs have compared to D-optimal design at true value of g. When true

value of g is greater than 2, the D-optimality criterion goes to zero indicating that the designs have little information to

lose. Thus, it is more meaningful to consider efficiencies at the lower values of true g. Figs. 3 and 4 show that the composite

design with three or four values of g works very well compared to the D-optimal design at fixed and known g. In this

example, the composite design 3 is recommended as the best choice because it has pretty good efficiency at the lower true

value of g.

We can not guarantee that the composite design weights are the best. However, the proposed weights are better than

uniformly distributed weights. Figs. 5 and 6 show that the efficiency of the composite designs is always to be greater when

using uniformly distributed weights at the same doses.



Fig. 5. Efficiency of the proposed composite design against uniformly distributed weights at the same doses.
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The A-optimality criteria also can be used to construct composite designs. In this paper, the D-optimal design is used

rather than A-optimal design because D-optimal design for estimating the parameter fa,bg has the explicit form.

5. Conclusion

We obtained DA-optimal and A-optimal weights. In the case of a simple model, the analytical solutions for both DA- and
A-optimality are given. For a model inspired by Margolin et al. (1981), numerical methods are developed to determine how
many subjects to assign to each dose for several different objective functions.

When interest is in estimating adjacent mean differences, doses are fixed because the variance of mean differences is
minimized by putting all treatments at one point, which is not productive. c-Optimal weights for the peak dose and the
EC50 are also obtained. But there is the limitation that the DA-, A- and c-optimal weights can be obtained only numerically
if the number of doses is not the same as the number of parameters. A procedure to approximate a D-optimal design
in an explicit form is developed in Section 4. In this procedure, D-optimal designs for fixed g are utilized. Notice that we
assign g a value from a certain range rather than estimating it. This reduces the sensitivity of optimal designs from wrong
estimate of g.



Fig. 6. Information of D-optimal design vs. the proposed composite design vs. uniformly distributed weights.
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Optimal designs give the most information but sometimes researchers want to have designs that have more design
points but still are very close to optimal. The composite design can handle this problem. It is easier for the researcher to use
our method which is a partially analytical search rather than a fully numerical search.

Although this paper presents an analytical solution for the composite D-optimal design, there still are unsolved
questions: how best to select the values of g and how to assign weights for each g. It is a good idea to get the values of g
using prior knowledge from a biologist. In this paper, weights are uniformly distributed. The reason is that our biology
consultants had no idea. We know this is not entirely satisfactory, but it is a place to start and it seems to work well. We
hope this paper stimulates the development of other methods that bring better results. Possibilities include a minimax
solution or Bayesian formulation.

We model mean responses by combining an increasing response function with a decreasing response function. Most
results are based on exponential functions as inspired by Margolin et al. (1981). Analysis of the data in Welshons et al.
(2003) suggests an increasing logistic function paired with a decreasing exponential function would provide a better fit to
their data. Thus, optimality results for this combination, or better, more general results are a future goal.

Also, in this paper identical variances are assumed at each dose. Allowing the variance to increase with the mean
response is an other important generalization.

Discussions with biologists suggest many features of the model are of interest. Although peak dose is of interest,
designing for it is not easy. Eq. (9) shows the expression for the peak dose involves ratios of parameters. Hence, estimates
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involve the ratio of asymptotically normal random variables. Thus extremely large sample sizes may be needed for the
information matrices for estimating the peak dose and the EC50 to be a good approximation to the true covariance matrices.
We use the classical Taylor series linear approximation to obtain estimates of the variance of features such as the peak dose
and the EC50. For maximum likelihood estimates of nonlinear functions of the parameters, alternative transformations
proposed by Duty and Flournoy (2007, 2009) produce confidence intervals of equal width but better coverage. Their ideas
may be useful in the context of the motivating example for this paper.

The current paper initiates the development of design for response functions with a downturn and we anticipate that it
will lead to the development of alternative ways of learning about the features of interest.
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Appendix A

A.1. Proof of Theorem 3

The minima must satisfy two conditions:
Condition (1). The first derivatives of (8) with respect to wi are zero:

@

@wi
½det½BM�ðx;YÞB>�� ¼ 0:

Condition (2). T is nonnegative definite matrix and T has elements

Tij ¼
@2

@wi@wj
½det½BM�ðx;YÞB>��, i, j 2 f1,2, . . . ,K�1g:

To derive Tij, we use theorems in Harville (1997). Set C¼ ½BM�ðx;YÞB>�; Fi ¼ BðM�ðx;YÞð@Mðx;YÞ=@wiÞM
�
ðx;YÞÞB> and

Lij ¼ ½Lji�
> ¼M�ðx;YÞð@Mðx;YÞ=@wiÞM

�
ðx;YÞð@Mðx;YÞ=@wjÞM

�
ðx;YÞ ¼ lil

>
j , where li ¼M�ðx;YÞð@Mðx;YÞ=@wiÞP1D1=2

1 .
Let T* be a ðK�1Þ � ðK�1Þ matrix with elements

T�ij ¼
@2

@wi@wj
½logdet½BM�ðx;YÞB>��

¼ trðC�1BðLijþ½Lij�
>ÞB>Þ�trðC�1FiC

�1FjÞ

¼ trðC�1BLijB
>Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Tð1Þ
ij

þtrðC�1BLijB
>Þ�trðC�1FiC

�1FjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Tð2Þ

ij

:

Let TZ0 mean that T is nonnegative definite (NND) matrix. Since det½C�40, TZ0 if and only if T�Z0, we need to show
that T* is NND matrix. Lij is a symmetric NND matrix because Mðx;YÞ is a full rank NND matrix. So, there exists nonsingular
matrix P1 and diagonal matrix D1 such that M�ðx;YÞ ¼ P1D1P>1 .

Now T*=T(1)+T(2), where T(1)=(Tij
(1)) and T(2)=(Tij

(2)) are ðK�1Þ � ðK�1Þ matrices with elements given above. T* is NND
matrix if and only if T(1) and T(2) are NND matrices. Consider the elements of T(1) first. Now there exists nonsingular matrix
P2 and diagonal matrix D2 such that P2D2P>2 ¼ C�1 because C�1 is symmetric NND matrix. Define Ui ¼ ½Bli�

>P2D1=2
2 and

denote the first, second, y, sth rows of Ui by u1,u2,y,us. Let Gi ¼ vecðUiÞ ¼ ðu1u2 � � �usÞ.

Tð1Þij ¼ trðC�1BLijB
>Þ ¼ trðC�1BLjiB

>Þ ¼ trðC�1Blj½Bli�
>Þ

¼ trð½Bli�
>C�1BljÞ ¼ trðUiU

>
j Þ ¼ vecðUiÞ½vecðUjÞ�

>

¼Gi½Gj�
>:

Define G¼ ðG1 G2 � � � Gk�1Þ
>. Then Tð1Þ ¼GG>. Therefore T(1) is NND.

Now let � represents the Kronecker product and consider the elements of T(2):

Tð2Þij ¼ trðC�1BLijB
>Þ�trðC�1FiC

�1FjÞ

¼ trð½Bli�
>C�1BljÞ�trðC�1FjC

�1FiÞ

¼ trðl>i B>C�1BljÞ�trðC�1FjC
�1FiÞ

¼ trðl>i B>C�1BljÞ�trðC�1BP1D1=2
1 l>j B>C�1BliD

1=2
1 P>1 B>Þ

¼ vecðl>i ÞdiagðB>C�1,B>C�1,B>C�1
Þvecðl>j Þ

>
�trðl>i B>C�1BljD

1=2
1 P>1 B>C�1BP1D1=2

1 Þ



S.W. Hyun et al. / Journal of Statistical Planning and Inference 141 (2011) 559–575 573
¼ vecðl>i Þ½I� ðB
>C�1BÞ�vecðl>j Þ

>
�trðl>i B>C�1BljD

1=2
1 P>1 B>C�1BP1D1=2

1 Þ

¼ vecðl>i Þ½I� ðB
>C�1BÞ�vecðl>j Þ

>
�vecðl>i Þ½ðB

>C�1BÞ � ðD1=2
1 P>1 B>C�1BP1D1=2

1 Þ�vecðl>j Þ
>

¼ vecðl>i Þ½ðB
>C�1BÞ � ðI�D1=2

1 P>1 B>C�1BP1D1=2
1 Þ�vecðl>j Þ

>:

Both B>C�1B and I�D1=2
1 P>1 B>C�1BP1D1=2

1 are symmetric NND matrices because C�1 is symmetric NND matrix and
I�D1=2

1 P>1 B>C�1BP1D1=2
1 is idempotent matrix. Then the Kronecker product � of two symmetric NND matrix is also

symmetric NND matrix. Thus, there exists nonsingular matrix P3 and diagonal matrix D3 such that
ðB>C�1BÞ � ðI�D1=2

1 P>1 B>C�1BP1D1=2
1 Þ ¼ P3D3P>3 . Then

Tð2Þij ¼ vecðl>i ÞP3D3P>3 vecðl>j Þ
>

¼ vecðl>i ÞP3D1=2
3 D1=2

3 P>3 vecðl>j Þ
>

¼ Fi½Fj�
>,

where Fi ¼ vecðl>i ÞP3D1=2
3 . Set F¼ ðF1 F2 � � � Fk�1Þ

>. Then Tð2Þ ¼ FF>. Therefore T(2) is NND matrix.
We have proved that T is NND matrix because T(1) and T(2) are NND matrix. Condition (2) is always true since T is NND

matrix. Therefore, the criterion (8) is minimized if Condition (1) is satisfied.

A.2. Proof of Theorem 4

The criterion C is minimized when the first derivatives of (9) with respect to wi are zero and the second derivatives are
nonnegative. To derive the second derivatives, theorems in Harville (1997) are used again. The A-optimal design must satisfy

Condition (1)

@

@wi
½trðMðx;YÞ�1VÞ� ¼ 0:

Condition (2). H is NND, where H is a ðK�1Þ � ðK�1Þ matrix with elements

Hij ¼
@2

@wi @wj
½trðMðx;YÞ�1VÞ�

¼ tr V Mðx;YÞ�1 @Mðx;YÞ
@wi

Mðx;YÞ�1 @Mðx;YÞ
@wj

Mðx;YÞ�1

� ���
þ Mðx;YÞ�1 @Mðx;YÞ

@wj
Mðx;YÞ�1 @Mðx;YÞ

@wi
Mðx;YÞ�1

� ���
:

Again, let Lij ¼ lil
>
j , where li ¼Mðx;YÞ�1

ð@Mðx;YÞ=@wiÞP1D1=2
1 . Applying the chain rule, Hij can be rewritten as

Hij ¼ trfVðLijþLjiÞg ¼ trðVLijÞþtrðVLjiÞ

¼ 2 trðVLjiÞ ¼ 2trðVljl
>
i Þ

¼ 2 trðl>i VljÞ ¼ 2trðQ iQ
>
j Þ

¼ 2 vecðQ iÞ½vecðQ jÞ�
> ¼ 2Ri½Ri�

>,

where Q i ¼ l>i P4D1=2
4 and Ri=vec(Qi).

There exists a nonsingular matrix P4 and diagonal matrix D4 such that P4D4P>4 ¼V because V is symmetric NND. Set
R¼ ðR1 R2 � � � Rk�1Þ

>. Then H¼ 2RR>. Therefore, H is NND. Again, Condition (2) is always satisfied because H is NND and
the A-optimal weights are obtained if Condition (1) is satisfied.

A.3. Obtaining ECu50 without an explicit expression for EC50
1.
 Take first derivatives to (11) with respect to a,b, and g:

@ð12Þ

@a ¼�g EC50

@a exp½�gEC50�þexp½�ðaþbEC50þgEC50Þ�þb
@EC50

@a exp½�ðaþbEC50þgEC50Þ�

þg @EC50

@a
exp½�ðaþbEC50þgEC50Þ��

1

2

b
bþg

� �
g
b

exp
g
b

log
g

bþg

� �
þa

� �� �
þexp½�a�

� �
¼ 0,

@ð12Þ

@b
¼�g EC50

@b
exp½�gEC50�þ EC50þb

@EC50

@b

� �
exp½�ðaþbEC50þgEC50Þ�þg

@EC50

@b
exp½�ðaþbEC50þgEC50Þ�

�
g

2ðbþgÞ2
exp

g
b

log
g

bþg

� �
þ
ga
b

� �
þ

1

2

b
bþg

� �
ga
b2
þ

g
b2

log
g

bþg

� �
þ

g
bðbþgÞ

" #
exp

g
b

log
g

bþg

� �
þ
ga
b

� �
¼ 0,
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@ð12Þ

@g
¼ �EC50�g

EC50

@g

� �
exp½�gEC50�þ EC50þg

@EC50

@g

� �
exp½�ðaþbEC50þgEC50Þ�

þb
@EC50

@g exp½�ðaþbEC50þgEC50Þ��
b

2ðbþgÞ2
exp

g
b

log
g

bþg

� �
þ
ga
b

� �

þ
1

2

b
bþg

� �
a
b
þ

1

b
log

g
bþg

� �
þ

1

ðbþgÞ

� �
exp

g
b

log
g

bþg

� �
þ
ga
b

� �
¼ 0:
2.
 Solve for the partial derivatives of EC50:

@EC50

@a ¼

1

2

b
bþg

� �
g
b

exp
g
b

log
g

bþg

� �
þ
ga
b

� �
þexp½�a�

� �
�exp½�ðaþbEC50þgEC50Þ�

ðbþgÞexp½�ðaþbEC50þgEC50Þ��gexp½�gEC50�
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