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Abstract

Efficient crossover designs for comparing t test treatments to one control treatment
with three periods is considered. Through this investigation and the characterization
obtained for the A-optimal/efficient designs in the nearly entire class, the efficiency
of a given design is evaluated and guidance for constructing highly efficient designs is
provided.

KEY WORDS: Crossover designs; Repeated measurements; Carryover effect; Balanced
designs.

1 Introduction

Crossover designs, in which t treatments are assigned to n experimental subjects in two
or more (p) periods, have been widely applied in pharmaceutical clinical trials. In these
designs, the subjects are used as blocks. Thus, the treatment comparisons are more pre-
cise than other designs because subject variation is removed from treatment comparisons
on the same subject. The optimality of crossover designs has been studied by many au-
thors (Hedayat and Afsarinejad (1975, 1978); Cheng and Wu (1980); Kunert (1983, 1984);
Hedayat and Zhao (1990); Stufken (1991, 1996); Carrière and Reinsel (1993); Matthews
(1994); Kushner (1997, 1998); Afsarinejad and Hedayat (2002); Kunert and Stufken (2002);
Hedayat and Yang (2003, 2004a)). Most results are for the situation that all treatments
are equally important.

However in many pharmaceutical studies, researchers are more often interested in the
comparisons between t test treatments and a control treatment. How does an experimenter
select an optimal/efficient design in this situation? There are relatively few results about
this question. In our study we shall designate the class of all such designs based on t
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test treatments, a control treatment and n experimental subjects each used in p periods
by Ωt+1,n,p. Pigeon and Raghavarao (1987) proposed a class of designs (control balanced
residual effects design) for the purpose of comparing several test treatments to a control
treatment. They studied the structure in detail, but they did not consider the optimality
or efficiency of the suggested designs. Majumdar (1988) obtained some A-optimal and MV-
optimal crossover designs when t ≤ p. Later, Ting (2002) obtained additional results for
the same situation. When p = 2, Hedayat and Zhao (1990) obtained the corresponding A-
optimal and MV-optimal designs. When p ≤ t+1, Hedayat and Yang (2005) characterized
a class of designs which are A-optimal for comparing several treatments with a control in
a subclass Λt+1,n,p, where the design satisfies two restrictions: (i) no treatment is allowed
to follow itself and (ii) the control treatment is uniform in periods. From Lemma 3 of
Hedayat and Yang (2005), an efficient design tends to have each treatment appearing the
same times in each period (different treatments may have different appearances). We may
expect the first one is the major restriction.

A natural question for us, then, is: if the restrictions are removed, whether the design,
which is optimal/efficient in the subclass Λt+1,n,p, is still optimal/efficient? Hedayat and
Yang (2004b) considered this question in a larger class Ω1

t+1,n,p, in which the first restriction
was removed. When p ≥ 4 and (p− 3)(p− 2) + 2 ≤ t ≤ (p− 2)(p− 1) + 1, they provided a
way to evaluate the A-efficiency of a design and found that the optimal design in Λt+1,n,p

is no longer optimal, but it is still efficient. Notice that Λt+1,n,p ⊂ Ω1
t+1,n,p ⊂ Ωt+1,n,p.

In this paper we focus on the case p = 3. We investigate the A-efficiency of a crossover
design d ∈ Ω1

t+1,n,3, in which the control treatment is uniform in all periods. We also
give a characterization for A-optimal/efficienct designs in Ω1

t+1,n,3, which can guide us to
construct a more efficient design than any of the designs in Λt+1,n,3. We organize this
paper as follows: Section 2 introduces the model and the notations. Section 3 contains
preliminary lemmas. The main result is presented in Section 4. Examples and discussion
will be given in Section 5. Most of the proofs are postponed to the appendix.

2 Model of Response

The model we consider here is the traditional homoscedastic, additive, and fixed effects
model introduced by Hedayat and Afsarinejad (1975), namely

Ydks = µ + αk + βs + τd(k,s) + ρd(k−1,s) + eks, k = 1, . . . , p; s = 1, . . . , n (2.1)

where Ydks denotes the response from subject s in period k to which treatment d(k, s) was
assigned. Under Model (2.1), µ is the general mean, αk is the effect due to period k, βs is
the effect due to subject s, τd(k,s) is the direct treatment effect, ρd(k−1,s) is the carryover
or residual effect of treatment d(k − 1, s) on the response observed on subject s in period
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k (by convention ρd(0,s) = 0), and the eks’s are independently normally distributed error
term with mean 0 and variance σ2.

Hereafter we shall designate the t test treatments by 1, 2, . . . , t and the control treat-
ment by 0. Throughout this paper, for each design d, we adopt the notation ndis, ñdis,
ldik, mdij , rdi, r̃di, and r̂d0 to denote the number of times that treatment i is assigned to
subject s, the number of times this happens in the first two periods associated with s, the
number of times treatment i is assigned to period k, the number of times treatment i is
immediately preceded by treatment j, the total replications of treatment i in its n subjects,
the total replications of treatment i limited to the first two periods of the subjects, and
total replications of control treatment 0 limited to the last two periods respectively. Let
zd =

∑n
s=1

∑t
i=1(ndis − 1)+ and z0 =

∑n
s=1(nd0s − 1)+. Here, m+ is m when m > 0 and 0

when m ≤ 0.
In the present context of control-treatment comparisons, A-optimality has an appealing

interpretation, because the A-optimal design minimizes
∑t

i=1 V ar(τ̂i − τ̂0) or equivalently
trM−1

d . Here τ̂i − τ̂0(1 ≤ i ≤ t) is BLUE of τi − τ0 and Md is the information matrix of
τ̂i − τ̂0(1 ≤ i ≤ t). For any d ∈ Ω1

t+1,n,3, define

θ(d) =
t− 1
xd

+
1
yd

, (2.2)

where

xd =
t(3n− rd0 − 1

3

∑n
s=1

∑t
i=1 n2

dis)− (rd0 − 1
3

∑n
s=1 n2

d0s)
t(t− 1)

−3t
(∑t

i=1(
1
3

∑n
s=1 ndisñdis −mdii)− 1

t (
1
3

∑n
s=1 nd0sñd0s −md00)

)2

(t− 1)[2n(2t− 1)− (2t + 1)r̃d0 +
∑n

s=1 ñ2
d0s]

(2.3)

yd =
1
t
(rd0 − 1

3

n∑

s=1

n2
d0s)−

6n(1
3

∑n
s=1 nd0sñd0s −md00)2

t[6nr̃d0 − r̃2
d0 − 2n

∑n
s=1 ñ2

d0s]
. (2.4)

Note that r̃d0 = 2
3rd0, then by Lemma 4 of Hedayat and Yang (2005), trM−1

d ≥ θ(d).
For a general design d, we cannot write down an expression for trM−1

d because of
its complicated structure. But θ(d) provides an achievable lower bound for trM−1

d as a
function of the variables rd0,

∑n
s=1

∑t
i=1 n2

dis,
∑n

s=1 n2
d0s,

∑t
i=1

∑n
s=1 ndisñdis,

∑t
i=1 mdii,∑n

s=1 nd0sñd0s, md00, r̃d0, and ñ2
d0s.

Let A(t, n) = mind∈Ω1
t+1,n,3

θ(d). For d ∈ Ω1
t+1,n,3, trM−1

d ≥ θ(d) ≥ A(t, n) and d is A-

optimal in Ω1
t+1,n,3 when each inequality is an equality. If we can find the value of A(t, n),

then we can use A(t, n) as a criteria to evaluate the efficiency of a design d by defining
the efficiency ratio as A(t,n)

trM−1
d

. We may directly use a computer to search for the minimum

value of θ(d) for given t and n but there are two difficulties: (i) the number of possible
combinations of the above variables is extremely large, and the computer may not be able
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to handle it; (ii) the variables are related to each other, even though we find the values that
minimize θ(d), these values may not be reasonable for constructing a design. Therefore,
it is necessary to characterize optimal/efficient designs to simplify the computation and
obtain an achievable value of A(t, n).

3 Preliminary Lemmas

We apply the same strategy of Hedayat and Yang (2004b), i.e., a cutoff point 15t3

8(2t−1)n is
defined (the cutoff point is greater than A(t, n), Lemma 1) and only those designs d whose
θ(d) is less than 15t3

8(2t−1)n are considered. As in Hedayat and Yang (2004b), the lemmas
in this section help us characterize the positions of the test treatments and the control
treatment for efficient designs by answering the following two questions: (i) If rd0 and zd

are fixed, what are
∑n

s=1

∑t
i=1 n2

dis and
∑t

i=1(
1
3

∑n
s=1 ndisñdis −mdii) in terms of rd0 and

zd so that xd is maximized? and (ii) What are the relationships between related variables∑n
s=1 n2

d0s,
∑n

s=1 nd0sñd0s,
∑n

s=1 ñ2
d0s, and md00 for efficient designs?

The following lemma shows that if we choose 15t3

8(2t−1)n as the cutoff point, the subclass

of designs in which θ(d) is not larger than 15t3

8(2t−1)n is not empty. Then the lower bound of
θ(d) in this subclass is the same as A(t, n).

Lemma 1. For p = 3 and 3 ≤ t ≤ 20,

A(t, n) <
15t3

8(2t− 1)n
.

Proof. See the appendix.

The following two lemmas show that there are some restrictions for zd and 1
3

∑n
s=1 nd0sñd0s−

md00 for those designs whose θ(d) is not larger than the cutoff point.

Lemma 2. For a design d ∈ Ω1
t+1,n,3, 3 ≤ t ≤ 20, if zd ≥ n− rd0/3− (n− 2rd0/3)/t, then

θ(d) >
15t3

8(2t− 1)n
.

Proof. See the appendix.

Lemma 3. For a design d ∈ Ω1
t+1,n,3, 3 ≤ t ≤ 20, if zd < n− rd0/3− (n− 2rd0/3)/t and

1
3

n∑

s=1

nd0sñd0s −md00 >
t

3
(2n− 2zd − r̃d0),

then

θ(d) >
15t3

8(2t− 1)n
.
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Proof. See the appendix.

For those designs whose θ(d) is not larger than the cutoff point, Lemmas 2 and 3 can
help us to find the values of

∑n
s=1

∑t
i=1 n2

dis and
∑t

i=1(
1
3

∑n
s=1 ndisñdis −mdii) such that

xd is maximized for fixed rd0 and zd. In fact, since θ(d) ≤ 15t3

8(2t−1)n , by Lemma 2, we have

zd < n− rd0/3− (n− 2rd0/3)/t.

Applying the preceding inequality and the fact θ(d) ≤ 15t3

8(2t−1)n , by Lemma 3, we have

1
3

n∑

s=1

nd0sñd0s −md00 ≤ t

3
(2n− 2zd − r̃d0). (3.1)

By the definition of zd, we can verify that

t∑

i=1

(
1
3

n∑

s=1

ndisñdis −mdii) ≥ 1
3
(2n− r̃d0 − 2zd).

Thus, we have

t∑

i=1

(
1
3

n∑

s=1

ndisñdis −mdii

)
−1

t

(
1
3

n∑

s=1

nd0sñd0s −md00

)

≥ 1
3
(2n− r̃d0 − 2zd)− 1

t

(
1
3

n∑

s=1

nd0sñd0s −md00

)
≥ 0.

(3.2)

On the other hand, we can verify that

3n− rd0 − 1
3

n∑

s=1

t∑

i=1

n2
dis ≤ 2n− 2rd0/3− 2zd/3. (3.3)

From (3.2) and (3.3), by the definition of xd in (2.3), we can see that both
∑t

i=1(
1
3

∑n
s=1 ndisñdis−

mdii) and
∑n

s=1

∑t
i=1 n2

dis should be minimized in order to maximize xd for given zd and
the positions of the control treatment.

By some routine algebra, we obtain Lemma 4 below, which gives a new lower bound of
θ(d) for those designs whose θ(d) is not larger than the cutoff point. However before we
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state the lemma, we introduce the following expressions to simplify our notation.

∆1 = t(6n− 2rd0)− 2tzd − (3rd0 −
n∑

s=1

n2
d0s)

− [2t(n− zd)− tr̃d0 − (
∑n

s=1 nd0sñd0s − 3md00)]2

n(4t− 2)− (2t + 1)r̃d0 +
∑n

s=1 ñ2
d0s

; (3.4)

∆2 = (3rd0 −
n∑

s=1

n2
d0s)−

2n(
∑n

s=1 nd0sñd0s − 3md00)2

6nr̃d0 − r̃2
d0 − 2n

∑n
s=1 ñ2

d0s

; (3.5)

S1 =
2t(n− zd)− tr̃d0 − (

∑n
s=1 nd0sñd0s − 3md00)

n(4t− 2)− (2t + 1)r̃d0 +
∑n

s=1 ñ2
d0s

; (3.6)

S2 =
2n(

∑n
s=1 nd0sñd0s − 3md00)

6nr̃d0 − r̃2
d0 − 2n

∑n
s=1 ñ2

d0s

. (3.7)

Lemma 4. For a design d ∈ Ω1
t+1,n,3, 3 ≤ t ≤ 20, if θ(d) ≤ 15t3

8(2t−1)n , then

θ(d) ≥ 3t(t− 1)2

∆1
+

3t

∆2
. (3.8)

Equality in (3.8) holds when the following conditions are satisfied: (i) For each subject,
each test treatment appears at most once in the first two periods and (ii) There are zd

subjects in which each test treatment is followed by itself in the last two periods.

Although the lower bound for θ(d) in Lemma 4 does not depend on
∑n

s=1

∑t
i=1 n2

dis,∑t
i=1

∑n
s=1 ndisñdis,

∑t
i=1 mdii, it still depends on the variables zd, rd0,

∑n
s=1 n2

d0s,
∑n

s=1 nd0sñd0s,
md00, r̃d0, and ñ2

d0s. Lemma 5, which describes the relationship among ∆1, ∆2, S1, and
S2, can help us further simplify the lower bound in the main theorem.

Lemma 5. For a design d ∈ Ω1
t+1,n,3, 3 ≤ t ≤ 20, if θ(d) ≤ 15t3

8(2t−1)n , then

1 + S2

1 + S1
≥ (t− 1)∆2

∆1
. (3.9)

Proof. See the appendix.

4 Main Results

In this section, we study the lower bound of trM−1
d for any design d ∈ Ω1

t+1,n,3, i.e, the
value of A(t, n) = mind∈Ω1

t+1,n,3
θ(d). Although it is difficult to find a design that achieves

this lower bound, we can use the lower bound to evaluate the efficiency of a design in
Ω1

t+1,n,3. Meanwhile, we can characterize efficient designs and use these characterization
to help us construct an efficient design.
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Before we state our main theorem, we will introduce some new notations. For any
design d, let Γd be the set of subjects whose last treatment is the control treatment and
Ψd =

∑
s∈Γd

ñd0s. Then for any design d ∈ Ω1
t+1,n,3, there are rd0

3 subjects in Γd. Thus, we
have

n∑

s=1

n2
d0s =

n∑

s=1

ñ2
d0s + 2Ψd +

rd0

3
(4.1)

and
n∑

s=1

nd0sñd0s =
n∑

s=1

ñ2
d0s + Ψd. (4.2)

Now, we are ready to present our main theorems.

Theorem 1. For a design d ∈ Ω1
t+1,n,3, 3 ≤ t ≤ 20, we have

trM−1
d ≥ θ(d) ≥ A(t, n).

Here,

A(t, n) = min
rd0,zd,Ψd,md00

(
3t(t− 1)2

∆1

+
3t

∆2

)
, (4.3)

∆1 = 2t(3n− rd0)− 2tzd − 3(rd0 − 1
3

min
n∑

s=1

n2
d0s)

− [2t(n− zd)− tr̃d0 − (min
∑n

s=1 nd0sñd0s − 3md00)]2

2n(2t− 1)− (2t + 1)r̃d0 + min
∑n

s=1 ñ2
d0s

,

and

∆2 = 3(rd0 − 1
3

min
n∑

s=1

n2
d0s)−

2n(min
∑n

s=1 nd0sñd0s − 3md00)2

6nr̃d0 − r̃2
d0 − 2n min

∑n
s=1 ñ2

d0s

.

The sufficient conditions on d∗ such that θ(d∗) = A(t, n) are
(i) rd∗0, md∗00, Ψd∗, and zd∗ are the integers which minimize 3t(t−1)2

∆1
+ 3t

∆2
;

(ii) For each subject, each test treatment appears at most once in the first two periods;
(iii) There are zd∗ subjects in which each test treatment appears in last two periods;
(iv) For the given Ψd∗,

∑n
s=1 n2

d∗0s,
∑n

s=1 nd∗0sñd∗0s, and
∑n

s=1 ñ2
d∗0s are minimized.

If trM−1
d∗ = A(t, n), then d∗ is an A-optimal design in Ω1

t+1,n,3; if Md∗ is also completely
symmetric, then d∗ is also an MV-optimal design in Ω1

t+1,n,3.
In addition to the four conditions stated above, the following conditions are sufficient

for d∗ to be both A-optimal and MV-optimal in Ω1
t+1,n,3,

(v) ld∗ik = rd∗i/3, i = 0, . . . , t;
(vi) T ′d∗pr⊥(U)Td∗, T ′d∗pr⊥(U)Fd∗, and F ′

d∗pr⊥(U)Fd∗ are invariant after all possible per-
mutations on all treatments leaving the control treatment unchanged, where pr⊥(X) =
I −X(X ′X)−X ′.
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Proof. It is enough to consider designs in which θ(d) < 15t3

8(2t−1)n by Lemma 1.
Given

∑n
s=1 ñ2

d0s, rd0, and Ψd, the lower bound of θ(d) in Lemma 4 can be rewritten
as a function of rd0, zd,

∑n
s=1 ñ2

d0s, Ψd, and md00, say

H(rd0, zd,
n∑

s=1

ñ2
d0s, Ψd,md00) =

3t(t− 1)2

∆1
+

3t

∆2
,

because of (4.1) and (4.2). By a simple calculation, we obtain

∂H(rd0, zd,
∑n

s=1 ñ2
d0s, Ψd,md00)

∂
∑n

s=1 ñ2
d0s

= 3t(
(1 + S2)2

∆2
2

− (t− 1)2(1 + S1)2

∆2
1

)

> 0.

The preceding inequality is due to Lemma 5 since θ(d) < 15t3

8(2t−1)n . Thus, for fixed rd0, zd,

Ψd, and md00,
3t(t−1)2

∆1
+ 3t

∆2
will be minimized when

∑n
s=1 ñ2

d0s is minimized, which also
implies that

∑n
s=1 n2

d0s and
∑n

s=1 nd0sñd0s are minimized. Thus we have

θ(d) ≥ 3t(t− 1)2

∆1

+
3t

∆2

. (4.4)

Consequently (4.3) and Conditions (i) to (iv) follow.
By Lemma 4 of Hedayat and Yang (2005), Conditions (ii), (v), and (vi) are the sufficient

conditions for trM−1
d∗ = θ(d∗). Thus, Conditions (v) and (vi) follow for A-optimal and MV-

optimal designs d∗.

5 Examples and Discussion

Theorem 1 gives a lower bound for trM−1
d for any d ∈ Ω1

t+1,n,3. Although the lower bound
is still a function of rd0, zd, Ψd, and md00, they are not related to each other except on
the boundary. Furthermore, a computer can handle all possible combinations of these
variables. While we could construct A-optimal and MV-optimal in the Ω1

t+1,n,3 based on
Theorem 1 for some parameters (Example 2), the most important application of this lower
bound is to evaluate the efficiency of a design in the almost entire class. The conditions in
Theorem 1 can be used to construct an efficient design. The following examples illustrate
the use of Theorem 1.

Example 1. Consider the construction of a three period crossover design with three
test treatments and one control. Fourteen subjects will be tested in this experiment. Our
main interest is to compare the three test treatments with the control.

By Theorem 1 and straightforward computations we get A(3, 14) = 0.7067, the lower
bound of trM−1

d for any design d ∈ Ω1
4,14,3. The values of the corresponding parameters

rd∗0, Ψd∗ , md∗00, and zd∗ are 15, 1, 1, and 1, respectively. With computer’s help, a design,
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say d1, is constructed based on the treatments sequences in the optimal design in Λt+1,n,p

(Example 1, Page 930, Hedayat and Yang, 2005) and a treatment sequence in which the
control treatment appears in period 2 and 3. d1 approximately satisfies the conditions in
Theorem 1 with rd1 = 15, Ψd1 = 1, md100 = 1, and zd1 = 0. The corresponding value
of θd1 = 0.7081, which is very close to the minimum value 0.7067. For this design, we
can check that trM−1

d1
is 0.7179, which is at least 98.44% efficient compared to the lower

bound 0.7067. On the other hand, trM−1
d1

is smaller than the lower bound of trM−1
d for

any design d ∈ Λ4,14,3, which is 0.7499. So design d1 is at least 4.5% more efficient than
any design in Λ4,14,3 in terms of A-efficiency.

d1 :
0 2 3 1 0 3 0 1 2 0 1 2 0 3
1 1 2 0 2 0 3 2 3 1 0 0 3 0
2 0 0 3 3 1 1 0 0 3 2 0 1 2

Example 2. With the same set up as Example 1, but assume we have forty two
subjects.

By straightforward computations, we find A(3, 42) = 0.23557. The values of the cor-
responding parameters rd∗0, Ψd∗ , md∗00, and zd∗ are 45, 3, 3, and 3, respectively. The
following design satisfies the all conditions in Theorem 1, thus it is A-optimal and MV-
optimal in Ω1

4,42,3.

d2 :
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2 3 3 3 3 1 2 3
1 2 3 1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 3 1 1 3 3 1 1 2 2 0 0 0
1 2 3 2 2 3 3 1 1 3 3 2 2 1 1 2 2 3 3 1 1 3 3 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Example 3. We consider Example 9 in Hedayat and Yang (2005).

d3 :
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 4 5 6 7 1 2 3 4 5 6 7 1 2 3 1 2 3 4 5 6 7 4 5 6 7 1 2 3
3 4 5 6 7 1 2 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 3 4 5 6 7 1 2 3 4 5 6 7 1 2
4 5 6 7 1 2 3 4 5 6 7 1 2 3 3 4 5 6 7 1 2 3 4 5 6 7 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7

The design is simultaneously A-optimal and MV-optimal in Λ8,49,3. By applying Theorem
1, we can find the lower bound of trM−1

d for any design d ∈ Ω1
8,49,3 is 0.9694. On the other

hand, for design d3, trM−1
d3

= 0.9712. So design d3 is at least 99.81% efficient in the larger
class Ω1

8,49,3.
Theorem 1 provides a computable lower bound for designs in Ω1

t+1,n,3. The only differ-
ence between Ωt+1,n,p and Ω1

t+1,n,p is that in the latter, the control appears equally often
in the periods. Since this condition is likely to hold for optimal designs, we expect that in
most cases a design that is efficient in Ω1

t+1,n,p will be efficient in Ωt+1,n,p.
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6 Appendix

We only give outlines of the proofs here. Details see Yang and Park (2005).

Proof of Lemma 1. We can construct a design d0 ∈ Ω1
t+1,n,p with the following two prop-

erties: (i) rd00 = n, thus the control treatment appears n/3 times in the last period and
(ii) every treatment appears at most once in any subject. For such design, we could com-
pute the values of

∑n
s=1

∑t
i=1 nd0is,

∑n
s=1

∑t
i=1 nd0isñd0is,

∑n
s=1 n2

d00s,
∑n

s=1 nd00sñd00s,

and
∑n

s=1 ñ2
d00s. Then by equations (2.3) and (2.4), we have xd = 2(2t−1)(10nt−8n)

9t(t−1)(4t−3) and
yd = 8n

15t . By the definition of A(t, n) and the fact that (12t − 9)(10t − 8) < 5/4, we can
verify the conclusion directly.

Proof of Lemma 2. It can be verified that

xd ≤ 1
3t(t− 1)

(
t[6n− 2rd0 − 2(n− rd0/3− (n− 2rd0/3)/t)]− (3rd0 −

n∑

s=1

n2
d0s)

)

and

yd ≤ 1
3t

(
3rd0 −

n∑

s=1

n2
d0s

)
.

Thus,

θ(d) ≥ 3t(t− 1)2

t[6n− 2rd0 − 2(n− rd0/3− (n− 2rd0/3)/t)]− (3rd0 −
∑n

s=1 n2
d0s)

+
3t

3rd0 −
∑n

s=1 n2
d0s

.(6.1)

Then we could prove the lemma under the following three cases: (i) rd0 > 1.5n; (ii)
rd0 ≤ 1.5n and z0 ≥ rd0/3; and (iii) rd0 ≤ 1.5n and z0 < rd0/3. Here z0 is defined as
z0 =

∑n
s=1(nd0s − 1)+. See Yang and Park (2005) for details.

Proof of Lemma 3. First we could verify that

xd ≤ 1
3t(t− 1)

(
t(6n− 2rd0 − 2zd)− (3rd0 −

n∑

s=1

n2
d0s)

)
(6.2)

and

yd ≤ 1
3t

(
3rd0 −

n∑

s=1

n2
d0s −

18(
∑n

s=1 nd0sñd0s − 3md00)2n
24nrd0 − 4r2

d0

)
. (6.3)

Define a new variable x = n − rd0/3 − zd. Since 0 ≤ zd < n − rd0/3 − (n − 2rd0/3)/t, we
have

(n− 2rd0/3)/t ≤ x < n− rd0/3. (6.4)
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By the definition of x, r̃d0 = 2rd0/3, and the condition 1
3

∑n
s=1 nd0sñd0s −md00 > t

3(2n −
2zd − r̃d0), we have

1
3

n∑

s=1

nd0sñd0s −md00 > 2tx/3. (6.5)

Utilizing inequalities (6.2), (6.3), (6.4), and (6.5), we could prove our conclusion in three
cases: (i) rd0 ≥ 1.5n, (ii) n ≤ rd0 < 1.5n, and (iii) rd0 < n. See Yang and Park (2005) for
details.

Proof of Lemma 5. Since θ(d) ≤ 15t3

8(2t−1)n , by inequality (3.8) in Lemma 4, we have

3t(t− 1)2

∆1
+

3t

∆2
≤ 15t3

8(2t− 1)n
,

which is equivalent to

(t− 1)∆2

∆1
≤ 5t2∆2

8(t− 1)(2t− 1)n
− 1

t− 1
. (6.6)

On the other hand,

∆2 ≤ 3rd0 −
n∑

s=1

n2
d0s ≤ 2n.

Combining the preceding two inequalities, we have

(t− 1)∆2

∆1
≤ 5t2 − 8t + 4

4(t− 1)(2t− 1)
. (6.7)

Apply θ(d) ≤ 15t3

8(2t−1)n again, we could show that rd0 < (7t+4)n
5t . By this fact and r̃d0 =

2rd0/3, we have

6nr̃d0 − r̃2
d0 − 2n

n∑

s=1

ñ2
d0s < 4nr̃d0 − r̃2

d0 <
644t2 + 256t− 64

225t2
n2, (6.8)

and

n(4t− 2)− (2t + 1)r̃d0 +
n∑

s=1

ñ2
d0s > n(4t− 2)− 2tr̃d0 >

32t− 48
15

n. (6.9)

Inequality (3.1) gives

2t(n− zd)− tr̃d0 − (
n∑

s=1

nd0sñd0s − 3md00) ≥ 0,
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because θ(d) ≤ 15t3

8(2t−1)n . By the preceding inequality, zd ≥ 0, inequality (6.9), and the
definition of S1 in (3.6), we have

S1 <
2tn− tr̃d0 − (

∑n
s=1 nd0sñd0s − 3md00)

n(4t− 2)− 2tr̃d0

=
1
2

+
n− (

∑n
s=1 nd0sñd0s − 3md00)

n(4t− 2)− 2tr̃d0
.

For any design d ∈ Ω1
t+1,n,3, we could show that

∑n
s=1 nd0sñd0s− 3md00 ≥ 0. Utilizing this

fact and inequalities (6.8) and (6.9), we further have

S1 <
1
2

+
n

(32t− 48)n/15
=

16t− 9
32t− 48

(6.10)

and

S2 ≥ 450t2(
∑n

s=1 nd0sñd0s − 3md00)
(644t2 + 256t− 64)n

≥ 0. (6.11)

Thus,

1 + S2

1 + S1
≥ (1 + S2)(32t− 48)

48t− 57
≥ 32t− 48

48t− 57
. (6.12)

When 6 ≤ t ≤ 20

32t− 48
48t− 57

≥ 5t2 − 8t + 4
4(t− 1)(2t− 1)

.

Applying inequalities (6.7) and (6.12), inequality (3.9) holds when 6 ≤ t ≤ 20.
Next, we will show inequality (3.9) is true when t = 3, 4, and 5. We consider two cases:

(i) 4n/3 ≤ rd0 < (7t+4)n
5t and (ii) rd0 < 4n/3.

Case (i): Let x = S1 − 1
2 , then

x =
n− 2tzd + r̃d0/2−∑n

s=1 ñ2
d0s/2− (

∑n
s=1 nd0sñd0s − 3md00)

n(4t− 2)− (2t + 1)r̃d0 +
∑n

s=1 ñ2
d0s

.

From the preceding equation, we have

2tzd = −n(4tx− 2x− 1)+(2tx + x + 1/2)r̃d0

− (x + 1/2)
n∑

s=1

ñ2
d0s − (

n∑

s=1

nd0sñd0s − 3md00).
(6.13)

By the definition of ∆1,

∆1 = tn(5− 2x)− trd0(5− 2x)/3− (3rd0 −
n∑

s=1

n2
d0s)

+(x + 1/2)(
n∑

s=1

nd0sñd0s − 3md00) + 2tzd(x− 1/2).
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By substituting 2tzd in ∆1 with expression (6.13),

∆1 = n(5t− (4t− 2)x2 − 1/2)− rd0(5t + 1/2− 4tx2 − 2x2)/3

+ (1/4− x2)
n∑

s=1

ñ2
d0s +

n∑

s=1

nd0sñd0s − 3md00 − (3rd0 −
n∑

s=1

n2
d0s).

Using
∑n

s=1 ñ2
d0s ≤ 2r̃d0 = 4rd0/3, we could show that

n∑

s=1

nd0sñd0s − 3md00 > 2n +
8(t− 1)2(2t− 1)

5t2 − 8t + 4
n− (5t− 1/2)(5n/9). (6.14)

By inequalities (6.12), (6.11), and (6.14),

1 + S2

1 + S1
≥ (1 + S2)(32t− 48)

48t− 57
>

5t2 − 8t + 4
4(t− 1)(2t− 1)

.

By inequality (6.7), our conclusion is established.
Case (ii): Since rd0 < 4n/3, we have

6nr̃d0 − r̃2
d0 − 2n

n∑

s=1

ñ2
d0s < 4nr̃d0 − r̃2

d0 <
224
81

n2,

and

n(4t− 2)− (2t + 1)r̃d0 +
n∑

s=1

ñ2
d0s > n(4t− 2)− 2tr̃d0 >

20t− 18
9

n.

By arguments similar to those used to inequalities (6.10) and (6.11), we have

S1 <
1
2

+
n

(20t− 18)n/9
=

5t

10t− 9
and

S2 ≥ 81(
∑n

s=1 nd0sñd0s − 3md00)
112n

≥ 0.

Thus, we have

1 + S2

1 + S1
≥

(
1 +

81(
∑n

s=1 nd0sñd0s − 3md00)
112n

)
10t− 9
15t− 9

≥ 10t− 9
15t− 9

. (6.15)

Applying the preceding inequality, we have

1 + S2

1 + S1
≥ 5t2 − 8t + 4

4(t− 1)(2t− 1)

if
n∑

s=1

nd0sñd0s − 3md00 ≥ 112n

81

(
(5t2 − 8t + 4)(15t− 9)

4(t− 1)(2t− 1)(10t− 9)
− 1

)
.
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Thus by inequalities (6.7) and (6.12), the conclusion (3.9) holds. Now consider the case,
when

n∑

s=1

nd0sñd0s − 3md00 <
112n

81

(
(5t2 − 8t + 4)(15t− 9)

4(t− 1)(2t− 1)(10t− 9)
− 1

)
, (6.16)

Inequality (3.9) still holds. We will consider two situations: z0 ≥ rd0/3 and z0 < rd0/3.
When z0 ≥ rd0/3, we have

∑n
s=1 n2

d0s ≥ rd0 + 2z0 ≥ 5rd0
3 . So,

∆2 ≤ 3rd0 −
n∑

s=1

n2
d0s ≤ 4rd0/3 < 16n/9.

By Inequality (6.6), we have

(t− 1)∆2

∆1
≤ 10t2

9(t− 1)(2t− 1)
− 1

t− 1
.

By the preceding inequality and Inequality (6.15), inequality (3.9) holds since

10t− 9
15t− 9

>
10t2

9(t− 1)(2t− 1)
− 1

t− 1
.

When z0 < rd0/3, we have 2z0 ≥ 2rd0/3− (
∑n

s=1 nd0sñd0s − 3md00). So,
n∑

s=1

n2
d0s ≥ rd0 + 2z0 ≥ 5rd0

3
− (

n∑

s=1

nd0sñd0s − 3md00).

Thus,

∆2 ≤ 3rd0 −
n∑

s=1

n2
d0s ≤ 4rd0/3 +

n∑

s=1

nd0sñd0s − 3md00 ≤ 16n/9 +
n∑

s=1

nd0sñd0s − 3md00.

By inequality (6.6), we have

(t− 1)∆2

∆1
≤ 5t2(16n/9 +

∑n
s=1 nd0sñd0s − 3md00)

8(t− 1)(2t− 1)n
− 1

t− 1
.

By the preceding inequality and inequality (6.15), our conclusion holds if
(

1 +
81(

∑n
s=1 nd0sñd0s − 3md00)

112n

)
10t− 9
15t− 9

≥ 5t2(16n/9 +
∑n

s=1 nd0sñd0s − 3md00)
8(t− 1)(2t− 1)n

− 1
t− 1

.

After simplifying, the preceding inequality is equivalent to

(10t2 − 18t + 9)(5t− 3)
3(t− 1)(2t− 1)(10t− 9)

+
(

5t2(15t− 9)
8(t− 1)(2t− 1)(10t− 9)

− 81
112

) ∑n
s=1 nd0sñd0s − 3md00

n
≤ 1.

By inequality (6.16) and
∑n

s=1 nd0sñd0s − 3md00 ≥ 0, the preceding inequality is satisfied.
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