
Chapter 4

Optimal Designs for Generalized

Linear Models

John Stufken and Min Yang

4.1 Introduction

Both HK1 and HK2 deal with experiments in which the planned analysis is based on a linear

model. Selecting designs for such experiments remains a critically important problem.

However, there are many problems for which a linear model may not be a great choice. For

example, if the response is a binary variable or a count variable rather than a continuous

measurement, a linear model may be quite inappropriate. Experiments with such response

variables are quite common. For example, in an experiment to compare different dosages of

a drug, the outcome may be success (the dosage worked for a particular patient) or failure

(it did not work). A design would consist of selecting the different dosages to be used in

the experiment and the number of patients to be assigned to the selected dosages. How

can one identify a good design for such a problem in which a linear model for the binary

response is simply inadequate?

Another feature of the example in the previous paragraph is that the purpose of the

experiment is not to compare different treatments, but to understand the relationship

between the response and the dosage of the drug. Most of the chapters in HK1 and HK2

are devoted to comparative experiments in which various treatments are to be compared

to each other. Typically, each treatment is associated with a treatment effect, and the
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purpose of the experiment is some form of comparison of these effects. An exception to

this is Chapter 12 in HK1, in which the purpose of the experiment is to understand the

relationship between the response and one or more regression variables. This latter scenario

will also be the focus of the current chapter.

As noted in HK1, Section 2.10, there are many considerations that can and should

go into the selection of an appropriate design for a particular experiment. These could

be of a general scientific nature, of a purely statistical nature, or of an entirely practical

nature, and are almost always a combination of considerations of all types. The single

consideration in this chapter is that of identifying a design that is optimal according to a

specified statistical optimality criterion. Some criteria of this type were briefly presented

in HK2, Section 1.13 in the context of block designs. Thus, as a result of additional

experiment-specific considerations, the designs identified in this chapter may not be the

designs used in experiments. But even if one does not use a design that is optimal under

a specific optimality criterion, the optimal design will still provide a benchmark under

this criterion for all other designs. Thus we may be willing to sacrifice optimality for

other desirable properties of a design provided that the design that we do use has still a

reasonable performance with respect to the optimality criterion (or possibly with respect

to multiple optimality criteria). Without knowing how to identify optimal designs, we will

have no basis to assess whether a given design performs well under the criterion of interest.

The three previous paragraphs set the stage for this chapter. As a concise summary,

we will provide a brief introduction to some recent results on finding optimal designs for

experiments in which the focus is on studying the relationship between a response and one

or more regression variables through a special class of nonlinear models, namely Generalized

Linear Models (GLMs).

GLMs have found wide applicability in many fields, including drug discovery, clinical

trials, social sciences, marketing, and many more. Methods of analysis and inference for

these models are well established (see for example McCullagh and Nelder, 1989; McCulloch

and Searle, 2001; and Agresti, 2002). The study of optimal designs for experiments that

plan to use a GLM is however not nearly as well developed (see also Khuri, Mukherjee,

Sinha and Ghosh, 2006), and tends to be much more difficult than the corresponding and

better studied problem for the special case of linear models. (While linear models are a

special case of GLMs, this chapter focuses on GLMs that correspond to nonlinear models.)

One of the challenges is that for a GLM an optimal design typically depends on the

unknown parameters. This leads to the concept of locally optimal designs, which are

optimal for a priori chosen values of the parameters. The designs may be poor if the choice

of values is far from the true parameter values. Where feasible, a multistage approach could

help with this, in which a small initial design is used to obtain some information about

the parameters. We will briefly return to this later, but simply state for now that results

presented in this chapter are also applicable for a multistage approach (see also Yang and
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Stufken, 2009).

To illustrate some of the basic ideas we present a small example. Many of these ideas

will be revisited in more detail in later sections.

Example 4.1. In dose-response studies and growth studies, a subject receives a stimulus

at a certain level x. The binary response indicates whether the subject does or does

not respond to the stimulus. The purpose of such an experiment is often to study the

relationship between the probability that a subject responds and the level of the stimulus.

The level can be controlled by the experimenter, and a judicious selection of the levels

must be made prior to the experiment.

With Yi and xi denoting the response and stimulus level for the ith subject, we could

use a logistic regression model of the form

logit[P (Yi = 1)] = α+ βxi, (4.1)

where the logit function represents the log of the odds ratio. We consider two designs

(without claiming that either is a good design). Design I uses level 0.067 for 53% of the

subjects and level 0.523 for the other 47%. Design II uses each of the levels 0.1, 0.2, 0.3,

0.4, 0.5, and 0.6 equally often, namely for 16.7% of the subjects. Thus we will think of

a design as a probability measure on the possible levels. Such a design is also known as

an approximate design. Whether it corresponds to a design that can be used in practice

depends in part on the number of subjects in the experiment. For example, Design I can

be used with 100 subjects (53 of them at level 0.523 and 47 at level 0.067), but couldn’t be

used exactly with, for example, only 30 subjects. Thus, for an experiment with 30 subjects,

there is no exact design corresponding to Design I. An exact design corresponding to Design

II will only exist if the number of subjects is a multiple of 6.

While we can only use an exact design in practice, the discreteness of the design space

for a fixed number of subjects makes it difficult to identify optimal designs in such a

space. Working with approximate designs circumvents this difficulty, but at the expense

that we might not be able to use an exact design that corresponds precisely to an optimal

approximate design.

Continuing with the example, which of the two designs is best?

As stated, this question cannot be answered. First, we need to specify what we mean

by “best”. We will do this by using an optimality criterion. For example, we could compare

the designs in terms of V ar(α̂) + V ar(β̂), where α̂ and β̂ denote the maximum likelihood

estimators (MLEs) for the unknown parameters α and β. We might then want to select a

design that minimizes this criterion. But it is not quite that simple. For GLMs considered

here, these variances depend on the unknown parameters. How the two designs compare in

terms of V ar(α̂) + V ar(β̂), or other commonly used criteria, will thus depend on the true,

but unknown values of the parameters. This leads to the concept of locally optimal designs.
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The experimenter offers one or more “guesses” for the true values of the parameters, and

at each of these we can compare the two designs. The first may be better for some guessed

values, the second for others. For any guess of α and β, the best design among all possible

designs is said to be locally optimal for that guess.

Continuing with our example, suppose that we have guessed α = −3 and β = 10.

We will therefore compare the two designs under the assumption that these are the true

parameter values. Under this assumption, it can be shown that V ar(α̂)+V ar(β̂) for Design

I is 40% smaller than for Design II. This means that with Design I we need only 60% of

the number of subjects that would be needed for Design II in order to achieve the same

efficiency (in terms of V ar(α̂) + V ar(β̂)).

Moreover, it can be shown that Design I remains more efficient than Design II under

this optimality criterion if our guess for the true parameter values is slightly off.

This example shows that judicious selection of a design can make a big difference, but

also shows that the problem of selecting a good or optimal design is a fairly complicated

one.

One of the difficulties compared to linear models is that GLMs present a much broader

class of models. While linear models are all of the form E(Y ) = Xβ, often accompanied by

assumptions of independence and normality, in GLMs the form of the relationship between

the response and the regression variables depends on a link function and on distributional

assumptions for Y , which vary from one model to the next. This means that it is very

difficult to establish unifying and overarching results, and that the mathematics becomes

more difficult and messier. Until recently, many of the available results to identify optimal

designs were obtained via the so-called geometric approach. This method is inspired by

the pioneering work of Elfving (1952) for linear models. But for a long time it meant

that results could only be obtained on a case-by-case basis. Each combination of model,

optimality criterion and objective required its own proof. A number of very fine papers

have appeared over the years that address optimal designs for several such combinations.

But there is a limit to what can be handled with this approach.

Another difficulty, as already alluded to in Example 4.1, is that design comparisons

depend on the unknown parameters. The principal cause for this is that the Fisher infor-

mation matrix for the parameters in a GLM tends to depend on the parameters. Thus the

challenge in designing an experiment for such a model is that one would like to find the

best design for estimating the unknown parameters, and yet one has to know the parame-

ters to find the best design. As explained in the context of the example, one way to solve

this problem is to use locally optimal designs, which are based on the best guess of the

parameters. Even when a good guess is not available, knowing locally optimal designs is

valuable because they provide benchmarks for all other designs. An alternative that will

not be pursued in this paper is to adopt a Bayesian approach, which naturally facilitates

the inclusion of some uncertainty about a guess for the unknown parameters. This also re-
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quires some prior knowledge about the parameters, and may only lead to a computational

solution for specific problems without providing broader insights.

Another way to deal with the dependence on unknown parameters is, whenever feasible,

through a multistage approach (see Silvey, 1980; Sitter and Forbes, 1997). In a multistage

approach we would start with a small initial design to obtain some information about the

unknown parameters. This information is then used at the next stage to estimate the

true parameter values and to augment the initial design in an optimal way. The resulting

augmented design could be the final design, or there could be additional stages at which

more design points are added. This is also a mathematically difficult problem, but as we

will see it is not more difficult than using a single-stage approach. Since the multistage

approach uses information obtained in earlier stages, one may hope that it will lead in the

end to a better overall design than can be obtained with the single-stage approach.

Khuri, Mukherjee, Sinha, and Ghosh (2006) surveyed design issues for GLMs and noted

(p. 395) that “The research on designs for generalized linear models is still very much in its

developmental stage. Not much work has been accomplished either in terms of theory or in

terms of computational methods to evaluate the optimal design when the dimension of the

design space is high. The situations where one has several covariates (control variables)

or multiple responses corresponding to each subject demand extensive work to evaluate

“optimal” or at least efficient designs.”

There are however a number of recent papers that have made major advances in this

area. These include Biedermann, Dette and Zhu (2006), Yang and Stufken (2009), and (on

nonlinear models in general) Yang (2010). These papers tackle some of the aforementioned

difficulties, the first by further exploring the geometric approach and the other two by a

new analytic approach. These papers convincingly demonstrate that unifying results for

multiple models, multiple optimality criteria and multiple objectives can be obtained in

the context of nonlinear models. While these papers do provide many answers, they also

leave many open questions, especially with regard to slightly more complicated models.

This chapter will provide an introduction to the general problem and a peek at available

results. The emphasis will be on the analytic approach. In Section 4.2, we introduce nota-

tion and basic concepts such as the information matrix and optimality criteria. Some tools,

including Kiefer’s equivalence theorem, Elfving’s geometric approach, and the new analytic

approach are presented in Section 4.3. Some optimality results for the simplest GLMs are

introduced in Section 4.4. In Section 4.5, we study GLMs with multiple covariates and

with block effects. We conclude with some brief remarks in Section 4.6.

4.2 Notation and Basic Concepts

While GLMs can be appropriate for many types of data, the focus in this chapter is on

binary and count data. Let Y denote the response variable. In a GLM, a link function G

5



relates E(Y ) to a linear combination of the regression variables, i.e., G(E(Y )) = XTθ.

4.2.1 Binary Data

If Y1, . . . , Yn denote the binary response variables for n subjects, and xi1, . . . , xip denote

the values of p regression variables for subject i, then a class of GLMs can be written as

Prob(Yi = 1) = P (XT
i θ). (4.2)

Here the superscript T denotes matrix transposition, Xi = (1, xi1, . . . , xip)
T , the vector

θ = (θ0, θ1, . . . , θp)
T contains the unknown regression parameters, and P (x) is a cumulative

distribution function (cdf). Popular choices for the latter include P (x) = ex/(1 + ex) for

the logistic model as in (4.1) and P (x) = Φ(x), the cdf of the standard normal distribution,

for the probit model. Other choices include the double exponential and double reciprocal

models. The inverse of P (x) is the link function for these GLMs, i.e. P−1(Prob(Yi =

1)) = XT
i θ. For the logistic model, this link function corresponds to the logit function of

Example 4.1.

The likelihood function for θ under (4.2) can be written as

L(θ) =
n∏
i=1

P (XT
i θ)Yi

(
1− P (XT

i θ)
)(1−Yi)

. (4.3)

The resulting likelihood equations are

n∑
i=1

Xi
[Yi − P (XT

i θ)]P ′(XT
i θ)

P (XT
i θ)

(
1− P (XT

i θ)
) = 0. (4.4)

The MLE of θ, θ̂, is obtained by numerically solving these nonlinear equations, such as in

statistical software packages as SAS and SPSS. The likelihood function can also be used to

obtain asymptotic covariance matrices for functions of θ̂ that are of interest. To do this we

will need a generalized inverse of the Fisher information matrix. The information matrix

can be computed as

E

(
−∂

2 lnL(θ)

∂θ∂θT

)
=

n∑
i=1

IXi =

n∑
i=1

XiX
T
i

[P ′(XT
i θ)]2

P (XT
i θ)

(
1− P (XT

i θ)
) . (4.5)

IXi is the information matrix for θ at a single design point Xi.

4.2.2 Count Data

For count data Y1, . . . , Yn, we will assume the model for Yi to be a Poisson regression model

with mean λi. Using the same notation as in Subsection 4.2.1 and using the logarithm as

the link function, we have

log(λi) = XT
i θ. (4.6)
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The likelihood function for θ under (4.6) can be written as

L(θ) =
n∏
i=1

exp(−λi)λ
Yi
i

Yi!
, (4.7)

which results in the likelihood equations

n∑
i=1

Xi

(
Yi − exp(XT

i θ)
)

= 0. (4.8)

The MLE for θ, θ̂, can again be obtained numerically by solving these nonlinear equations.

The information matrix for θ under Model (4.6) can be written as

E

(
−∂

2 lnL(θ)

∂θ∂θT

)
=

n∑
i=1

IXi =

n∑
i=1

XiX
T
i exp(XT

i θ). (4.9)

4.2.3 Optimality Criteria

For an exact design with a total of n subjects we must select (1) distinct vectorsX1, . . . ,Xk,

as defined in Subsection 4.2.1, in a design space, say X ; and (2) the number of subjects,

ni, to be assigned to Xi so that n =
∑k

i=1 ni. The Xi’s are also called the support points

for the design. The optimal exact design problem is to make such selections so that the

resulting design is best with respect to a certain optimality criterion. As already alluded

to in Example 4.1, instead of this typically intractable exact design problem, the corre-

sponding approximate design problem is considered. Thus we would like to find a design

ξ = {(Xi, ωi), i = 1, . . . , k}, where the ωi’s are nonnegative weights that sum to 1. Thus

ωi represents the proportion of subjects that are to be assigned to Xi. The corresponding

information matrix for θ can be written as

Iξ =

k∑
i=1

ωiIXi , (4.10)

where IXi is again the information matrix for θ for a one-point design that only uses Xi.

If there is an exact design for n subjects corresponding to ξ (which requires nωi to be

integral for all i), then the information matrix for this exact design is n times the matrix

shown in (4.10).

The interest of the experimenter may not always be in θ, but could be in a vector

function of θ, say g(θ). By the Delta method, the approximate covariance matrix of g(θ̂)

under design ξ is equal to

Σξ =

(
∂g(θ)

∂θT

)
I−ξ

(
∂g(θ)

∂θT

)T
, (4.11)
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where I−ξ is a generalized inverse of the information matrix in (4.10). In some situations we

could be interested in a function g(θ) for which the matrix Σξ is singular for any design ξ.

For example, this would happen if the elements of g(θ) are linearly dependent, such as for

g(θ) = (θ1, θ2, θ1 +θ2)T . We will however limit our interest in this chapter to functions g(θ)

for which there are designs that make Σξ nonsingular. In particular, if we are interested

in g(θ) = θ or if g is a one-to-one function, the parametrization should be such that there

are designs for which Iξ is nonsingular.

For designs for which the inverse of the matrix in (4.11) exists, this inverse is the

information matrix for g(θ) under design ξ. We would like to select a design that, in

some sense, maximizes this information matrix, or minimizes the covariance matrix. The

following are some of the more prominent optimality criteria that suggest how we might

want to do this. For the first three of these, the minimization is over those designs ξ for

which Σξ is nonsingular. For the fourth criterion, ξ should be a design so that the vector

c is not in the null space of Σξ.

• D-optimality. A design is D-optimal for g(θ) if it minimizes |Σξ| over all possible

designs. Such a design minimizes the expected volume of the asymptotic 100(1−α)%

joint confidence ellipsoid for the elements of g(θ). For a one-to-one transformation

h(θ) of g(θ), if ξ is D-optimal for g(θ) then the same holds for h(θ). Thus D-

optimality is invariant under such transformations. Many other optimality criteria

do not have this property.

• A-optimality. A design is A-optimal for g(θ) if it minimizes Tr(Σξ) over all pos-

sible designs. Such a design minimizes the sum of the asymptotic variances of the

estimators of the elements of g(θ).

• E-optimality. A design is E-optimal for g(θ) if it minimizes the largest eigenvalue

of Σξ over all possible designs. Such a design minimizes the expected length of the

longest semi-axis of the asymptotic 100(1 − α)% joint confidence ellipsoid for the

elements of g(θ).

• c-optimality. A design is c-optimal for g(θ) if it minimizes cTΣξc over all possible

designs, where c is a vector of the same length as g(θ). Such a design minimizes the

asymptotic variance of cT g(θ̂).

To facilitate simultaneous study of some of the above and additional criteria, Kiefer (1974)

introduced, among others, the class of functions

Φp(Σξ) =

[
1

v
Tr ((Σξ)

p)

]1/p

, 0 < p <∞. (4.12)

Here v is the dimension of Σξ. A design is Φp-optimal for g(θ) if it minimizes Φp(Σξ)

over all possible designs. In addition, we define Φ0(Σξ) = limp↓0 Φp(Σξ) and Φ∞(Σξ) =
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limp→∞Φp(Σξ). Obviously, Φ1-optimality is equivalent to A-optimality. It can be shown

that Φ0-optimality corresponds to D-optimality and Φ∞-optimality to E-optimality.

Which optimality criterion one should use may depend on the objective of the exper-

iment, but also on personal preference (see also HK2, Section 1.13.4). One compromise

could be to find a design that performs well under multiple criteria. In order to assess

whether a design performs well under different criteria, one would however first need to

know optimal designs under these criteria. In this chapter, we will only focus on tools for

identifying optimal designs.

To emphasize an earlier observation, the information matrix Iξ and the covariance

matrix Σξ depend, for the GLMs considered here, on θ. Thus none of the above mini-

mizations can be carried out, unless we have a “guess” for θ. This approach, resulting in

locally optimal designs, is taken here.

4.3 Tools for Finding Locally Optimal Designs

Once we have decided on a model, a function g(θ) of interest, an optimality criterion,

and a guess for the parameter values, we are ready to identify a locally optimal design

by optimizing the objective function corresponding to the selected criterion. (We will

often drop the adjective “locally” from hereon, but the reader should remember that the

discussion in this chapter is always about locally optimal designs.) However, this is a very

challenging problem. How many support points do we need in an optimal design? What

are those points? What are the corresponding weights? Directly optimizing the objective

function is generally not feasible because the objective function is too complicated and there

are too many variables. Moreover, even if a purely numerical optimization were feasible, it

might not provide enough inside into the structure and general features of optimal designs.

There are two standard traditional tools for studying optimal designs that have inspired

many researchers: Elfving’s geometric approach and Kiefer’s equivalence theorem. The

emphasis in this chapter is however on a new analytical approach, although we will give

the reader also a flavor of the traditional tools.

4.3.1 Traditional Approaches

The geometric approach proposed by Elfving (1952) for linear models has had a profound

impact on optimal design theory. Whereas Elfving was interested in c- and A-optimal

experimental designs for linear models in two dimensions, his work has proven to be inspi-

rational for the development of optimal design theory in a much broader framework.

To describe the basic idea, write the information matrix for θ as
∑

i ωif(Xi,θ)f(Xi,θ)T ,

where f(Xi,θ) is a column vector that depends on the design point Xi and the parameter

vector θ. Note that the information matrices in (4.5) and (4.9), or more precisely those for
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the corresponding approximate designs, are of that form with f(X,θ) being a multiple of

X. Let G (which depends on θ) be the space that is generated through f(X,θ) by letting

X take all possible values in the design space X . Assume that G, which is called the induced

design space, is closed and bounded. The support points for an optimal design must lie on

the “smallest ellipsoid” centered at the origin that contains G. The definition of “smallest

ellipsoid” depends on the optimality criterion but can be stated explicitly. Studying these

ellipsoids and their intersections with the induced design space provides therefore a method

for determining possible support points for an optimal design. Many optimality results in

the literature are based on variations of this approach. Some seminal contributions include

Ford, Torsney, and Wu (1992) for c- and D-optimal designs; Dette and Haines (1994) for

E-optimal designs; and Biedermann, Dette, and Zhu (2006) for Φp-optimal designs. We

refer the reader to these articles and their references to learn more about this approach.

A second result that has had a profound impact on research in optimal design is the

equivalence theorem. In a seminal contribution, Kiefer and Wolfowitz (1960) derived an

equivalence theorem for D-optimality. Later, Kiefer (1974) presented a more general re-

sult that applies for Φp optimality. Pukelsheim (2006) contains very general results on

equivalence theorems. All of these studies focus on optimality for linear functions of the

parameters under linear models. However, once a value of θ is fixed under the local op-

timality approach, then the results extend under mild conditions. The following result is

formulated in the spirit of Pukelsheim (2006).

Theorem 4.1 (Equivalence theorem). Suppose that the information matrix for θ under

a design ξ = {(Xi, ωi), i = 1, . . . , k} is given by
∑

i ωif(Xi,θ)f(Xi,θ)T . A design ξ∗ is

Φp-optimal for g(θ), 0 ≤ p <∞, if and only if there exists a generalized inverse I−ξ∗ of Iξ∗

so that

f(X,θ)T I−ξ∗

(
∂g(θ)

∂θT

)T
(Σξ∗)

p−1

(
∂g(θ)

∂θT

)
I−ξ∗f(X,θ) ≤ Tr ((Σξ∗)

p) , for all X ∈ X ,

(4.13)

where Σξ is as defined in (4.11) and X is the design space. Equality in (4.13) holds if and

only if X is a support point for a Φp-optimal design.

The equivalence theorem is very useful to verify whether a candidate design is indeed

optimal. For the case that p = 0, corresponding to D-optimality, the righthand side of

(4.13) reduces simply to the dimension of g(θ).

4.3.2 An Analytical Approach

The equivalence theorem and the geometric approach are very powerful tools for study-

ing optimal designs for GLMs. Nonetheless, there are many problems of great practical

interest for which neither of these tools has, as of yet, helped to provide a solution. Yang
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and Stufken (2009) propose a new strategy for studying optimal designs for GLMs. The

remainder of this chapter will discuss this strategy and will present some of the results that

have been obtained by using it.

For a given model and design space, suppose that we can identify a subclass of designs,

say Ξ, so that for any design ξ 6∈ Ξ, there is a design ξ̃ ∈ Ξ, so that I ξ̃(θ) ≥ Iξ(θ), i.e., the

information matrix for θ under ξ̃ dominates that under ξ in the Loewner ordering. Then

ξ̃ is locally at least as good as ξ under the commonly used optimality criteria such as D-,

A- and E-optimality, and more generally Φp-optimality. Moreover, if interest is in g(θ),

design ξ̃ is also better than design ξ in the Loewner ordering since

Σξ =

(
∂g(θ)

∂θT

)
I−ξ

(
∂g(θ)

∂θT

)T
≥
(
∂g(θ)

∂θT

)
I−
ξ̃

(
∂g(θ)

∂θT

)T
= Σξ̃. (4.14)

This would mean that the search for optimal designs could be restricted to a search in Ξ.

We will refer to Ξ as a complete class for this problem. One trivial choice for Ξ is the class

of all possible designs. This choice is not useful. In order for Ξ to be helpful, it needs to be

a small class. For example, for some models Ξ might perhaps consist of “all designs with

at most 3 support points”. That would be an enormous reduction from having to consider

all possible designs with any number of support points. In order to be useful, the approach

must also work for any “guess” of θ under the local optimality approach. Note also from

our formulation that the choice of Ξ is not based on any of the common optimality criteria

and does not depend on a particular choice for g(θ). So we would like to use the same

complete class Ξ no matter what the guess for θ is, no matter which function g(θ) we are

interested in, and no matter which information-based optimality criterion we have in mind.

Ξ will depend on the model and the design space.

Thus, for a given model and design space, the approach consists of identifying small

complete classes Ξ.

Before we continue, we observe that this approach is also helpful for multistage exper-

iments, where an initial experiment may be used to get a better idea about the unknown

parameters. At a second or later stage, the question then becomes how to add more design

points in an optimal fashion. If ξ1 denotes the design used so far for n1 design points,

and we want to augment this design optimally by n2 additional design points, then we

are looking for an approximate design ξ2 that maximizes the combined information matrix

n1Iξ1 + n2Iξ2 . Because the first part of this matrix is fixed, if we have a complete class

Ξ for the single-stage approach, it is immediately clear that we can restrict our choice for

ξ2 to Ξ in order to obtain a combined information matrix that can not be beaten in the

Loewner ordering by a choice of ξ2 that is not in Ξ. Thus Ξ is also a complete class for the

multistage approach.

The strategy described in the previous paragraphs was used in Yang and Stufken (2009).

They characterized complete classes Ξ for nonlinear models (including GLMs) with two
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parameters. We summarize their results here for GLMs only. For proofs and results for

other nonlinear models with two parameters we refer the reader to Yang and Stufken

(2009).

In the context of GLMs, and using the notation of Section 4.2, results are for two-

parameter models with XT
i θ = θ0 + θ1xi1. We define ci = θ0 + θ1xi1, and call this the

induced design point. Note that under local optimality, using guessed values for θ0 and

θ1, a design can be expressed in terms of choices for xi1 or, equivalently, in terms of the

induced design points ci.

For a design ξ = {(ci, ωi), i = 1, ..., k}, write the information matrix for θ as Iξ =∑k
i=1 ωiIci , and write Ici as ATC(ci)A. Here matrix A may depend on θ, but not on

the induced design point ci. We write the matrix C(c), which can depend on θ and the

induced design points, as

C(c) =

(
Ψ1(c) Ψ2(c)

Ψ2(c) Ψ3(c)

)
. (4.15)

Define

F (c) = Ψ′1(c)

(
Ψ′2(c)

Ψ′1(c)

)′((Ψ′3(c)

Ψ′1(c)

)′
/

(
Ψ′2(c)

Ψ′1(c)

)′)′
. (4.16)

We will assume that the design space, in terms of the induced design points, is an interval

[D1, D2] (where the endpoints can for some applications be −∞ or ∞, respectively).

Theorem 4.2. Assume that F (c) is well-defined for c ∈ [D1, D2]. If F (c) ≤ 0 for all

c ∈ [D1, D2], then a complete class Ξ is obtained by taking all designs with at most two

support points, with D1 being one of them. If F (c) ≥ 0 for all c ∈ [D1, D2], then the class

of all designs with at most two support points and D2 being one of them forms a complete

class.

Theorem 4.2 requires F (c) to be well defined and either positive or negative in the entire

interval [D1, D2]. These requirements can be relaxed as stated in the following result.

Theorem 4.3. For the matrix C(c) in (4.15), suppose that Ψ1(c) = Ψ1(−c), Ψ2(c) =

−Ψ2(−c), and Ψ3(c) = Ψ3(−c). Suppose further that D1 < 0 < D2 and that F (c) is

well-defined for c ∈ (0, D2]. Let F (c) < 0 and Ψ′1(c)
(

Ψ′3(c)
Ψ′1(c)

)′
< 0 for c ∈ (0, D2]. Then a

complete class Ξ is obtained by taking all designs with at most two support points with the

additional following restrictions: If |D1| = D2, the two points can be taken to be symmetric

in the induced design space; if |D1| < D2, then the two points can be taken to be either

symmetric or one of the points is taken as D1 and the other in (−D1, D2]; if |D1| > D2,

then the two points can be taken to be either symmetric or one of the points is taken as D2

and the other in [D1,−D2).

For the proofs of these results we refer to Yang and Stufken (2009). The next sections

will provide some applications of these results.

12



4.4 GLMs with Two Parameters

In this section we will focus on GLMs with XT
i θ = θ0 + θ1xi for the binary data model

(4.2) and the count data model (4.6). For simplicity of notation, we replace the parameters

by α and β, that is we replace θ = (θ0, θ1)T by θ = (α, β)T . By the expressions for the

information matrix provided in (4.5) and (4.9), the information matrix for θ can be written

as

Iξ =
k∑
i=1

ωiΨ(α+ βxi)

(
1 xi
xi x2

i

)
, (4.17)

where, ξ = {(xi, ωi), i = 1, ..., k}. The function Ψ(x) depends on the model and takes the

following forms for the three models that we will focus on:

Ψ(x) =


ex

(1+ex)2
for the logistic model

φ2(x)
Φ(x)(1−Φ(x)) for the probit model

ex for the Poisson regression model,

(4.18)

where φ(x) is the density function for the standard normal distribution.

These simple models have been studied extensively in the optimal design literature. For

binary data, under the restriction of symmetry for the induced design space, Abdelbasit

and Plackett (1983) identify a two-point D-optimal design for the logistic model. Minkin

(1987) strengthens this result by removing the restriction on the design space. Using the

geometric approach (see Subsection 4.3.1), Ford, Torsney, and Wu (1992) study c-optimal

and D-optimal designs for this model. Using the same approach and model, Sitter and Wu

(1993a, 1993b) study A- and F -optimal designs, while Dette and Haines (1994) investigate

E-optimal designs. Mathew and Sinha (2001) obtain a series of optimality results for the

logistic model by using an analytic approach, while Biedermann, Dette, and Zhu (2006)

obtained Φp-optimal designs for a restricted design space using the geometric approach.

Chaloner and Larntz (1989) and Agin and Chaloner (1999) study Bayesian optimal designs

for the logistic model. For count data, Ford, Torsney, and Wu (1992) identified c- and D-

optimal designs. Minkin (1993) studied optimal designs for 1/β.

In this section, we will present optimal designs for the above models by using the

analytic approach presented in Section 4.3. As we will see, this approach generalizes and

extends most of the available results. Perhaps even more importantly, in the next section we

will see that this approach also facilitates handling GLMs with more than two parameters.

From (4.17), the information matrix Ix for (α, β)T under a one-point design with all

weight at x can be written as

Ix =

(
1 0

−α/β 1/β

)
︸ ︷︷ ︸

AT

(
Ψ(c) cΨ(c)

cΨ(c) c2Ψ(c)

)(
1 −α/β
0 1/β

)
︸ ︷︷ ︸

A

,
(4.19)
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where c = α + βx. Note that we are assuming that neither α nor β is equal to 0, as we

will do throughout. Clearly, matrix A depends only on the parameters α and β, and not

on x. Thus we can apply the analytic approach in Section 4.3 for these simple models.

We will first consider the Poisson regression model, where Ψ1(c) = ec, Ψ2(c) = cec,

and Ψ3(c) = c2ec. We find that Ψ′1(c) = ec,
(

Ψ′2(c)
Ψ′1(c)

)′
= 1, and

((
Ψ′3(c)
Ψ′1(c)

)′
/
(

Ψ′2(c)
Ψ′1(c)

)′)′
= 2.

Hence, the function F (c) defined in (4.16) is positive in any interval. Applying Theorem

4.2, we reach the following conclusion.

Theorem 4.4. For the Poisson regression model in (4.6) with ci = XT
i θ = α + βxi, let

ci ∈ [D1, D2] be the induced design space, D1 < D2 < ∞. Then the class of designs with

at most two support points and D2 being one of them forms a complete class.

Thus Theorem 4.4 tells us that when searching for an optimal design, we need to look

no further than the complete class described in the theorem. Given how simple the designs

in this class are, it is easy to use a search algorithm to do this for a given function g(θ),

a given optimality criterion, and a guess for the parameters. The algorithm would merely

have to optimize a function of interest over two unknowns: the second support point and

the weight for that point. Moreover, depending on the problem, it may actually be possible

to derive an explicit form for the optimal design by using Theorem 4.4.

Example 4.2. By Theorem 4.4, for the Poisson regression model, a D-optimal design for

(α, β)T can be based on D2 and c < D2, where c needs to be determined. The weight

for each of these support points must be equal to 1
2 (see Silvey, 1980). Computing the

determinant of the information matrix in (4.17), it is easily seen that the D-optimal design

must maximize ec/2(D2 − c). As a function of c, this is is an increasing function on

(−∞, D2 − 2] and a decreasing function on [D2 − 2, D2]. Thus, if D1 < D2 − 2, then a

D-optimal design is given by ξ = {(D2−2, 1/2), (D2, 1/2)}. Otherwise, a D-optimal design

is given by ξ = {(D1, 1/2), (D2, 1/2)}.

Theorem 4.4 unifies and extends a number of results that had already appeared in the

literature. For example, Ford, Torsney, and Wu (1992) identified c- and D-optimal designs

using the geometric approach. They showed that an optimal design has two support points

and that one of them is D2. Minkin (1993) studied optimal designs for 1/β for this model.

He assumed β < 0 and used the induced design space (−∞, α]. He concluded that the

optimal design has two support points, and that one of them is α.

Turning now to the logistic and probit models, both have the properties that Ψ1(c) =

Ψ1(−c), Ψ2(c) = −Ψ2(−c), and Ψ3(c) = Ψ3(−c). Theorems 4.2 and 4.3 can thus be applied

as long as other conditions in the theorems are satisfied. For the logistic model it is easily
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seen that

Ψ′1(c) = −e
c(ec − 1)

(ec + 1)3
,(

Ψ′2(c)

Ψ′1(c)

)′
=

e2c + 1

(ec − 1)2
,(

Ψ′3(c)

Ψ′1(c)

)′
=

2((c− 1)e2c + c+ 1)

(ec − 1)2
,((

Ψ′3(c)

Ψ′1(c)

)′
/

(
Ψ′2(c)

Ψ′1(c)

)′)′
=

2(e2c − 1)2

(e2c + 1)2
.

(4.20)

Hence, if the induced design space [D1, D2] ⊂ (−∞, 0], then F (c) > 0; if the induced design

space [D1, D2] ⊂ [0,∞), then F (c) < 0; further, Ψ′1(c)
(

Ψ′3(c)
Ψ′1(c)

)′
< 0 for c > 0. These same

conclusions are also valid for the probit model, but we will skip the much more tedious

details. Applying Theorems 4.2 and 4.3, we reach the following conclusion.

Theorem 4.5. For the logistic or probit model as in (4.2) with ci = XT
i θ = α + βxi, let

ci ∈ [D1, D2] be the induced design space. Then the following complete class results hold:

(i) If D2 ≤ 0, then the class of designs with at most two support points and D2 being

one of them forms a complete class;

(ii) if D1 ≥ 0, then the class of designs with at most two support points and D1 being

one of them forms a complete class;

(iii) if D2 = −D1, then the class of designs with at most two support points that are

symmetric forms a complete class;

(iv) if 0 < −D1 < D2, then the class of designs with at most two support points, where

either one of the points is D1 and the other point is larger than −D1 or the two points are

symmetric, forms a complete class;

(v) if 0 < D2 < −D1, then the class of designs with at most two support points, where

either one of the points is D2 and the other point is smaller than −D2 or the two points

are symmetric, forms a complete class.

Example 4.3. By Theorem 4.5, for the logistic and probit models, D-optimal designs for

(α, β)T can be based on two support points, say c1 and c2. The weights for these support

points must be equal to 1
2 (see Silvey, 1980). Using (4.17), it is easily seen that the D-

optimal design must maximize (c1 − c2)2Ψ(c1)Ψ(c2). Because of the relationship between

c1 and c2 provided in Theorem 4.5, there is essentially one unknown to be decided. For

example, if D2 = −D1, so that c1 = −c2 = c, say, we need to maximize 4c2Ψ2(c). For the

logistic model, this is an increasing function for c ∈ [0, 1.5434] and a decreasing function for

c > 1.5434. (For the probit model the critical value for c is 1.1381.) Thus if D2 > 1.5434,
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then a D-optimal design is given by ξ = {(−1.5434, 1/2), (1.5434, 1/2)}. Otherwise, a

D-optimal design is given by ξ = {(−D2, 1/2), (D2, 1/2)}.

Example 4.4. Again using the logistic or probit model, suppose that D1 > 0. By The-

orem 4.5, we can take D1 as one of the two support points, and with c, D1 < c ≤ D2,

denoting the other support point we need to maximize (c−D1)2Ψ(c) for a D-optimal de-

sign. This is an increasing function for c ∈ [D1, c
∗] and a decreasing function when c > c∗.

For the logistic model, c∗ is the solution of ec(2−c+D1)+c−D1 +2 = 0. If c∗ < D2, then

a D-optimal design is given by ξ = {(D1, 1/2), (c∗, 1/2)}. Otherwise, a D-optimal design

is given by ξ = {(D1, 1/2), (D2, 1/2)}.

Example 4.5. Consider the logistic regression model in (4.2) with ci = α+ βxi. Suppose

that we are interested in a locally D-optimal design for α = 2 and β = −1, with the design

space restricted to x ∈ [0, 1]. Then [D1, D2] = [1, 2]. We can apply the conclusion in

Example 4.4 since D1 > 0. Simple computation shows that c∗ = 3.1745. Thus a D-optimal

design in terms of the induced design space is given by ξ = {(1, 1/2), (2, 1/2)}, which is

{(1, 1/2), (0, 1/2)} in the original x-space.

In Subsection 4.5.2 we will return to finding D-optimal designs in a slightly more

complicated setting. Here we show how Theorem 4.5 can be used to identify A-optimal

designs for (α, β)T under the logistic and probit models when there is no constraint on the

design space, i.e., D1 = −∞ and D2 =∞. This question was posed by Mathew and Sinha

(2001) and was studied by Yang (2008). By Theorem 4.5, we can focus on designs with two

symmetric induced design points, i.e., ξ = {(x1, ω1), (x2, ω2)}, where α+ βx1 = −α− βx2.

With c = α + βx1, and using (4.17) and the observation that Ψ is an even function for

these two models, it follows that the information matrix for (α, β)T under ξ can be written

as

Iξ = Ψ(c)

(
1 ω1( c−αβ ) + ω2(−c−αβ )

ω1( c−αβ ) + ω2(−c−αβ ) ω1( c−αβ )2 + ω2(−c−αβ )2

)
. (4.21)

For a locally A-optimal design, we need to minimize the following trace as a function of c

and ω1 (with ω2 = 1− ω1):

Tr
(
I−1
ξ

)
=

1 + ω1( c−αβ )2 + ω2(−c−αβ )2[
ω1( c−αβ )2 + ω2(−c−αβ )2 −

(
ω1( c−αβ ) + ω2(−c−αβ )

)2
]

Ψ(c)

=
[β2 + (c+ α)2]/ω1 + [β2 + (c− α)2]/ω2

4c2Ψ(c)

≥ T 2(c).

(4.22)

Here,

T (c) =

√
β2 + (c+ α)2 +

√
β2 + (c− α)2

2c
√

Ψ(c)
. (4.23)
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Note that we do not have to worry about c = 0 since that corresponds to a 1-point design,

which cannot be optimal for (α, β)T . The last inequality of (4.22) gives equality for

ω1 = 1− ω2 =

√
β2 + (c+ α)2√

β2 + (c+ α)2 +
√
β2 + (c− α)2

=: ω1(c). (4.24)

We are now ready to present locally A-optimal designs under the logistic and probit models.

Theorem 4.6. For the logistic or probit model as in (4.2) with XT
i θ = α + βxi and

an unrestricted design space, the design ξ∗ = {(x∗1, ω∗1), (x∗2, ω
∗
2)} is A-optimal for (α, β)T ,

where x∗1 = (c∗ − α)/β, x∗2 = (−c∗ − α)/β, ω∗1 = ω1(c∗) as defined in (4.24), ω∗2 = 1− ω∗1,

and c∗ is the only positive solution of the equation

c2 − α2 − β2√
β2 + (c+ α)2

√
β2 + (c− α)2

= 1 +
cΨ′(c)

Ψ(c)
. (4.25)

Proof. Starting from (4.22) and (4.24), we will show that c∗ is the unique positive design

point that minimizes T 2(c). The restriction to positive design points is justified because

T 2(c) is an even function. Since T (c) in (4.23) is positive, we can instead focus on mini-

mizing T (c) for c > 0. By straightforward computations, we obtain that

T ′(c) =
T1(c)

2c2
,

where

T1(c) =

(
c
(

Ψ−1/2(c)
)′
−Ψ−1/2(c)

)(√
β2 + (c+ α)2 +

√
β2 + (c− α)2

)
+ Ψ−1/2(c)

(
c2 + αc√

β2 + (c+ α)2
+

c2 − αc√
β2 + (c− α)2

)
.

(4.26)

Taking the derivative of T1(c) we find that

T ′1(c) =c
(

Ψ−1/2(c)
)′′ (√

β2 + (c+ α)2 +
√
β2 + (c− α)2

)
+ 2c

(
Ψ−1/2(c)

)′( c+ α√
β2 + (c+ α)2

+
c− α√

β2 + (c− α)2

)

+ cΨ−1/2(c)

(
β2

(
√
β2 + (c+ α)2)3

+
β2

(
√
β2 + (c− α)2)3

)
.

(4.27)

By studying the function f(x) = x/
√
β2 + x2, it is easily seen that for c > 0 it holds that

f(c+ α) + f(c− α) > 0.
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Combined with the observation that, for both the logistic and probit model Ψ−1/2(c) has

positive first and second order derivatives for c > 0, we can conclude that T ′1(c) > 0 . Thus

T1(c) is an increasing function for c > 0 and has at most one positive root. It follows that

T ′(c) also has at most one positive root. But since T (c) goes to +∞ for both c ↓ 0 and

c → ∞, T ′(c) must also have at least one positive root, which must thus be unique and

must minimize T (c). It is fairly straightforward to show that T1(c) = 0 is equivalent to

(4.25). The result follows.

Example 4.6. Consider the probit model in (4.2) with ci = α+βxi. Suppose that we are

interested in a locally A-optimal design for α = 1, β = 2, and that there is no restriction

on the design space. Using (4.25) with these values for α and β and with the choice of

Ψ for the probit model as in (4.18), we obtain that c∗ in Theorem 4.6 is equal to 1.3744.

It follows that an A-optimal design is given by {(0.1872, 0.6041), (−1.1872, 0.3959)} in the

x-space.

4.5 GLMs with Multiple Parameters

Whereas a model with only two parameters is adequate for some applications, other situ-

ations call for models with more parameters. For example, the subjects in an experiment

may have different characteristics that can be captured by one or more qualitative vari-

ables, such as race, gender or age category. To allow for differences in the relationship

between the response variable and a covariate for subjects belonging to different groups,

effects associated with these qualitative variables could be included in the model in addi-

tion to a covariate such as stimulus level (see, for example, Tighiouart and Rogatko, 2006).

As another example, an experimenter may be able to control more than one covariate that

has a relationship with the response variable. Optimal design results for GLMs with more

than two parameters are relatively rare. Selected results include Sitter and Torsney (1995a,

1995b), who study D-optimal designs for binary data with two and more covariates. Under

certain constraints, Haines, Kabera, Ndlovu, and O’Brien (2007) study D-optimal designs

for logistic regression in two variables. Russell, Woods, Lewis, and Eccleston (2009) con-

sider multivariate GLMs for count data. Computationally oriented contributions include

Woods, Lewis, Eccleston, and Russell (2006) and Dror and Steinberg (2006) for studying

robust designs as well as Dror and Steinberg (2008) for studying sequential designs. They

all use D-optimality and provide algorithms for finding desirable designs. For example,

Dror and Steinberg (2006) provide computer programs for deriving D-optimal designs for

general models. This works best for smaller values of p.

In this section, we will systematically study (i) GLMs with multiple independently

chosen covariates; and (ii) GLMs with group effects.
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4.5.1 GLMs with Multiple Covariates

We will focus on the model in (4.2) for a binary response. We will again take XT
i =

(1, xi1, . . . , xip), where xi1, · · · , xip denote the values of p regression variables for subject i

that can be selected by the experimenter. We will assume that these values can be selected

independently. This implies in particular that there cannot be any functional relationships

(such as x2 = x2
1 or x3 = x1x2) between these covariates. The design space X is thus a

subset of Rp.
An approximate design can be presented as ξ = {(Xi, ωi), i = 1, ..., k}, where ωi is

the weight for the vector Xi. For the parameter vector θ = (θ0, θ1, . . . , θp)
T , we will

assume that θp 6= 0. With CT
i = (1, xi1, . . . , xi,p−1, ci) and ci = XT

i θ, there is then

a one-to-one relationship between Xi and Ci. A design may thus also be written as

ξ = {(Ci, ωi), i = 1, ..., k}.

Using (4.5), and writing AT =

(
Ip 0

AT
1 1/θp

)
where AT

1 = 1
θp

(−θ0,−θ1, . . . ,−θp−1), the

information matrix for θ under model (4.2) can be written as

Iξ =
k∑
i=1

ωiXiΨ(ci)X
T
i = AT

(
k∑
i=1

ωiCiΨ(ci)C
T
i

)
A, (4.28)

where Ψ(x) = [P ′(x)]2/[P (x)(1 − P (x))]. Note that for the logistic and probit models,

Ψ(x) was presented explicitly in (4.18). Also note that the case of p = 1 corresponds to

the models in Section 4.4. The above matrix AT reduces in that case to the corresponding

matrix in (4.19).

As noted in Sitter and Torsney (1995a), unless appropriate constraints are placed on

the design space, the information matrix can become arbitrarily large for the case that

p ≥ 2. In applications it may indeed be quite reasonable that each of the covariates can

only take values in a bounded interval. In this chapter, we will assume that there are

constraints on the first p − 1 covariates, but not on xp. Specifically, we will assume that,

for all i, xij ∈ [Uj , Vj ], j = 1, . . . , p− 1, but xip can take any value in (−∞,∞). The main

reason for not placing a constraint on xp is of a technical nature.

We will now show that there are, just as for the two-parameter models in Section 4.4,

relatively simple complete classes for the multi-parameter models in this section. Consider

a design ξ = {(Ci, ωi), i = 1, . . . , k}, with CT
i = (1, xi1, . . . , xi,p−1, ci). We focus for the

moment on xij for a fixed i and j with j ≤ p−1. Define rij =
Vj−xij
Vj−Uj . Note that rij ∈ [0, 1].

Then, using the convexity of the function x2, it is easy to see that

rijUj + (1− rij)Vj = xij ,

rijU
2
j + (1− rij)V 2

j ≥ x2
ij .

(4.29)

It is now easy to see that if we replace Ci in ξ by Cij1 = (1, xi1, . . . , Uj , . . . , xi,p−1, ci)
T

and Cij2 = (1, xi1, . . . , Vj , . . . , xi,p−1, ci)
T with weights ωij1 = rijωi and ωij2 = (1− rij)ωi,
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respectively, then the matrices ωij1Cij1Ψ(ci)C
T
ij1 + ωij2Cij2Ψ(ci)C

T
ij2 and ωiCiΨ(ci)C

T
i

have the same elements except for the (j+1)th diagonal element corresponding to covariate

xj . That diagonal element is larger in the former matrix than in the latter based on (4.29).

Repeating this argument for other values of j, 1 ≤ j ≤ p − 1, we conclude that for any

design point Ci there exist weights ω`i , ` = 1, . . . , 2p−1, so that

ωiCiΨ(ci)C
T
i ≤

2p−1∑
`=1

ω`iC
`
iΨ(ci)(C

`
i)
T . (4.30)

The design points C`
i are of the form

(
C`
i

)T
= (1, a`1, . . . , a`,p−1, ci), where a`j is either Uj

or Vj and
∑2p−1

`=1 ω`i = ωi. Now we are ready to present a complete class result.

Theorem 4.7. For the logistic and probit model as in (4.2) with ci = XT
i θ, let [Uj , Vj ] be

the bounded interval for the jth covariate, 1 ≤ j ≤ p− 1. Then a complete class is formed

by all designs with at most 2p support points of the form {(C`1, ω`1) & (C`2, ω`2), ` =

1, . . . , 2p−1}, where CT
`1 = (1, a`1, . . . , a`,p−1, c`), C

T
`2 = (1, a`1, . . . , a`,p−1,−c`), and c` > 0.

Here a`j is either Uj or Vj, and (a`1, . . . , a`,p−1), l = 1, . . . , 2p−1 cover all such combinations.

Proof. Let ξ = {(Ci, ωi), i = 1, . . . , k} be an arbitrary design with xij ∈ [Uj , Vj ], i =

1, . . . , k, j = 1, . . . , p− 1. By (4.28) and (4.30), we have

Iξ ≤ AT

 k∑
i=1

2p−1∑
`=1

ω`iC
`
iΨ(ci)(C

`
i)
T

A, (4.31)

where C`
i and ω`i are as defined prior to the statement of the theorem. Notice that

C`
iΨ(ci)(C

`
i)
T = BT

`

(
Ψ(ci) ciΨ(ci)

ciΨ(ci) c2
iΨ(ci)

)
B`, (4.32)

where B` =

(
1 a`1 · · · a`,p−1 0

0 0 · · · 0 1

)
. By (4.31) and (4.32), we have

Iξ ≤ AT

2p−1∑
`=1

BT
`

(
k∑
i=1

ω`i

(
Ψ(ci) ciΨ(ci)

ciΨ(ci) c2
iΨ(ci)

))
B`

A
≤ AT

2p−1∑
`=1

2∑
i=1

ω`iC̃`iΨ(c̃l)C̃
T
`i

A
= I ξ̃

(4.33)

for a design ξ̃ that belongs to the complete class in the theorem with support points C̃`1

and C̃`2 and weights ω`1 and ω`2, ` = 1, . . . .2p−1. The existence of these support points so

that the second inequality in (4.33) holds is a consequence of Theorem 4.5.
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The complete class in Theorem 4.7 is simple, but finding an optimal design for a

specific problem still requires the determination of 2p−1 values for the c`’s and of the

weights for the up to 2p support points. This can easily be done by computer for small

p, but is still challenging for larger p. For some problems it is again possible to find more

explicit solutions for optimal designs. Below is a simple example without displaying all

the computational details. We refer to Yang, Zhang, and Huang (2010) for more detailed

examples of this kind.

Example 4.7. Consider a logistic model of the form (4.2) with XT
i θ = ci = β0 +∑3

j=1 βjxij . Suppose that we are interested in a locallyD-optimal design for (β0, β1, β2, β3) =

(1,−0.5, 0.5, 1), and that the first two covariates are contained in the intervals [−2, 2] and

[−1, 1], respectively. Suppose further that there is no restriction on the third covariate.

Theorem 4.7 assures us that we can find an optimal design based on at most 8 design points

for which the first two coordinates take all possible combinations of the limits of the respec-

tive intervals twice. Further computation gives a D-optimal design ξ∗ for (β0, β1, β2, β3)

with equal weight 1/8 for each of the following eight points:

(−2,−1,−0.4564), (−2,−1,−2.5436), (−2, 1,−1.4564), (−2, 1,−3.5436),

(2,−1, 1.5436), (2,−1,−0.5436), (2, 1, 0.5436), (2, 1,−1.5436).

We can now compare this optimal design to any other design, for example to a full factorial

design with 3 levels for each of the covariates, say −2, 0 and 2 for xi1; −1, 0 and 1 for xi2;

and −3, −1 and 1 for xi3, with equal weight for each of the 27 points. Simple computations

show that the efficiency of ξ, defined as
(
|Iξ|
|Iξ∗ |

)1/4
, is only 70%.

We also point out that the support size for an optimal design need not be 2p. This

number is generally much larger than the number of parameters in θ, which is p+1, so that

it may be possible to find optimal designs with a (much) smaller support size. The result

in Theorem 4.7 does not exclude this possibility. Indeed, the statement of the theorem

refers to “at most 2p support points”. This means that some of the weights can perhaps

be taken as 0. It is our experience that this is often possible, but we do not have a general

recipe for obtaining such smaller designs.

4.5.2 GLMs with Group Effects

In this section we return to the problem of a single covariate, but now in the presence of

group effects. If the subjects in the study have different characteristics with respect to

one or more classificatory variables, such as race, gender, age group, and so on, and if the

relationship between the response variable and the covariate can be different for subjects

with different characteristics, then this should be reflected in the model. This is the main

problem studied in Stufken and Yang (2010). In this section we will present their main
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results, but refer for the proofs to the original paper. We will also restrict attention to

a binary response variable, and refer to Stufken and Yang (2010) for Poisson regression

models.

To present the model, it is convenient to change the notation slightly from that in

previous sections. We will use double subscripts to denote the subjects. For example, Yij
is now used to denote the response from the jth subject in the ith group. We assume that

there is a single covariate for this subject, xij , the value of which can be selected by the

experimenter. In addition, the relationship between Yij and xij may depend on the group,

i.e., it may depend on i. As before, we want to model Prob(Yij = 1).

We consider two different models, one with a common slope and one with a group-

dependent slope. The first of these models can be written as

Prob(Yij = 1) = P (αi + βxij), (4.34)

where β is a common slope parameter, the αi’s are group effects, and P is a cdf as in

(4.2). We could have used the notation of Subsection 4.2.1 for this model with XT
ij =

(0, . . . , 1, . . . , 0, xij) and θT = (α1, . . . , αk, β). Here k denotes the number of groups, and

Xij has a 1 in the ith position, with all other entries among the first k being 0. For the

second model we can write

Prob(Yij = 1) = P (αi + βixij). (4.35)

Now XT
ij is of length 2k with a 1 in the ith position and with xij in position k + i, i.e.,

XT
ij = (0, . . . , 1, . . . , 0, 0, . . . , xij , . . . , 0), and θT = (α1, . . . , αk, β1, . . . , βk).

While these models include group effects, they do not attempt to model these effects.

If appropriate, simpler models could be used. For example, for the models in (4.34) and

(4.35), the αi’s could be modeled as a sum of an overall mean and main-effects for the

different variables that induce the groups. This could also be done for the βi’s in (4.35).

Such assumptions would reduce the number of parameters. For example, with two factors

that have k1 and k2 levels, respectively, we have k = k1 × k2. But if we can assume for

modeling the αi’s, say, that the two factors do not interact, then we can use main-effects

only and reduce the number of parameters from k to k1 + k2− 1. We will not do this here,

but merely note that the complete class results for the models in (4.34) and (4.35) that we

will formulate in Theorem 4.8 also hold for these reduced models.

We will formulate the complete class results in terms of the induced design space, using

cij = αi + βxij for the model in (4.34) and cij = αi + βixij for the model in (4.35). The

complete class result can be formulated succinctly, with some loss of precision, by stating

that for each group we should use a design of the form that we would have used if that

group had been the only group (in which case we would have invoked Theorem 4.5). Here

is the more precise statement.
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Theorem 4.8. For the logistic or probit models of the form (4.34) or (4.35), suppose that

the design space is of the form cij ∈ [Di1, Di2]. A complete class is formed by all designs

with at most two support points per group, with the additional restriction that if there are

two support points in group i, then the five conditions in Theorem 4.5 apply with D1 and

D2 replaced by Di1 and Di2.

The proof of this result is fairly simple and can be found in Stufken and Yang (2010).

The result vastly reduces the search for optimal designs. Nonetheless, there are still up

to 2k support points and corresponding weights, so that an optimization algorithm may

still have difficulties solving this problem if k is large. Depending on the model (and

the use of possible further simplifying assumptions based on main-effects and lower order

interactions), it may be possible to find optimal designs with a smaller support size than

2k. We would still search in the complete class specified in Theorem 4.8, but some of the

weights can be taken as zero.

Example 4.8. Consider a logistic model of the form as in (4.34), with a common slope, for

two factors that have three levels each. Assume that the two-factor interaction is negligible.

Let α1, α2, . . . , α9 correspond to the groups (1,1), (1,2), . . ., (3,3), respectively. For finding

a locally A-optimal design, suppose that θT = (−0.95,−1,−0.9,−0.85,−0.9,−0.8,−1.05,

−1.1,−1, 1), where the first nine entries correspond to α1, α2, . . . , α9, and the last entry is

for β. Note that these values are consistent with the assumption of no interaction between

the two factors. We assume that there is no restriction on the design space. Suppose that

the vector of interest, η, consists of (1) the contrast of the average of the mean responses

at levels 1 and 2 for the first factor versus the average at its 3rd level (i.e., 1
6(
∑6

i=1 αi −
2
∑9

i=7 αi)); (2) the contrast of the average of the mean responses at levels 1 and 2 for the

second factor versus the average at its 3rd level (i.e., 1
6(
∑

i=1,2,4,5,7,8 αi − 2
∑

i=3,6,9 αi));

and (3) the slope parameter (i.e., β). An A-optimal design for η that uses fewer than 18

support points is shown in Table 4.1.

Table 4.1: Support Points and Weights for a Locally A-Optimal Design

Group A-optimal Design

(1,1) (1.7691, 0.0550); (0.1309, 0.0700)

(1,2) No support points (weights are 0)

(1,3) (1.7191, 0.0783); (0.0809, 0.0466)

(2,1) No support points (weights are 0)

(2,2) (1.7191, 0.0482); (0.0809, 0.0769)

(2,3) (1.6191, 0.0852); (-0.0191, 0.0398)

(3,1) (1.8691, 0.0658); (0.2309, 0.0591)

(3,2) (1.9191, 0.0727); (0.2809, 0.0523)

(3,3) (1.8191, 0.0949); (0.1809, 0.1552)
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It is also possible to use Theorem 4.8 for some problems to find explicit optimal designs.

Stufken and Yang (2010) prove such a result. To present it, let η1 = (α1/β, . . . , αk/β, β)T

and η2 = ((α1 − αk)/β, . . . , (αk−1 − αk)/β, β)T .

Theorem 4.9. For the model in (4.34), suppose that we have a single factor with k levels

and no constraint on the design space. Let design ξ∗ = {(ci1 = c∗, ωi1 = 1
2k ), (ci2 =

−c∗, ωi2 = 1
2k ), i = 1, . . . , k} for some c∗. Then the following results hold:

(i) ξ∗ is D-optimal for η1 if c∗ maximizes c2Ψk+1(c); and

(ii) ξ∗ is D-optimal for η2 if c∗ maximizes c2Ψk(c).

Computing the values of c∗ for the logistic and probit models is easy to do with software

like MATLAB and the expressions for Ψ(x) in (4.18). The results are shown in Table 4.2.

Table 4.2: The value of c∗ that maximizes c2Ψq(c)

c∗ c∗

q Logistic Probit q Logistic Probit

1 2.3994 1.5750 6 0.8399 0.6696

2 1.5434 1.1381 7 0.7744 0.6209

3 1.2229 0.9376 8 0.7222 0.5815

4 1.0436 0.8159 9 0.6793 0.5487

5 0.9254 0.7320 10 0.6432 0.5209

4.6 Summary and Concluding Comments

Selecting a good design is a complex problem that, typically, involves many different con-

siderations. In the context of GLMs, this chapter focuses on one of these, namely design

optimality with respect to some criterion based on information matrices. Rather than

focusing on a single criterion, we focus on identifying complete classes of designs. For

any optimality criterion that obeys the Loewner ordering of information matrices, we can

always find a locally optimal design in these complete classes. Therefore, we can restrict

searches for optimal designs to these classes. This is tremendously helpful if the complete

classes are sufficiently small.

Identifying sufficiently small complete classes for GLMs is not a simple problem, but

this chapter shows that the problem can be handled for a wide variety of models. By doing

so, most results on optimal designs for GLMs obtained by other methods can be covered

and extended. We have also shown how the determination of complete classes can at times

be used to obtain explicit forms of optimal designs for specific criteria and objectives.

We reiterate that, in practice, one may wind up not using a locally optimal design.

Practical considerations, considerations of robustness of a design to uncertainty in the
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”local values” of the parameters, robustness to model uncertainty, and other considerations

may play a role in selecting the design that is eventually used. Nonetheless, whatever the

considerations are, in the end one would hope to have a design that is efficient under

reasonable criteria and assumptions. In order to assess the efficiency of a proposed design

under optimality criteria, one has to compare it to an optimal design. That can only be

done if one has the tools to identify an optimal design. Being able to identify optimal

designs is thus important, irrespective of whether one plans to use an optimal design in an

experiment or not.

While the analytic approach presented here, and in greater technical detail in some

of the references given throughout this chapter, is very successful, there remain many

open problems in the general area of identifying optimal designs for GLMs and other

nonlinear models. The quote from Khuri, Mukherjee, Sinha, and Ghosh (2006) presented

in Section 4.1 remains valid. There are still many dissertations to be written in this area.
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