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Abstract: Binary response experiments are very common in scientific studies. How-

ever, the study of optimal designs in this area is in a very underdeveloped stage.

Sitter and Torsney (1995a) studied optimal designs for binary response experi-

ments with two design variables. In this paper, we consider a general situation

with multiple design variables. A novel approach is proposed to identify optimal

designs for the commonly used multi-factor logistic and probit models. We give

explicit formulas for a large class of optimal designs, including D-, A-, and E-

optimal designs. In addition, we identify the general structure of optimal designs,

which has a relatively simple format. This property makes it feasible to solve the

seemingly intractable problems. This result can also be applied to a multi-stage

approach.

Key words and phrases: A-optimality, D-optimality, E-optimality, Logistic model,

Probit model, Loewner ordering.

1. Introduction

We consider experiments with a binary response in which a subject is ad-
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ministered m covariates at level XT
i = (1, xi1, . . . , xim). Here XT

i represents a

vector of m+1 design variables selected from a design space X ⊂ Rm. A typical

analysis for this situation is a multi-factor logistic or probit regression model,

which can be written as

Prob(Yi = 1) = P (β0 + β1xi1 + . . . + βmxim). (1.1)

Here, Yi is the response of subject i with covariates level Xi, β = (β0, β1, . . . , βm)

are unknown parameters with βj 6= 0 for j > 0 and P (x) is a cumulative dis-

tribution function (cdf). Two most commonly used P (x)’s are ex/(1 + ex) for

the logistic model and Φ(x), the cdf of the standard normal distribution, for the

probit model. Such models have been studied extensively for data analysis (see

for example, Agresti, 2002), but little is known about design selection. With a

careful choice of design, the statistical inferences can be greatly improved. From

the cost-benefit perspective, an efficient design can reduce the sample size needed

for achieving a specified precision, or improve the precision for a given sample

size.

A complication in studying optimal designs when using a nonlinear model

is that, unlike the case of a linear model, the information matrices and optimal

designs depend on the unknown parameters. Thus the challenge in designing

an experiment for such a model is that one is looking for the best design with

the aim of estimating the unknown parameters, and yet one has to know the
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parameters to find the best design. One way to solve this problem is to use a

locally optimal design based on the best guess of the parameters. Other ways are

available to address this issue, for example by using a Bayesian approach (see,

for example, Agin and Chaloner, 1999). While a good guess may not always be

available, the locally optimal design approach remains of value. As pointed out

in Ford, Torsney and Wu (1992), locally optimal designs are important if good

initial parameter estimates are available from previous experiments. They can

also be a benchmark for designs chosen to satisfy experimental constraints. Most

of the currently available results are pertain to locally optimal designs. Hereafter,

the word “locally” is omitted for simplicity.

Many optimality results for GLMs focus on models with one covariate. Ford,

Torsney, and Wu (1992) studied c-optimal and D-optimal designs; Sitter and

Wu (1993a, 1993b) studied A- and F -optimal designs; Dette and Haines (1994)

investigated E-optimal designs. Mathew and Sinha (2001) obtained a series of

optimality results for the logistic model by using an algebraic approach, whereas

Biedermann, Dette, and Zhu (2006) recently obtained Φp-optimal designs for a

restricted design space using a geometric approach.

These contributions are very important. However, frequently in practice

the response is affected by more than one covariate and thus multiple-covariate

GLMs are commonly used (Agresti, 2002). Most of the efforts in optimizing
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designs in this setting rely on limited computational tools. Methodological re-

search on optimal designs is still lacking, and theoretical guidance remains at

a very underdeveloped stage. Computational results are mainly achieved by

search methods. Notable works include Woods, Lewis, Eccleston, and Russell

(2006) and Dror and Steinberg (2006) for studying robust designs as well as Dror

and Steinberg (2008) for studying sequential designs. They all used D-optimality

and provided algorithms. For example, Dror and Steinberg (2006) provided com-

puter programs for deriving D-optimal designs for general models. We are aware

of only three papers that provide explicit formulas in the setting of generalized

linear models. Russell, Woods, Lewis, and Eccleston (2009) obtained an explicit

formula for D-optimal designs under a Poisson regression model, which has the

same format of linear predictors as those in Model (1.1). Sitter and Torsney

(1995a) applied the geometric approaches of Silvey and Titterington (1973) and

of Elfving (1952) respectively to study D- and c-optimal designs when there are

two covariates in Model (1.1). Sitter and Torsney (1995b) extended the results to

D-optimal designs when m > 2 in Model (1.1). Under a slightly different set-up,

Haines, Kabera, Ndlovu, and O’Brien (2007) study D- optimal designs for logistic

regression in two variables. Although the geometric approach is a powerful tool

for studying nonlinear designs, it has its own limitations. It works fine when the

dimension of the parameters is two. It becomes more complicated when the di-
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mension is three, and seems intractable when the dimension is larger than three

(Elfving, 1952). Khuri, Mukherjee, Sinha, and Ghosh (2006) surveyed design

issues for GLMs and pointed out that results on designs for generalized linear

models with multiple covariates requires extensive work to evaluate “optimal” or

at least efficient designs (p. 395).

Yang and Stufken (2009) proposed an algebraic approach to nonlinear models

with two parameters. In this paper, we extend the algebraic approach to optimal

designs for GLMs with multiple covariates. With a focus on logistic and probit

models, we identify a dominating class of relatively simple designs, which means

that for any design ξ that does not belong to this class, there is a design in the

class that has an information matrix that dominates ξ in the Loewner ordering.

Therefore, we can focus on the subclass when we derive optimal designs. This

structural property makes identifying optimal designs for multi-factor GLMs a

feasible task. Specifically, we give explicit formulas for all or some of the param-

eters of a large class of optimal designs. This structural property can also be

applied in a multi-stage approach. This is important, because, in a multi-stage

approach, the first stage may give us information about the unknown parameters,

which can in turn be used in the local optimality approach for adding additional

design points in the second stage.

This paper is organized as follows. In Section 2, we introduce the models
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and the corresponding information matrices. We also identify the structure of

optimal designs for GLMs with multiple covariates. Explicit formulas are given

in Section 3 for a large class of optimal designs. The optimal designs are based

on D-, A-, and E-optimality. The parameters of interest could be the full or a

subset of the parameters. A closing discussion is presented in Section 4 and the

proofs of the technical results given in the Appendix.

2. Statistical models and information matrices

Under Model (1.1), an exact design can be presented as {(Xi, ni), i = 1, ..., k},

where ni is the number of subjects with covariates Xi. With n denoting the total

number of subjects, we have
∑

i ni = n. Since finding an optimal exact design

is a difficult and often intractable optimization problem, the corresponding ap-

proximate design, in which ni/n is replaced by ωi, is considered. Thus a design

can be denoted by ξ = {(Xi, ωi), i = 1, ..., k}, where ωi > 0 and
∑

i ωi = 1.

For known parameters, there is a one-to-one mapping between Xi and Ci, where

CT
i = (1, xi1, . . . , xi,m−1, ci). Here ci = β0 +β1xi1 + . . .+βmxim. It is convenient

to denote the design ξ as ξ = {(Ci, ωi), i = 1, ..., k}.

By standard methods, the information matrix for β under Models (1.1) can
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be written as

Iξ(β) = n

k∑

i=1

ωiXiΨ(ci)(Xi)T

= nA(β)

(
k∑

i=1

ωiCiΨ(ci)(Ci)T

)
AT (β),

(2.1)

where Ψ(x) = [P ′(x)]2/[P (x)(1 − P (x))]. In deriving (2.1), we utilize Xi =

A(β)Ci. Here A(β) =




Im 0

A1(β) 1/βm


, where A1(β) = (−β0/βm,−β1/βm, . . . ,−βm−1/βm).

For multi-factor GLMs, m − 1 covariates must be bounded, otherwise, the

optimality criterion can be made arbitrarily large by the choice of design (Sitter

and Torsney, 1995a). Although Dorta-Guerra, Gonzalez-Davina, and Ginebra

(2008) showed that bounds are not needed, their conclusion is based on the

assumption that the covariates only take two values. Many researchers choose

the constraints as [−1, 1]m (Dror and Steinberg, 2006 and 2008; Woods, Lewis,

Eccleston, and Russell, 2006). In this paper, we assume that the first m − 1

covariates are bounded, i.e., xij ∈ [Uj , Vj ], j = 1, . . . , m−1. There is no constraint

on the last covariate, i.e., xim ∈ (−∞,∞). In this paper, we show that for an

optimal design, all covariates take two values except for one covariate (the one

without constraints), which can take 2m possible values.

Suppose that we are interested in η = F (β), a vector-valued function of β.

For any two designs ξ1 and ξ2, if Iξ1(β) ≤ Iξ2(β) (here and elsewhere, matrix

inequalities are under the Loewner ordering), then design ξ2 is at least as good
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as design ξ1 for F (β) under the commonly used optimality criteria. This can be

easily verified by the following equation

Σξ(η̂) =
∂F (β)
∂βT

I−ξ (β)(
∂F (β)
∂βT

)T . (2.2)

Here, Σξ(η̂) is the variance-covariance matrix of η̂ = F (β̂), where β̂ is the MLE

of β.

Next, we will show that for any given design ξ = {(Ci, ωi), i = 1, ..., k}, there

exists a design ξ̃ with a simple form such that Iξ(θ) ≤ Iξ̃(θ). To identify optimal

designs for F (η) under the common optimality criteria based on information

matrices, we can restrict our attention to designs with the simple form presented

in this section. Let

al,j =





Uj d l
2m−1−j e is odd,

Vj d l
2m−1−j e is even,

l = 1, . . . , 2m−1; j = 1, . . . ,m− 1, (2.3)

where dae is the smallest integer greater than or equal to a.

We have the following theorem.

Theorem 1. For any given design ξ = {(Ci, ωi), i = 1, ..., k}, there exists a

design ξ̃ such that Iξ(β) ≤ Iξ̃(β). Here,

ξ̃ = {(C̃l1, ωl1) & (C̃l2, ωl2), l = 1, . . . , 2m−1}, (2.4)

where (C̃l1)T = (1, al,1, . . . , al,m−1, c̃l), (C̃l2)T = (1, al,1, . . . , al,m−1,−c̃l), and
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c̃l > 0. al,j is either Uj or Vj, and (al,1, . . . , al,m−1), l = 1, . . . , 2m−1 are all

possible such combinations.

Proof. By (2.1) and Lemma 1 in the Appendix, we have

Iξ(β) ≤ nA(β)




k∑

i=1

2m−1∑

l=1

ωl
iC

l
iΨ(ci)(C l

i)
T


AT (β), (2.5)

where (C l
i)

T = (1, al,1, . . . , al,m−1, ci), and ωl
i is the associated weight. Notice

that

C l
iΨ(ci)(C l

i)
T = Bl




Ψ(ci) ciΨ(ci)

ciΨ(ci) c2
i Ψ(ci)


BT

l , (2.6)

where BT
l =




1 al,1 · · · al,m−1 0

0 0 · · · 0 1


. By (2.5) and (2.6), we have

Iξ(β) ≤ nA(β)




2m−1∑

l=1

Bl




k∑

i=1

ωl
i




Ψ(ci) ciΨ(ci)

ciΨ(ci) c2
i Ψ(ci)





BT

l


AT (β)

≤ nA(β)




2m−1∑

l=1

2∑

i=1

ωliC̃liΨ(c̃l)C̃T
li


AT (β)

= Iξ̃(β).

(2.7)

The second inequality in (2.7) is due to Lemma 2 in the Appendix and the fact

that Ψ(c̃l) = Ψ(−c̃l).

Torsney and Gunduz (2001) derived a similar structure for D-optimal de-

signs. Theorem 1 confirms their results. From Theorem 1 and the discussion
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before it, we can restrict our focus to that subclass to search for optimal designs

based on the information matrix. The designs in that subclass have a relatively

simple format. Except for the last covariate, all have been identified. So totally

there are 2m−1 points to be identified when we search for a specific design. When

m is small, say m ≤ 3, we can use a computer algorithm to find these points.

However, when m is moderate to large, a computer search is out of the question.

Perhaps the best solution for this situation is an explicit formula, if available.

3. Explicit formulas for optimal designs

In this section, we will provide closed-form solutions for a large class of

optimal designs. Instead of studying the original parameter, β, directly, we

consider the transformated parameter θ = (θ0, θ1, . . . , θm). Here θ0 = (β0 +

∑m−1
j=1 βj(Uj +Vj)/2)/βm, θj = βj/βm, j = 1, . . . ,m−1, and θm = βm. When the

constraints are symmetric (Uj = −Vj), for example [−1, 1]m−1, then θ0 = β0/βm.

Under the commonly used D-optimality, an optimal design is invariant to such

a transformation. This transformation is not uncommon, and is analogous to

the transformation (β0/β1, β1) under GLMs with simple linear effect β0 + β1x.

Many optimality results for this model are obtained with this transformation.

Examples are found in Minkin (1987), Sitter and Wu (1993a, 1993b), Sitter and

Torsney (1995a), Mathew and Sinha (2001), and Biedermann, Dette, and Zhu

(2006), to name a few.
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We consider D-, A-, and E-optimality, which have different statistical mean-

ings. A D-optimal design, which maximizes the determinant of the information

matrix, minimizes the joint confidence ellipsoid of the parameters. An A-optimal

design, which minimizes the trace of the inverse of the information matrix, min-

imizes the sum of the variances of parameter estimators. Finally, an E-optimal

design, which maximizes the smallest eigenvalue of the information matrix, pro-

tects against the worst scenario when we estimate the parameters. These three

optimality criteria are perhaps the most commonly used.

When our main concern is the covariate effects only, the optimality results

for θ are no longer optimal. We need to study the corresponding information

matrix for θ1 = (θ1, . . . , θm). Notice that θ1 is a function of β1, . . . , βm only.

Therefore we consider optimal designs for θ and θ1 separately.

3.1 Optimal designs for θ. For a given design ξ = {(Ci, ωi), i = 1, ..., k}, by

direct computation, the information matrix for θ can be written as

Iξ(θ) = n
k∑

i=1

ωiC̃iΨ(ci)(C̃i)T , (3.1)

where (C̃i)T = (θm, θm(x1−(U1+V1)/2), . . . , θm(xm−1−(Um−1+Vm−1)/2), ci/θm).

Now we present our main result.

Theorem 2. Under Model (1.1), for the logistic or probit model, ξ∗ is a D-,

or A-, or E-optimal design of parameter θ if ξ∗ = {(C∗
l1, 1/2m)&(C∗

l2, 1/2m), l =
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1, . . . , 2m−1}, where (C∗
l1)

T = (1, al,1, . . . , al,m−1, c
∗) and (C∗

l2)
T = (1, al,1, . . . , al,m−1,−c∗),

al,j is defined in (2.3), and c∗ minimizes f(c). Here f(c) is defined in (3.2) ac-

cording to D-, A-, or E-optimality respectively.

f(c) =





c−2(Ψ(c))−m−1, D-optimality;

β2
m(c2Ψ(c))−1 + 1

β2
m

(
1 +

∑m−1
j=1

4
(Vj−Uj)2

)
(Ψ(c))−1, A-optimality;

max{(β2
mΨ(c)

)−1
,
(

1
4β2

m(V1 − U1)2Ψ(c)
)−1

, . . . ,

(
1
4β2

m(Vm−1 − Um−1)2Ψ(c)
)−1

,
(

1
β2

m
c2Ψ(c)

)−1
}, E-optimality.

(3.2)

Proof. The proofs for D-, A-, and E-optimal designs are completely analogous.

Here we only provide the result for D-optimal design. First, we can limit our

considerations to a design such that its information matrix is positive definite,

otherwise θ is not estimable. By Theorem 1 and (2.2), for any such design ξ,

there exists a design ξ̃ defined in (2.4) such that Iξ(θ) ≤ Iξ̃(θ). Thus we have

Det(Iξ(θ)) ≤ Det(Iξ̃(θ)). By (3.1) and (2.4), the (i, j)’th (i ≤ j) element of Iξ̃(θ)
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is



θ2
m

∑2m−1

l=1 (ωl1 + ωl2)Ψ(c̃l), i = j = 1;

1
4θ2

m(Vj−1 − Uj−1)2
∑2m−1

l=1 (ωl1 + ωl2)Ψ(c̃l), i = j, j = 2, . . . , m;

1
θ2
m

∑2m−1

l=1 (ωl1 + ωl2)c̃2
l Ψ(c̃l), i = j = m + 1;

θ2
m

∑2m−1

l=1 (ωl1 + ωl2)(al,j−1 − Uj−1+Vj−1

2 )Ψ(c̃l), i = 1, j = 2, . . . , m;

∑2m−1

l=1 (ωl1 − ωl2)c̃lΨ(c̃l), i = 1, j = m + 1;

θ2
m

∑2m−1

l=1 (ωl1 + ωl2)(al,i−1 − Ui−1+Vi−1

2 )(al,j−1 − Uj−1+Vj−1

2 )Ψ(c̃l), i 6= j, i, j = 2, . . . , m;

∑2m−1

l=1 (ωl1 − ωl2)(al,j−1 − Uj−1+Vj−1

2 )c̃lΨ(c̃l), i = m + 1, j = 2, . . . , m.

(3.3)

By (4.4) of Lemma 3 in the Appendix,

Det(Iξ̃(θ)) ≤

θ2

m

2m−1∑

l=1

(ωl1 + ωl2)Ψ(c̃l)





 1

θ2
m

2m−1∑

l=1

(ωl1 + ωl2)c̃2
l Ψ(c̃l)




m−1∏

j=1


1

4
θ2
m(Vj − Uj)2

2m−1∑

l=1

(ωl1 + ωl2)Ψ(c̃l)




=




2m−1∑

l=1

(ωl1 + ωl2)Ψ(c̃l)




m 


2m−1∑

l=1

(ωl1 + ωl2)c̃2
l Ψ(c̃l)




m−1∏

j=1

(
1
4
θ2
m(Vj − Uj)2

)
.

(3.4)

The result in (3.4) is an equality when all the off-diagonal components of Iξ̃(θ)

are zeros. By (4.8) of Lemma 4, there exists a point c̃, such that

2m−1∑

l=1

(ωl1 + ωl2)Ψ(c̃l) = Ψ(c̃)

2m−1∑

l=1

(ωl1 + ωl2)c̃2
l Ψ(c̃l) ≤ c̃2Ψ(c̃).

(3.5)
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By (3.4) and (3.5), we further have

Det(Iξ̃(θ)) ≤ Ψ(c̃)m
(
c̃2Ψ(c̃)

) m−1∏

j=1

(
1
4
θ2
m(Vj − Uj)2

)

≤ Ψ(c∗)m
(
(c∗)2Ψ(c∗)

) m−1∏

j=1

(
1
4
θ2
m(Vj − Uj)2

)
.

(3.6)

The last inequality is due to the fact that c∗ minimizes f(c). This is equiv-

alent to maximizing c2(Ψ(c))m+1. On the other hand, applying (3.3), we can

directly check that Iξ∗(θ) is a diagonal matrix, which has the (i, i)’th diagonal

element as θ2
mΨ(c∗) when i = 1, 1

4θ2
m(Vj−1−Uj−1)2Ψ(c∗) when i = 2, . . . , m, and

1
θ2
m

(c∗)2Ψ(c∗) when i = m + 1. Thus we have

Det(Iξ∗(θ)) = Ψ(c∗)m
(
(c∗)2Ψ(c∗)

) m−1∏

j=1

(
1
4
θ2
m(Vj − Uj)2

)
. (3.7)

Our conclusion follows from (3.7) and (3.6).

From the proof of Theorem 2, it is clear that similar conclusions also hold

true for Φp-optimality. Theorem 2 provides explicit forms for optimal designs

under commonly used optimality criteria. The only thing we need to do is to

determine the value of c∗ under different optimality criteria. The optimal designs

have 2m support points with the same weights. The 2m support points have m

dimensions, the ith element (i ≤ m−1) is either the lower bound Ui or the upper

bound Vi, the m’th element is either c∗ or −c∗. Notice that a transformation is

necessary if we transform the design point Ci to the original design point Xi (See

Section 2).
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One advantage of D-optimality is that the D-optimal design is invariant

under one-to-one parameter transformations. Since θ is such a transformation

of β, the D-optimal design we obtained here is also D-optimal for the original

parameter β. Immediately we have the following corollary.

Corollary 1. Under Model (1.1), for the logistic or probit link function, ξ∗ is

a D-optimal design for parameter β. Here, ξ∗ = {(C∗
l1, 1/2m)&(C∗

l2, 1/2m), l =

1, . . . , 2m−1}, where (C∗
l1)

T = (1, al,1, . . . , al,m−1, c
∗) and (C∗

l2)
T = (1, al,1, . . . , al,m−1,−c∗),

al,j is defined in (2.3), and c∗ maximizes c2(Ψ(c))m+1.

Under D-optimality, the value of c∗ only depends on the value of m, the num-

ber of covariates. Although it is easy to compute the value of c∗, for convenience,

we list some values of c∗ for 2 ≤ m ≤ 8.

Table 3.1: c∗ for logistic and probit models with D-optimality

m 2 3 4 5 6 7 8

Logistic 1.2229 1.0436 0.9254 0.8399 0.7744 0.7222 0.6793

Probit 0.9376 0.8159 0.7320 0.6696 0.6209 0.5815 0.5487

Sitter and Torsney (1995a, 1995b) also derived D-optimal designs for θ under

Model (1.1). Corollary 1 is consistent with Sitter and Torsney (1995a)’s D-

optimality results for logistic and probit models under (1.1) when m = 2 and

Sitter and Torsney (1995b)’s D-optimality results (Table 2) for logistic models

under (1.1) when m = 8. Dror and Steinberg (2006) provides an algorithm and
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the corresponding program to derive D-optimality designs. The program can

identity an exact D-optimal design when m is moderate, say less than 5. However,

when m gets larger, the result is not optimal, but remains highly efficient.

Under A- or E- optimality, optimal designs depend on the values of βm and

the restricted regions [Ui, Vi]. Once we have these values, we can derive the value

of c∗ by minimizing f(c) in (3.2) . Here we give an example to illustrate the

application. Let us consider m = 3, and assume that [Ui, Vi] = [−1, 1], i = 1, 2.

For an A-optimal design, we need to find the value of c∗ that minimizes

β2
3(c2Φ(c))−1 + 3Φ−1(c)/β2

3 . Assume β3 = 1. By routine algebra, we can find

that c∗ = 1.0238 for the logistic link function and 0.8874 for the probit link

function. The value of c∗ changes when β3 changes. For example, when β3 = 6,

c∗ = 2.3778 for the logistic link function and 1.5709 for the probit link function,

respectively.

For E-optimal designs, we need to find the value of c∗ that minimizes Max{(β2
3Φ(c))−1, β2

3(c2Φ(c))−1}.

Interestingly, c∗ takes two values only. For the logistic model, c∗ = β2
3 when

β3 ≤ 1.549 or 2.3994 otherwise. For the probit model, c∗ = β2
3 when β3 ≤ 1.255

or 1.575 otherwise.

3.2 Optimal designs for θ1. We first need to derive Iξ(θ1), the information

matrix for θ1. Rewrite Iξ(θ) in (3.1) as




I11 I12

I ′12 I22


, where I11 is a scalar, I12

is 1×m vector, I22 is m×m matrix, then Iξ(θ1) = I22 − I ′12I
−
11I12. Clearly, we
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have Iξ(θ1) ≤ I22 and equality holds when I ′12I
−
11I12 = 0. A special case of the

latter occurs if Iξ(θ) is a diagonal matrix. Applying to I22 the same argument as

that used on Iξ(θ) in Theorem 2, we have the following theorem.

Theorem 3. Under Model (1.1), for the logistic or probit model, ξ∗ is a D-,

A-, or E-optimal design of parameter θ1 if ξ∗ = {(C∗
l1, 1/2m)&(C∗

l2, 1/2m), l =

1, . . . , 2m−1}, where (C∗
l1)

T = (1, al,1, . . . , al,m−1, c
∗) and (C∗

l2)
T = (1, al,1, . . . , al,m−1,−c∗),

al,j is defined in (2.3), and c∗ minimizes f1(c). Here f1(c) is defined in (3.8)

according to D-, A-, or E-optimality respectively.

f1(c) =





c−2(Ψ(c))−m, D-optimality;

β2
m(c2Ψ(c))−1 + 1

β2
m

(∑m−1
j=1

4
(Vj−Uj)2

)
(Ψ(c))−1, A-optimality;

max{(1
4β2

m(V1 − U1)2Ψ(c)
)−1

, . . . ,

(
1
4β2

m(Vm−1 − Um−1)2Ψ(c)
)−1

,
(

1
β2

m
c2Ψ(c)

)−1
}, E-optimality.

(3.8)

Using the same reasoning, the conclusion in Theorem 3 can be extended to

other subset of parameters of θ. Of course, we need to change the function f1(c)

depending on the specific subset. Notice that θ1 is a one-to-one transformation

of (β1, . . . , βm), the coefficients of the covariates. By the invariance of D-optimal

designs, we have the following corollary.

Corollary 2. Under Model (1.1), for the logistic and probit link functions, ξ∗ is a

D-optimal design for parameter (β1, . . . , βm). Here, ξ∗ = {(C∗
l1, 1/2m)&(C∗

l2, 1/2m), l =
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1, . . . , 2m−1}, where (C∗
l1)

T = (1, al,1, . . . , al,m−1, c
∗) and (C∗

l2)
T = (1, al,1, . . . , al,m−1,−c∗),

al,j is defined in (2.3), and c∗ maximizes c2(Ψ(c))m.

Titterington (1978) proved Corollary 2 for linear regression models. This

result was extended by Martin-Martin, Torsney and Lopez-Fidalgo (2007) with

respect to marginally and conditionally restricted designs.

Notice that c∗ in Corollary 1 maximizes c2(Ψ(c))m+1, thus the value of c∗ in

Corollary 2 is the same as the value of c∗ in Corollary 1 for m− 1. For example,

when m = 3, c∗ is the same as the c∗ in Corollary 1 when m = 2, which is given

in Table 3.1. When m = 2, c∗ is 1.5434 and 1.1381 for the logistic and probit

link functions, respectively.

Corollary 2 gives D-optimal designs for (β1, . . . , βm) excluding the intercept

parameter β0. This is particularly useful in some practical situations where the

main interest is in the coefficients of covariates. By a similar argument, the result

can also be extended to the situation where the main interest is in estimating

some of the coefficients, excluding the constant term.

For A- and E-optimal designs, the value of c∗ depends on the parameters

and the restricted regions. But once we have these values, it is straightforward

to compute c∗. Notice that, the information matrices of the optimal designs in

Theorem 3 are diagonal. Thus all estimators are uncorrelated and the optimal

designs are orthogonal.
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3.3 Optimal designs based on a subset of 2m points. Although Theorems

2 and 3 give explicit formulas for optimal designs for θ and θ1, the number of

support points increases quickly as m increases. For example, when m is 8,

the formula requires 256 support points. Sitter and Torsney (1995b) offer the

following important observation: a D-optimal design can be based on a subset

of 2m design points. Their idea utilizes a nice property of a Hadamard matrix;

i.e., one with each element is either 1 or -1 and its columns mutually orthogonal.

Sitter and Torsney (1995b) gave a D-optimal design based on 16 points for m = 8.

Applying this idea, the optimal designs given in Theorems 2 and 3 can also

be based on a subset of 2m points. The procedure can be described as follows: (i)

generate a k×(m+1) (k ≥ m+1) matrix by selecting any m+1 columns of a k×k

Hadamard matrix including the column with all 1’s; (ii) (a) leave column of all 1’s

unchanged; (b) consider each of the m−1 columns that corresponds to one covari-

ate xi,j : in these re-label its upper bound Vj as 1 and its lower bound Uj as -1; (c)

the remaining column that corresponds to the induced covariate ci: re-label “1”

as c∗ and “-1” as −c∗. Then the derived design can be based on k support points,

each row of the resulting matrix being a support point (1, xi1, . . . , xi,m−1, ci) with

weight 1/k. It can be verified that the derived design has the same information

matrix as the design ξ∗ given in Theorems 2 and 3. Thus the derived design

is also optimal. On the other hand, a k × k Hadamard matrix exists as long as
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k = 4k1 for any positive integer k1 less than 100. This greatly reduces the number

of support points needed in an optimal design. We illustrate the procedure by

giving a different optimal design under the hypotheses of Corollary 2 with m = 7:

D-optimal design for θ1 under Model (1.1) with Logisitc link function

design point i 1 xi,1 xi,2 xi,3 xi,4 xi,5 xi,6 ci

1 1 V1 V2 V3 V4 V5 V6 0.7744

2 1 V1 V2 U3 U4 U5 V6 -0.7744

3 1 V1 U2 V3 U4 U5 U6 0.7744

4 1 V1 U2 U3 V4 V5 U6 -0.7744

5 1 U1 V2 V3 V4 U5 U6 -0.7744

6 1 U1 V2 U3 U4 V5 U6 0.7744

7 1 U1 U2 V3 U4 V5 V6 -0.7744

8 1 U1 U2 U3 V4 U5 V6 0.7744

Notice that each point has the same weight 1/8.

4. Discussion

Although multi-fator GLMs are widely applied in practice, the research on

optimal designs is very limited. This paper provides a solid step forward in the

search of optimal designs for GLMs with multiple covariates. We obtained ex-

plicit solutions for a large class of optimal designs for all or part of the parameters

in θ under commonly used A-, D-, and E-optimality. The explicit solutions help

us not only to understand the structure of efficient designs, but also to construct
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robust designs to a wide range of model parameter values using clustering tech-

niques (Dror and Steinberg, 2006). Because of the invariance of D-optimality, we

indeed obtain D-optimal designs for all or part of the parameters in β. For ex-

ample, all coordinates of β parameters except the intercept parameter, β0. This

is important, because some parameters may be of primary interest and others

are not.

When there are only two covariates, our results confirm the result for D-

optimal designs by Sitter and Torsney (1995a). The explicit formula also confirms

some algorithm-based results. Dror and Steinberg (2006) provided an algorithm

as well as the corresponding software to derive D-optimal designs under a general

model structure. Under Model (1.1), we found that their algorithm-based results

are accurate when m is small, say m < 5. When 5 ≤ m ≤ 7, the algorithm-

based results are still highly efficient. We could not compare the results when

m > 7 because our computer (CPU 3.40GHz with 1GB RAM) reported “out of

memory”.

To our knowledge, there are few optimality results available for a subset of

parameters. We are only aware of the c-optimality result in Sitter and Torsney

(1995a)’s. There are no optimality results available for multi-fator GLMs under

A- or E-optimality. This paper provides explicit solutions for these questions.

On the other hand, Theorem 1 helps us to understand the general structure of
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optimal designs. The general structure has a relatively simple format. When we

try to derive an optimal design, we can focus on the subclass with that structure.

This approach is helpful not only for deriving explicit formula for optimal designs,

but also for algorithm-based methods since it can significantly reduce the search

space. This research makes it possible to numerically derive optimal designs. It

is practically useful since it can be applied to any parameter of interest and any

optimality criterion.

Except for D-optimal designs, all optimal designs depend on the transforma-

tion parameter θ. This transformation allows us to focus on symmetric designs,

which greatly reduce the complexity of the problem. Even though this transfor-

mation has been commonly used, one interesting question is what A- or E-optimal

designs are for β or part of β. In this situation, we cannot rule out asymmetric

designs. In fact, under GLMs with simple linear effects, the E-optimal designs

derived by Dette and Haines (1994) are not symmetric; the A-optimal designs

derived by Yang (2008) are not symmetric either. From these results, we are

sure that the A- and E-optimal designs for β under multi-factor GLMs have an

asymmetric format. How to analytically derive the solution remains an open

question. Another interesting question is what are optimal designs when there

are interactions among the covariates under Model (1.1). Both Woods, Lewis,

Eccleston, and Russell (2006) and Dror and Steinberg (2006) considered this sit-
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uation. It is not clear whether there exists a general structure for this type of

optimal designs. Because of the interaction terms, it seems that a strategy sim-

ilar to that of Theorem 1 cannot be applied. In this paper, we assume that all

covariates except one are on the restricted design region. Obviously, the results

can still be applied when the optimal designs are within the restricted design

region. In general, the solution depends on the specific values of the restricted

regions. Complete answers for these cases remain open questions.

Appendix

Lemma 1. For any design point (Ci, ωi), there exist weights ωl
i, l = 1, . . . , 2m−1,

such that

ωiCiΨ(ci)(Ci)T ≤
2m−1∑

l=1

ωl
iC

l
iΨ(ci)(C l

i)
T . (4.1)

Here
(
C l

i

)T = (1, al,1, . . . , al,m−1, ci) and
∑2m−1

l=1 ωl
i = ωi.

Proof. Let rj = Vj−xi,j

Vj−Uj
, j = 1, . . . , m− 1. Then it is easy to show that

rjUj + (1− rj)Vj = xi,j ,

rjU
2
j + (1− rj)V 2

j ≥ x2
i,j .

(4.2)

Now we consider two points Ci,1 = (1, U1, xi,2, . . . , xi,m−1, ci)′ and Ci,2 = (1, V1, xi,2, . . . , xi,m−1, ci)′

with corresponding weights ωi,1 = r1ωi and ωi,2 = (1 − r1)ωi, respectively. The

matrices ωi,1Ci,1Ψ(ci)(Ci,1)T + ωi,2Ci,2Ψ(ci)(Ci,2)T and ωiCiΨ(ci)(Ci)T have the
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same elements except their second diagonal elements, for which the former is

greater than the latter according to (4.2). Thus we have

ωi,1Ci,1Ψ(ci)(Ci,1)T + ωi,2Ci,2Ψ(ci)(Ci,2)T ≥ ωiCiΨ(ci)(Ci)T .

For the point Ci,1, using the same argument for xi,2 as used for xi,1 with Ci,

we can improve the information matrix by replacing Ci,1 with two new points

Ci,1,1 and Ci,1,2, which are the same as Ci,1 except that xi,2 is replaced by U2

and V2 respectively. Similarly we generate two new points Ci,2,1 and Ci,2,2 from

Ci,2. Result (4.1) can be established by repeating this procedure until xi,m−1 is

replaced by Um−1 or Vm−1.

Lemma 2. For any k points {(ci, ωi), i = 1, ..., k}, k ≥ 2, there exist a point c∗

and 0 ≤ ω∗ ≤ ∑k
i=1 ωi, such that

k∑

i=1

ωi




Ψ(ci) ciΨ(ci)

ciΨ(ci) c2
i Ψ(ci)


 ≤ω∗




Ψ(c∗) c∗Ψ(c∗)

Ψ(c∗) (c∗)2Ψ(c∗)




+ (
k∑

i=1

ωi − ω∗)




Ψ(−c∗) −c∗Ψ(−c∗)

−c∗Ψ(−c∗) (−c∗)2Ψ(−c∗)


 .

(4.3)

Here, Ψ(x) = [P ′(x)]2/[P (x)(1−P (x))], and P (x) is the cumulative distribution

function for either the logistic or the probit model.

Proof. Immediate conclusion from Theorem 1 of Yang and Stufken (2009).
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Lemma 3. Let A be an m × m positive matrix and µi, i = 1, . . . , m be the

eigenvalues of A. Then

m∏

i=1

µi ≤
m∏

i=1

Aii, (4.4)

m∑

i=1

µ−p
i ≥

m∑

i=1

A−p
ii , p > 0 (4.5)

and

min{µ1, . . . , µm} ≤ min{A11, . . . , Amm}. (4.6)

Here, Aii, i = 1, . . . , m are the diagonal elements of the matrix A. If A is a

diagonal matrix, then (4.4), (4.5), and (4.6) are equalities.

Proof. There exists an orthogonal matrix P , such that A = Pdiag(µ1, . . . , µm)P T

and PP T = I. Thus, Aii =
∑m

j=1 P 2
ijµj , i = 1, . . . ,m and

∑m
j=1 P 2

ij = 1. Im-

mediately we have (4.6). On the other hand, for any convex function f(x), we

have

m∑

i=1

f(Aii) =
m∑

i=1

f(
m∑

j=1

P 2
ijµj) ≤

m∑

i=1

m∑

j=1

P 2
ijf(µj)

=
m∑

j=1

f(µj)

(
m∑

i=1

P 2
ij

)
=

m∑

j=1

f(µj).

(4.7)

(4.4) and (4.5) follows from (4.7) by taking the convex function f(x) = − log(x)

and x−p, p > 0, respectively. It is easy to see that the three equality signs hold

when A is a diagonal matrix.
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Lemma 4. For any k points {(ci, ωi), i = 1, ..., k}, where ci ≥ 0, ωi ≥ 0, and

∑k
i ωi = 1, there exists a point c̃, such that

k∑

i=1

ωiΨ(ci) = Ψ(c̃),

k∑

i=1

ωic
2
i Ψ(ci) ≤ c̃2Ψ(c̃).

(4.8)

Here, Ψ(x) = [P ′(x)]2/[P (x)(1−P (x))], and P (x) is the cumulative distribution

function for either the logistic or the probit model.

Proof. Let Ψ1(x) = Ψ(x) and Ψ3(x) = x2Ψ(x), we can check that Ψ1(x) and

Ψ3(x) satisfy the condition of Proposition A.2. of Yang and Stufken (2009). The

conclusion follows by applying that proposition.
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