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Abstract

Experiments with multiple objectives form a staple diet of modern scientific re-
search. Deriving optimal designs with multiple objectives is a long-standing challeng-
ing problem with few tools available. The few existing approaches cannot provide a
satisfied solution in general: either the computation is very expensive or a satisfied
solution is not guaranteed. There is need for a general approach which can effectively
derive multi-objective optimal designs. A novel algorithm is proposed to address this
literature gap. We prove convergence of this algorithm, and show in various examples
that the new algorithm can derive the true solutions with high speed.

1 Introduction

With the development of computational technology, nonlinear models have become more
feasible and popular. An optimal/efficient design can improve the accuracy of statistical
inferences with a given sample size or reduce the sample size needed for a pre-specified
accuracy. A major complication in studying optimal designs for nonlinear models is that
information matrices and thus optimal designs depend on the unknown model parameters.
A common approach to solve this problem is to use locally optimal designs, which are based
on the best guess of the parameters (Chernoff, H. 1953.). This strategy fits the popular
multi-stages design well, an approach that has gained a lot of popularity in practice in the
past decade. An initial experiment is conducted to get a better idea about the unknown
parameters. The resulting initial parameter estimations are then used as the ”best guess”
of unknown parameters, based on which the next stage design is selected. The strategy can
be carried on so on and so forth. (Hereafter, the word ”locally” is omitted for simplicity.)

The selection of an optimal design depends on the goals of the experiment. For example,
if the goal is to minimizes the jointed confidence ellipsoid of a parameter vector, a D-optimal
design is desired. If the goal is to test hypothesises, a design with maximum power should
be selected. The classical optimal design theory focus on optimizing one single objective
function, such as D-optimal design, or a design with maximum power.

In practice, however, it is common for a experimenter to have multiple objectives. A
typical example is multiple comparisons study, where there are multiple hypotheses testings.
In a neurological stimulus-response experiment (Rosenberger and Grill, 1997), the main
interests were in estimation of LD25 (the lethal dose that causes death for 25% of a study
population), LD50, and LD75. An optimal design based on one specific objective could be a
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diaster for other objectives. In a multiple comparison study, a design with maximum power
for one of the hypotheses may not have good power for the other tests. In an example with
four objectives, (Clyde and Chaloner, 1996) showed that the optimal design for one of the
objectives reached efficiencies of only 7%, 10%, and 39% for the others.

Although the clear importance of design for multiple objectives, little progress have been
made due to the complexity of design for nonlinear models. (Yang and Stufken, 2009; Yang
and Stufken, 2009; Yang, 2010; Dette, Melas, 2011; Dette, Schorning, 2013) obtained a series
of unifying results so called ”complete classes” of designs. They show that we can focus on a
subclass of designs with a simple form, which is dominating in the Loewner sense, implying
that for each design and optimality criterion there is a design in the subclass which is at least
as good. These results are big steps towards simplifying design search for nonlinear models
even for the multiple objectives design problems. A research gap, however, still exists. Even
for the single-objective design problems, except for some special cases, it seems impossible to
find the optimal design analytically, and we have to rely on a numerical solution. While we
can focus on designs of a simple form, the numerical computation may still be problematic.
Recent progress in developing new efficient algorithms makes it possible. (Yang, Biedermann
and Tang, 2013) proposed a general and efficient algorithm (the optimal weights exchange
algorithm - OWEA) which can identify an optimal design quickly regardless of optimality
criteria and parameters of interest. While the new algorithm is for single objective design
problem, it provides foundations for deriving the multiple objective optimal designs.

There are two ways of formulating the multiple-objective optimal design problems. One
is based on a compound optimality criteria and the other is based on a constrained optimal-
ity criteria. The former one formulates a new concave real-valued function as the weighted
sum of the multiple objectives. An attractive property of compound optimality is that the
objective function maintains concavity property, which is critical for applying the celebrated
equivalence theorem. For given weights, the corresponding optimal design can be derived
through the new algorithm proposed by (Yang, Biedermann and Tang, 2013). A big draw-
back of this approach is the choice of weights. It does not in general have a meaningful
interpretation.

The latter formulates the optimality problem as maximizing one objective function sub-
ject to all other objective functions satisfying certain efficiencies. The constrained opti-
mization approach provides a clearer and more intuitive interpretation than the compound
optimality approach. This has made it a popular method. However, the constrained op-
timization approach does not maintain the concave property. Consequently, there is no
general approach of deriving constrained optimal design. Fortunately, there is a relation-
ship between the two approaches. Based on the Lagrange multiplier theorem, (Clyde and
Chaloner, 1996) generalized a result of (Cook and Wong, 1994) and showed the equivalence
of the constrained optimization approach and the compound optimality approach. A nu-
merical solution for the constrained design problem can be derived by using an appropriate
compound optimality criteria. In fact, almost all numerical solutions for constrained design
problems use this strategy. But the major challenge is how to find the corresponding weights
for a given constrained optimality problem.

There are two approaches in the literature: the grid search approach and the sequential
approach. For the grid search approach, the number of grid points increases exponentially
with the number of objectives, and can be huge even for a moderate number of objectives.
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For example, with four objectives and a grid size of 0.01 for each dimension of weights, the
total number of grid points is well beyond 170000. Since the best design must be found for
each of these, this becomes very quickly computationally infeasible. With three objectives,
(Huang and Wong, 1998) proposed a sequential approach for finding the weights. The basic
idea is to consider the objective functions in pairs and sequentially add more constraints.
While this seems to have given reasonable answers in their examples, there lacks theoretical
justification. Consequently this approach will generally not yield satisfied solution even for
the three-objective optimal design problems.

The goal of this paper is to propose a novel algorithm for deriving optimal designs for
multiple objective function. For a given constrained optimization problem, if the solution
exists, we prove that new algorithm guarantees to find the desired weights. The new algo-
rithm is also fast. For example, for a design with three constraints, the new algorithm can
find a desired solution within 30 minutes with a laptop while the grid search approach will
take more than 10 hours and the sequential approach fails to produce a desired solution.

This paper is organized as follows. In Section 2, we introduce the set up and necessary
notation. The main results including characterization, convergence properties, implemention
of the algorithm, as well as the computation cost are presented in Section 3. Applications
to many different nonlinear models and different number of constrains, and comparisons
with grid search and sequential approach are shown in Section 4. Section 5 provides a brief
discussion, followed by an appendix containing the proofs.

2 Set up and Notation

We adapt the same notation as that of (Yang, Biedermann and Tang, 2013). Suppose we
have a nonlinear regression model for which at each point x the experimenter observes a
response Y . Here x could be a vector, and we assume that the responses are independent
and follow some distribution from the exponential family with mean η(x,θ), where θ is
the (k × 1) vector of unknown parameters. Typically, approximate designs are studied, i.e.
designs of the form ξ = {(xi, ωi), i = 1, . . . ,m} with support points xi ∈ X and weights
ωi > 0, and

∑m
i=1 ωi = 1. Denote the original design space as X . The set of all approximate

designs on the design region X is denoted by Ξ.
Denote the information matrix of ξ as Iξ. Let Φ0(ξ), . . . ,Φn(ξ) be the values of n + 1

smooth objective functions for design ξ. These objective functions are some real-valued
functions of Iξ which are formulated such that larger values are desirable. These objectives
depend on the optimality criteria and the parameters of interest and different objective may
have different parameters of interest. For example, Φ0(ξ) can be the opposite number of the
trace of inverse of the information matrix; Φ1(ξ) can be the opposite number of the determi-
nant of the inverse of the corresponding information matrix when the parameter of interest
is restricted to the first two parameters (assuming there are more than two parameters).

Ideally, we hope we can find a ξ∗ which can maximize Φ0(ξ), . . . ,Φn(ξ) simultaneously
among all possible designs. Such ideal solution does not exist in general unless under some
special situations. For example, only one parameter in the model. So it is infeasible to
maximize all objectives simultaneously. One commonly used way of formulating the multiple
objectives optimal design problems is constrained optimization approach, which specifies one
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objective as the primary criteria and maximizes this objective subject to the constraints on
the remaining objectives (Cook and Wong, 1994; Clyde and Chaloner, 1996) . Formally, this
approach can be written as

Maximize
ξ∈Ξ

Φ0(ξ) subject to Φi(ξ) ≥ ci, i = 1, . . . , n, (1)

where c = (c1, . . . , cn) are user-specified constants which reflect minimally desired levels
of performance relative to optimal designs for these n objective functions. To make this
problem meaningful, throughout this paper, we assume there is at least one design satisfying
all the constraints, which means an optimal solution exists. The constrained optimization
approach provides a clear and intuitive interpretation. It enables a user to specify the order
of importance among the objective functions in a simple and meaningful way. This has made
it a popular method.

Unfortunately, with the restricted optimality set up, there is no direct way of solving
the constrained optimization problem. We have to solve (1) through the corresponding
compound optimal design. Let

L(ξ,U) = Φ0(ξ) +
n∑
i=1

ui(Φi(ξ)− ci), (2)

where ui ≥ 0, i = 1, . . . , n. Let U = (u1, . . . , un). For a given U, L(ξ,U) maintains the
concavity property without any restriction. This property is critically important for applying
the celebrated equivalence theorem, which enables verification whether a given design is
indeed optimal. More important, this property allows us to apply the newly developed
algorithm OWEA. Thus deriving a design maximizing L(ξ,U) is relatively easy once the U
is given.

Notice that it is not recommended to use compound optimal design strategy directly for
multiple objective optimal designs. The reason is that the choice of U is the main difficulty
and it does not in general have a meaningful interpretation.

To establish the relationship between constrained optimal design and compound optimal
design, we need the following assumptions, which are adapted from (Clyde and Chaloner,
1996) . Assume that

(A1) Φi(ξ), i = 0, . . . , n are concave on Ξ.

(A2) Φi(ξ), i = 0, . . . , n are differentiable and the directional derivatives are continuous on
x.

(A3) If ξn converges to ξ, then Φi(ξn) converges to Φi(ξ), i = 0, . . . , n.

(A4) There is at least one design ξ in Ξ such that the constraints (1) are satisfied.

(Clyde and Chaloner, 1996) generalized a result of (Cook and Wong, 1994) and showed
the equivalence of the constrained optimization approach and the compound optimality
approach.
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Theorem 1 (Clyde and Chaloner, 1996). Under assumptions A1 to A4, ξ∗ is optimal
for constrained optimal design (1) if and only if there exists a non-negative vector U∗ =
(u∗1, · · · , u∗n) ∈ <n, such that

ξ∗ = argmaxξ∈ΞL(ξ,U∗),Φi(ξ
∗) ≥ ci for i = 1, · · · , n and

n∑
i=1

u∗i (Φi(ξ
∗)− ci) = 0. (3)

Theorem 1 provides necessary and sufficient condition for constrained optimal designs (1).
It demonstrates that a numerical solution for the constrained design problem (1) can be
derived by using an appropriate compound optimality criteria. In fact, almost all numerical
solutions for constrained design problems use this strategy. The big challenge is how to find
the desired U∗ for a given constrained design problem (1). There are two approaches to
handle this: the grid search approach and the sequential approach. Both approach consider
the weighted optimal design, which is equivalent to compound optimal design. Let

Φλ(ξ) =
n∑
i=0

λiΦi(ξ), (4)

where λ = (λ0, . . . , λn), λ0 > 0, 0 ≤ λi < 1, i = 1, . . . , n with
∑n

i=0 λi = 1. Clearly Φλ(ξ)
is just a normalized form of L(ξ,U). For given λ, Φλ(ξ) also enjoys the concave property
as L(ξ,U) does. So deriving a weighted optimal design can be based on the some standard
algorithm or the newly developed algorithm OWEA.

As we discuss in the introduction section, both grid search and the sequential approach
(we shall give detailed description later) have their own problems. Consequently they cannot
serve as a general solution for the constrained optimal design problem (1). How can we
develop a general and efficient algorithm for the important but largely unsolved problem?
The first step is to characterize U∗ in Theorem 1.

3 Characterization

For deriving theoretical results purpose, we need to have two assumptions. The first one is

Φ0 is a strong concave function on information matrices. (5)

The strong concave property means the optimal design is unique in term of information
matrix, i.e., if ξ∗1 and ξ∗2 both are optimal designs for L(ξ,U0)(2) with a fixed Lagrange
multiplier U0, then the two information matrices of ξ∗1 and ξ∗2 are identical. Assumption (5)
is not restrict. Many optimality objective functions satisfy this assumption. For example,
D-, A-, E-, and general φp-optimality criteria for full parameters satisfy this assumption. Let
ξ∗ be the optimal design for a constrained optimal design problem (1). By Theorem 1, ξ∗ is
also an optimality solution of a compound optimal design problem (2). Let U∗ = (u∗1, . . . , u

∗
n)

be the Lagrange multiplier of the compound optimal design problem.
In a compound optimal design problem (2), each ui > 0 without upper bound. For an

algorithm searching for U∗, establish the convergence property of the algorithm is challenging
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when the search space is infinite. Thus our second assumption is

u∗i ∈ [0, Ni) where Ni is pre-specified, i = 1, . . . , n. (6)

This assumption is equivalent to the grid size in a weighted optimal design problem (4).
Both grid search approach and sequential approach need to choose a grid size. Let the grid
size be ε, then it means 0 ≤ ui ≤ 1−ε

ε
< 1

ε
for the equivalent compound optimal design

(2). We can always choose some reasonable large numbers Ni’s such that Assumption (6) is
satisfied.

A constraint Φi is called active if u∗i > 0; otherwise the constraint will be regarded as
inactive. For easy presentation, we denote ξU as a design which maximizes the Lagrange
function L(ξ,U) for a given weight vector U = (u1, · · · , un) and Φ̂i(ξ) as Φi(ξ) − ci, i =
1, . . . , n. Before we characterize U in Theorem 1, we first give an overview of the new
algorithm. The detailed description is given in Section 4. The overview can help us to
characterizer some desired properties of compound optimal designs of (2).

3.1 Overview of the new algorithm

The new algorithm is designed to search for a satisfied U∗ from the most easiest case to the
most complex case:

U∗ is a zero vector −→ elements in U∗ are all nonzero.

In other words, the algorithm will go through all the possible cases:

all constraints are inactive −→ all constraints are active

if needed.
Now consider that the constrained optimal design problem have a active constraints.

Without losing generality, suppose these active constrains are Φ1, · · · ,Φa. In other words,
our efforts now are on finding a weight vector U = (u1, · · · , ua, ua+1, · · · , un) where u1, · · · , ua
are positive and ua+1, · · · , un are zero and hopefully ξU will satisfy the sufficient condition.

To search for satisfied values for u1, · · · , ua, the algorithm will use bisection process
for all elements u1, · · · , ua through a recurrent process. The rest element ua+1, · · · , un in
weight vector U will be fixed at 0 during the bisection process. Denote bisection result of
U by U∗ = (u∗1, · · · , u∗a, 0, · · · , 0). Then for any i ∈ {1, · · · , a}, u∗i will satisfy the following
property:

if Φ̂i(ξU∗) > 0, then u∗i = 0;

if Φ̂i(ξU∗) < 0, then u∗i = Ni;

if Φ̂i(ξU∗) = 0, then u∗i ∈ [0, Ni].

(7)

This property will be quoted frequently in the later theorems.
For example, take a = 2, which means only u1 and u2 are supposed to be nonzero. In

this case, the algorithm first fixes u2 as u0
2 = 0+N2

2
. Then the value for u1 will be updated to
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u0
1 using bisection and u0

1 will satisfy Property (7) with U0 = (u0
1, u

0
2, 0, · · · , 0). Now check

Φ̂2(ξU0). If Φ̂2(ξU0) 6= 0, adjust the value for u2 through one time bisection to get u1
2 such

that Φ̂2(ξU1) is closer to 0. For the new fixed u2 = u1
2, again update u1 to u1

1 using bisection
to make u1

1 satisfy Property (7) with U1 = (u1
1, u

1
2, 0, · · · , 0). Check Φ̂2(ξU1) and update u2

to u2
2 if Φ̂2(ξU1) 6= 0. · · · . Continue this process until a satisfied U∗ = (u∗1, u

∗
2, 0, · · · , 0) is

found which guarantees that u∗1 and u∗2 both satisfy Property (7).
For a general a active constraints case, similar to a = 2 case, we first fix ua as u0

a =
0+Na

2
. Similar to the recurrent process mentioned for 2 active constraints case, derive the

corresponding values u0
1, · · · , u0

a−1 for the element u1 to ua−1 using bisections approach such

that they satisfy Property (7) with U0 = {u0
1, · · · , u0

a, 0, · · · , 0}. Check whether Φ̂a(ξU0) = 0
and update ua to u1

a. · · · . Continue this process until a desired U∗ = (u∗1, · · · , u∗a, 0, · · · , 0)
is found with all u∗1, · · · , u∗a satisfied Property (7).

To guarantee the bisection technique is valid and the desired Property (7) can be achieved
for u1, · · · , ua through the bisection process, we need to characterize the property of the
multiplier U. The characterizations in this section allow us to propose a new algorithm
which guarantees the convergence and speed.

3.2 Properties

Theorem 2 For any a ∈ {1, · · · , n}, S ( {1, · · · , n}\{a} and S ′ = {1, · · · , n}\(S
⋃
{a}),

define US = {ui|i ∈ S} and US′ = {ui|i ∈ S ′}. Then Φ̂a(ξU) is a non-decreasing function
of ua if US′ is pre-fixed and US satisfies one of the following two conditions:

Φ̂i(ξU) ≥ 0 and uiΦ̂i(ξU) = 0 for i ∈ S1, or

ui = Ni and Φi(ξU) < 0 for i ∈ S2,
(8)

where S1 ∪ S2 = S and S1 ∩ S2 = ∅ and U is the combination of US, ua, and US′ by their
corresponding indexes.

Condition (8) implies that ui, i ∈ S satisfy Property (7). Suppose there are a active con-
straints and they are Φ1, · · · ,Φa. When we search for the proper value of ui (i ≤ a − 1),
ui+1, · · · , ua and the zero-element ua+1, · · · , un can be regarded as fixed, which correspond
to US′ in theorem. And since it is a recurrent process, for u1, · · · , ui−1, the value will be
updated first according to the value assigned to ui each time and fixed ui+1, · · · , un. Thus
(u1, · · · , ui−1) is US in this case. After u1, · · · , ui−1 being updated for the given ui, Φ̂i(ξU)
should be a monotone increasing function of ui by Theorem 2. Due to the monotone property,
three cases may occur when we search for ui:

Case 1 Φ̂i(ξU) = 0 and ui ∈ [0, Ni];

Case 2 Φ̂i(ξU) < 0 and ui = Ni;

Case 3 Φ̂i(ξU) > 0 and ui = 0.

The three possible cases are equivalent to Property 7. Under all these possible cases that may
occur when the bisection technique is applied to the former elements, Theorem 2 makes it
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clear that the monotone increasing property holds for the next element to which the bisection
technique is applied.

Now suppose the active constraints are Φi with i ∈ S ⊆ {1, · · · , n}. A weight vector
U∗S for active constraints can be found through the bisection technique. One can always
construct a complete weight vector U∗ = (u∗1, · · · , u∗n) as follows:

For any i ∈ {1, · · · , n}
• If i ∈ S, take u∗i as the corresponding value in U∗S;

• If i /∈ S, u∗i = 0.

For simplicity, we denote such constructed full weight vector U as {US, 0}.

Theorem 3 Define S ( {1, · · · , n} as the active constraints indexes set. For two non-
zero value sets U0

S and U1
S of the corresponding weight vector US, let U0 = {U0

S, 0} and
U1 = {U1

S, 0}, then ξU0 will be equivalent to ξU1, i.e., they have the same information
matrix, if the two designs both satisfy

Φ̂i(ξ) = 0, i ∈ S. (9)

Suppose Φ1, · · · ,Φa are active constraints. Theorem 3 shows all the possible weight
vectors, that satisfy Φ̂i(ξU) = 0, i ∈ {1, · · · , a}, are equivalent. Thus if we find U∗ =
(u∗1, · · · , u∗a, 0, · · · , 0) with Φ̂i(ξU∗) = 0 for i ∈ {1, · · · , a}, U∗ can represent all the possible
satisfied weight vectors since they are all equivalent. For such U∗, if Φ̂i(ξU∗) ≥ 0 for i =
1, · · · , n; then assumption is proper and U∗ will be the desired weight vector; otherwise the
assumption is not valid and two cases need to be considered:

Case 1 There are still a active constraints but we need to pick another combination of con-
straints of size a and re-do the searching process.

Case 2 If all combinations of sized a constraints have been tested and a desired U∗ cannot be
found, then it implies the constrained optimal design problem has more than a active
constraints and a+ 1 active constraints cases should be considered.

However, the bisection technique may return a weight vector with some elements, say i-th
element, taking value at lower bound 0 or upper bound Ni, while the corresponding Φ̂i 6= 0.
In this situation, the following theorem guarantees that the assumed active constrains set
is not valid and we can move to a new active constraints set according to the two cases
mentioned above.

Theorem 4 For any S ⊂ {1, · · · , n}, suppose that U0 = {U0
S, 0} satisfies the following two

conditions

(i) Φ̂i(ξU0) ≥ 0 for i ∈ S1 and
∑
i∈S1

uiΦ̂i(ξU0) = 0.

(ii) Φ̂i(ξU0) < 0 and ui = Ni for i ∈ S2.

(10)

where S1∪S2 = S and S1∩S2 = ∅. If there exists at least one element in S, say i, such that
Φ̂i(ξU0) 6= 0, then there does not exist a positive value set U+

S = {ui ∈ (0, Ni)|i ∈ S}, such

that Φ̂i(ξU+) = 0 for i ∈ S, where U+ = {U+
S , 0}.
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Now we are ready to present the new algorithm.

4 Algorithm

For a given constrained optimal design problem (1), the new algorithm is to find the desired
U∗. In each step, we need to derive an optimal design for a compound optimal design
problem (2) with U being given. We first introduce such algorithm.

4.1 Deriving Compound Optimal Design with given U

(Yang, Biedermann and Tang, 2013) proposed the optimal weight exchange algorithm (OWEA),
a general and efficient algorithm for deriving optimal designs. OWEA can be applied to com-
monly used optimality criteria regardless of the parameters of interest and also enjoys high
speed. This algorithm was originally designed for one objective optimal design problems.
Fortunately, OWEA can be extended for deriving ξU = argmaxξL(ξ,U) where U is given.

Since all elements in U are nonnegative, L(ξ,U) = Φ0(ξ) +
∑n

i=1 ui(Φi(ξ) − ci) can be
regarded as a new optimal criteria. For a design ξ = {(x1, w1), · · · , (xm−1, wm−1), (xm, wm)},
let X = (x1, · · · ,xm)T and W = (w1, · · · , wm−1)T . The following algorithm follows the
similar procedure as that of OWEA in (Yang, Biedermann and Tang, 2013).

Step 1 Set t = 0, let the initial design set X0 take 2k design points uniformly from the design
space and the corresponding weight to be 1/2k for each point.

Step 2 Derive the optimal weight vector W t for a fixed sample points set X t.

Step 3 For ξt = (X t,W t), denote directional derivative of L(ξ,U) at x as dU(x, ξt), where x
is any design point from the design space X . The explicit expression can be found in
(Yang, Biedermann and Tang, 2013).

Step 4 For a small prefixed value ∆ > 0, if maxx∈X dU(x, ξt) ≤ ∆, ξt can be regarded as the
optimal design. If dU(x, ξt) > ∆ for some design point x, let X t+1 = X t

⋃
x̂t where

x̂t = argmax
x∈X

dU(x, ξt). Go through Step 2 to Step 4 again with new X t+1.

In Step 2, the optimal weight vector Ŵ can be found by Newton’s method based on the first
derivative and second derivative of L(ξ,U) respect to the weight vector W . These derivatives
can be derived using (11) and the formula in the Appendix of (Yang, Biedermann and Tang,
2013).

∂Φλ(ξ)

∂W
=
∂Φ0(ξ)

∂W
+

n∑
i=1

ui
∂Φi(ξ)

∂W
;

∂2Φλ(ξ)

∂WW T
=
∂2Φ0(ξ)

∂WW T
+

n∑
i=1

ui
∂2Φi(ξ)

∂WW T
.

(11)

Based on the exact same argument as Yang, Biedermann and Tang (2013), this algorithm
converges to an optimal design maximizing L(ξ,U). We use the extended OWEA to derive
ξU. Now we are ready to present the main algorithm which is to search the satisfied U∗.
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4.2 The main algorithm

The strategy of the algorithm is to search from the simplest case (no constraint is active) to
the most complicated case (all constraints are active). The algorithm can be described as
following:

Step 1 Set a = 0, derive ξ∗ = argmax
ξ

Φ0(ξ) and check whether Φi(ξ
∗) ≥ ci for i = 1, · · · , n.

If all constrains are satisfied, stop and ξ∗ is the desired design. Otherwise set a = 1
and go to Step 2.

Step 2 Set i = 1, consider ξ∗ = argmax
ξ

Φ0(ξ) + uiΦi(ξ). Adjust the value of ui

using the bisection technique on [0, Ni] to obtain u∗i such that Φ̂i(ξ
∗) = 0. During

the bisection process, the upper bound, instead of the median, of the final bisection
interval will be picked as the right value for u∗i . If Φ̂i(ξ

∗) > 0 when ui = 0, set u∗i = 0.
If Φ̂i(ξ

∗) < 0 when ui = Ni, set u∗i = Ni. For ξ∗ = argmax
ξ

Φ0(ξ) + u∗iΦi(ξ), check

whether Φ̂j(ξ
∗) ≥ 0 for j = 1, · · · , n. If all constraints are satisfied, stop and ξ∗ is

the desired design; otherwise change i to i + 1 and repeat this process. After i = n is
tested and no desired ξ∗ is found, then set a = 2 and proceed to Step 3.

Step 3 Find all subsets of {1, · · · , n} of size a, choose one out of these subsets. Denote
it as S.

Step 4 Let (s1, . . . , sa) be the indexes of the elements in US. To find the right value
U∗S for US, we follow a recurrent process. For each time a given value of usa , first use
bisection technique to find the corresponding us1 , · · · , usa−1 . The full weight vector U
can be constructed with us1 , · · · , usa by setting all the other weight elements in U as
0’s, which we later denote by U = {US, 0}. Then adapt the value of usa as follows :

– If Φ̂sa(ξU) > 0 when usa is assigned as 0, set u∗sa = 0.

– If Φ̂sa(ξU) < 0 when usk is assigned as Na, set u∗sa = Na.

– Otherwise use the bisection technique to find u∗sa such that Φ̂sa(ξU) = 0.

Record u∗sa and the corresponding values for {u∗s1 , · · · , u
∗
sa−1
} as U∗S. For the bisection

process in each dimension, the upper bound of the final bisection interval will be picked
as the right value for the corresponding element in weight vector U∗S. Then the full
weight vector U∗ can be constructed using U∗ = {U∗S, 0}.

Step 5 For the U∗S and ξU∗ derived in Step 4, check Φ̂i(ξU∗), i = 1, . . . , n. If all constraints
are satisfied, stop and ξU∗ is the desired design. Otherwise, pick another a-element
subset in Step 3, and go through Step 4 to Step 5 again. If all a-element subsets are
tested, go to Step 6.

Step 6 Change a to a+ 1, go through Step 3 to Step 5, until a = n. If no suitable design
ξU∗ is found, the implication is that there is no solution for the constrained optimal
design (1).

10



We demonstrate this algorithm through an optimal design problem with two constraints.
Denote the target objective function by Φ0 and two constrained objective functions by Φ1

and Φ2. The algorithm will search for a desired weight vector U∗ = (u∗1, u
∗
2) and desired

design ξU∗ according to the following process:

Step 1 Suppose there is no active constraint, then U∗ in this case will be (0, 0) and ξU∗ is also
an optimal design for Φ0. If ξU∗ satisfies all the constraints, then ξU∗ is the desired
design. Otherwise go to Step 2.

Step 2 Suppose there is one active constraint. First suppose Φ1 is active. Derive u∗1 through
bisection technique such that Φ̂1(ξU∗) = 0, where U∗ = (u∗1, 0). If ξU∗ satisfies all the
constraints, ξU∗ is the desired design. Otherwise suppose Φ2 is active and repeat this
process. If both fail to find the desired ξU∗ , that means there are more than one active
constraint. Go to Step 3.

Step 3 Now suppose all constraints are active. Derive U∗ = (u∗1, u
∗
2) through bisection tech-

nique such that Φ̂i(ξU∗) = 0 for i = 1, 2. If such U∗ can be derived, then ξU∗ is the
desired design. If it fails to produce a satisfied U∗, there are two possible reasons:

Case 1 The predefined upper bound vector N1 and N2 are not proper. The true u∗i fall
out of the interval [0, Ni) for at least one of i’s, i = 1, 2,

Case 2 There is no solution for the constrained optimal design problem.

4.3 Convergence and Computational Cost

Whether an algorithm is successful mainly depends on two properties: convergence and
computational cost. We first establish the convergence of the proposed algorithm.

Theorem 5 For the constrained optimal design problem (1), under Assumptions (5) and
(6), the proposed algorithm converges to ξ∗.

Proof. Since there exists an optimal solution for the constrained optimal design problem
(1), there exists an active constraints set (it could be empty set, which means no active
constraints). The new algorithm will search for this active constraints set and identify
the Lagrange multiplier of the corresponding compound optimal design problem. The new
algorithm starts from the simplest case, i.e., there is no active constraints, to most complex
case, i.e., all constraints are active.

For each assumed active constraints set S, by Theorem 2, the algorithm procedure uti-
lizing the bisection technique to guarantee that the derived vector U∗ = {U∗S, 0} satisfies
the two conditions in (10). If Φ̂i(ξU∗) 6= 0 for some i ∈ S, Theorem 4 guarantees that there
is no positive value set U+

S within the given intervals such that Φ̂i(ξU+) = 0 for all i ∈ S
where U+ = {U+

S , 0}. This means S cannot be the true active constraints set. Otherwise

it contradicts to Assumption (6). On the other hand, if Φ̂i(ξU∗) = 0 for all i ∈ S but
Φ̂i′(ξU∗) < 0 for some i′ ∈ {1, · · · , n}\S, Theorem 3 guarantees that Φ̂′i(ξU′) < 0 for any
vector U′ = {U′S, 0} satisfying Φ̂i(ξU′) = 0 for all i ∈ S. This also means S cannot be the
true active constraints set.

11



Table 1: Comparison of Caculational Cost

Three Objectives Four Objectives

Mesh Grid Size 0.01 0.001 0.01 0.001
Grid Search 5050 500500 171700 167167000
New Algorithm 265 525 4320 12058

Since the new algorithm goes through all possible active constraints combinations, a
desireded U∗, i.e., Φ̂i(ξU∗) = 0 for all i ∈ S and Φ̂i(ξU∗) ≥ 0 for all i ∈ {1, · · · , n}\S,
must be found. Otherwise, it means none of the constraints combinations is active. This
contradicts to the fact that there is an active constraints set.

For the desired U∗, let ξ∗ = argmaxξL(ξ,U∗). By Theorem 1, ξ∗ is the optimal design
of the constrained optimal design problem (1).

Next we shall compare the computational cost of the new algorithm with those of the grid
search and the sequential approach. Both the grid search and the sequential approach are
based on weighted optimal design problem (4), which is equivalent to a compound optimal
design problem with ui = λi

λ0
, i = 1, . . . , n. All three approaches are based on identifying a

satisfied multiplier of a compounded optimal design problem and the computational cost of
each approach is proportional to the number of multiplier the approach tests.

The grid search approach considers all possible combinations of λ1, · · · , λn on [0, 1]n with
given mesh grid size. The combination must satisfy that

∑n
i=1 λi < 1 and λ0 is set as

1−
∑n

i=1 λi. Suppose the grid size is ε in a grid search. Let TG be the number of all possible
combinations. Direct computation shows that

TG =
n∑
k=0

(
n

k

)(
b1
ε
c − 1

k

)
=

(
n+ b1

ε
c − 1

n

)
, (12)

where b.c refers to floor function.
For the new algorithm, since ui = λi

λ0
, the upper bound of the corresponding ui is 1/ε. To

guarantee the new algorithm has at least the same accuracy (ε) on interval [0, 1/ε] as that
of grid search, one needs d−2log2ε+ 2e times bisection technique. Here d.e refers the ceiling
function. Let TL be the number of times compound optimal designs calculated during the
searching process, then

TL =
n∑
k=0

(
n

k

)
d−2log2ε+ 2ek = d−2log2ε+ 3en. (13)

As for the sequential approach, the computational cost is significantly less than those of
the grid search and the new algorithm. However, as we will demonstrate in the next section,
the sequential approach in general cannot find a desired solution.

Tables 1 and 2 shows the comparison of computational cost between new algorithm and
grid search under different grid sizes and different numbers of constraints.
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5 Numerical Examples

In this section, we will compare the performance (accuracy and the computing time) of
the new algorithm, the grid search and the sequential approach. The sequential approach
was introduced in (Huang and Wong, 1998). This approach first reorder Φ0, · · · ,Φn as
Φs1 , · · · ,Φsn+1 according to a robustness technique. In this paper, we test all possible orders
and pick up the best design. Certainly it includes the special pick in (Huang and Wong,
1998). The constraint for target optimality Φ0 can be regarded as c0 = 0 and then combine c0

with the original constraints vector c = (c1, · · · , cn). For newly constructed c∗ = (c0, . . . , cn),
reorder it as (cs1 , · · · , csn+1). Then the sequential procedure for finding the corresponding
compound optimal design with the specified order {s1, · · · , sn+1} can be described as follows:

Step 1 If Φ0 ∈ {Φs1 ,Φs2}, say Φ0 = Φs1 . Consider constrained optimal design problem

Maximize Φ0 while Φs2 ≥ cs2 .

If not, consider constrained optimal design problem

Maximize Φs2 while Φs1 ≥ cs1 .

Finding the weight vector in the weighted optimal design problem corresponding to
the specified constrained optimal design problem using the grid search with a pre-
fixed grid size. Denote the weight vector by (1 − β2, β2). Construct a new objec-

tive function Φ{s1,s2}(ξ) =
(1−β2)Φs1 (ξ)+β2Φs2 (ξ)

(1−β2)Φs1 (ξs1,s2 )+β2Φs2 (ξs1,s2 )
, where ξs1,s2 is optimal design for

(1− β2)Φs1(ξ) + β2Φs2(ξ). If n ≥ 2, set k = 3.

Step 2 For the newly constructed objective function, consider weighted design problem (1 −
x)Φ{s1,··· ,sk−1} + xΦsk . Change the value of x by grid search on [0, 1] with given grid
size. If Φ0 ∈ {Φs1 , · · · ,Φsk}, choose a proper value x such that the corresponding
weight design maximizes Φ0 while guarantees Φsi ≥ ci for i = 1, · · · , k. If not, choose
a proper value x such that the corresponding weighted optimal design maximizes Φsk

while guarantees Φsi ≥ ci for i = 1, · · · , k − 1. Denote this value as βk. If all the
possible value for x fails to satisfy the constraints for Φs1 , · · · ,Φsk , that indicates the
sequential approach fails with the specified order. Then quit the algorithm.

Construct new objective function

Φ{s1,··· ,sk}(ξ) =
(1− βk)Φs1,··· ,sk−1

(ξ) + βkΦsk(ξ)

(1− βk)Φs1,··· ,sk−1
(ξs1,··· ,sk) + βkΦsk(ξs1,··· ,sk)

,

where ξs1,··· ,sk is optimal design for (1− βk)Φs1,··· ,sk−1
(ξ) + βkΦsk(ξ). Set k = k+ 1 and

repeat Step 2, until k = n+ 1.

Step 3 Transfer Φ{s1,··· ,sn+1}(ξ) back to
∑n

i=0 λiΦi(ξ) using scalar change. Then
∑n

i=0 λiΦi(ξ)
will be the weighted optimal design problem found for constrained design problem with
the sequential approach based on the specified order.

13



For the grid search, weighted optimal design ξΛ = argmax
ξ

∑n
i=0 λiΦi(ξ) will be considered.

All combinations of Λ = (λ0, · · · , λn)T will be checked using multi-dimensional grid search
on [0, 1] with constraint

∑n
i=0 λi = 1. Among all weighted optimal designs ξΛ, ξ∗, which

maximizes Φ0 while guarantee that Φi ≥ ci for i = 1, · · · , n, is selected. Then ξ∗ is regarded
as an optimal design for the multiple-objective optimal design problem.

All three approaches utilize the OWEA algorithm to derive optimal designs for given
weighted optimal design problems. For all examples, the design space has been discretized
uniformly into 1000 design points. The cut-off value for checking optimality in L(ξ,U) for
given U was chosen to be ∆ = 10−6. All other set ups of OWEA are the same as those
of (Yang, Biedermann and Tang, 2013). For new algorithm and grid search, we require
the algorithms to produce the best possible design while guarantee that the constraints are
exactly satisfied. For sequential approach, since it doesn’t guarantee to produce a proper
design and may fail during the searching process, a tolerance value ε = 0.01 is set up. That
means during the sequential approach process, if a design ξ0 have Φi(ξ0) ≥ ci − ε for some
i, the design ξ0 will still be regarded as a proper design which satisfies the constraint for
objective function Φi. The grid size is 0.01 for all the examples in this section. The pre-
specified upperbound N in the new algorithm is 100. All the algorithms are implemented in
SAS software on a Lenovo laptop with Intel Core 2 duo CPU 2.27 HZ.

5.1 Three-objective Optimal Designs

In this subsection, we shall compare the performance of the grid search, the sequential
approach, and the new algorithm in term of deriving optimal designs with three objectives.

Example I Consider the nonlinear model given by

y = β1e
−θ1x + β2e

−θ2x + ε. (14)

This model is commonly used to compare the progression of a drug between different
compartments. Here y denotes the concentration level of the drug in compartments, x
denotes the sampling time, and ε is assumed to follow normal distribution with mean
zero and variance σ2. In a PK/PD study, (Notari, 1980) used Model (14) to model the
concentration of a drug taken at different time. The estimates of the parameters are
θ0 = (θ1, θ2, β1, β2) = (1.34, 0.13, 5.25, 1.75). Under these parameter estimations, (Huang
and Wong, 1998) studied three-objective optimal design with design space x ∈ [0, 15].

Let B = diag{ 1
θ21
, 1
θ22
, 1
β2
1
, 1
β2
2
}; W =

∫ 10

2
f(x)f t(x)v(dx), where f(x) is the linearized

function of the model function using Taylor expansion at θT0 ; ξ∗0 = argminξtr(I
−1(ξ)B);

ξ∗1 = argminξ|I−1(ξ)|; and ξ∗2 = argminξtr(I
−1(ξ)W ). The three objective functions can be
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written as follow:

Φ0(I(ξ)) = − tr(I−1(ξ)B)

tr(I−1(ξ∗0)B)
,

Φ1(I(ξ)) = −(
|I−1(ξ)|
|I−1(ξ∗1)|

)
1
4 , and

Φ2(I(ξ)) = − tr(I−1(ξ)W )

tr(I−1(ξ∗2)W )
.

Define EffiΦ(ξ) = − 1
Φ(I(ξ))

. Clearly EffiΦi(ξ), i = 0, 1, 2 are consistent with the definitions
of efficiency of design ξ under the corresponding optimality criteria. For example, EffiΦ1(ξ)

refers the D-efficiency. Such definition will be used in the subsequent examples.
The three-objective optimal design problem considered in (Huang and Wong, 1998) is

Maximize
ξ

EffiΦ0(ξ)

subject to

{
EffiΦ1(ξ) ≥ 0.9,

EffiΦ2(ξ) ≥ 0.8.

Notice that the constraints EffiΦ1(ξ) ≥ 0.9 and EffiΦ2(ξ) ≥ 0.8 are obviously equivalent to
Φ1(I(ξ)) ≥ −10/9 and Φ2(I(ξ)) ≥ −5/4, respectively. In the subsequent examples, we will
use the similar efficiency setup without specifying their equivalence to the corresponding
objective functions.

The efficiencies of ξ∗1 , ξ∗2 , and ξ∗3 under each of the three objective functions are shown
in Table 2. Clearly the optimal design based on one single optimal criteria has bad perfor-
mance under other optimal criteria. These efficiencies are consistent with the corresponding
efficiencies provided in Table 4 of (Huang and Wong, 1998). The new algorithm is applied
to the three-objective optimal design problem. With the new algorithm, the corresponding
Lagrange function is

L(ξ,U∗) = Φ0 + 4.2053Φ1 + 2.5085Φ2.

The efficiencies of the derived constrained optimal design ξ∗ are also shown in Table 2. It
shows that ξ∗ has high efficiency on Φ0 while guarantees the other two efficiencies are above
the acceptable level.

The grid search and the sequential approach are also applied to this optimal design
problem. The sequential result is also consistent with that of (Huang and Wong, 1998).
Table 3 shows the efficiencies and computational time comparisons of the constrained optimal
designs derived using the grid search, the sequential approach and the new algorithm.

It shows that the three approaches are essentially equivalent. The sequential approach
gains highest efficiency on Φ0 by sacrificing a little bit on constrained efficiencies. New al-
gorithm and grid search have slightly drop on target efficiency to guarantee that the two
constraints are exactly satisfied. The sequential approach is faster. However, the compu-
tational time in the table for sequential approach is just for one possible order. In many
cases, one may need to check many possible orders to produce a satisfied solution. Thus the
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Table 2: Example I: the relative efficiencies of ξ∗0 , ξ∗1 , ξ∗2 , and ξ∗

Efficiency

Design Type Φ0 Φ1 Φ2

ξ∗0 1 0.7315 0.7739
ξ∗1 0.6677 1 0.5576
ξ∗2 0.6959 0.4166 1
ξ∗ 0.8692 0.9000 0.8001

Table 3: Example I: relative efficiencies of constrained optimal designs based on different
techniques

Efficiency

Techniques Φ0 Φ1 Φ2 Time Cost (Seconds)
Grid Search 0.8658 0.9009 0.8000 1834
Sequential Approach 0.8917 0.8900 0.8040 52
New Algorithm 0.8692 0.9000 0.8001 103

computational time will tremendously increase in that case. Also in the next a few examples,
however, sequential approach fails to provide a desired design.

Example II Emax model is commonly used in dose-finding studies. This model can be
written as

y = β0 +
β1x

β2 + x
+ ε, (15)

where x represents the dose level, ε is assumed to follow the normal distribution with mean
zero and variance σ2, β0 represents the response when the dose level is at 0, β1(Emax) is
the maximum effect of the drug and β2(ED50) can be regarded as the dose level which
produces half of Emax. In a dose finding study, (Dette, Bretz, Pepelyshev and Pinheiro,
2008) used Model (15) to find optimal design for the minimum effective dose level (MED)
under parameter estimates β0 = 0, β1 = 0.4760, and β2 = 25, where the relevant difference
∆ is set as 0.2. Suppose a researcher is interested in estimating h0(β) = β2, h1(β) = β1, and

h2(β) = MED = β2log(β1+∆
β1

). Let ci = ∂hi(β)
∂β

and ξ∗i = argminξtr(c
T
i I
−1(ξ)ci), i = 0, 1, 2.
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Table 4: Example II: relative efficiencies of ξ∗0 , ξ∗1 , ξ∗2 , and ξ∗

Efficiency

Design Type Φ0 Φ1 Φ2

ξ∗0 1.0000 0.5891 0.6670
ξ∗1 0.0001 1.0000 0.0001
ξ∗2 0.0028 0.0006 1.0000
ξ∗ 0.9609 0.7008 0.6505

The corresponding objective functions can be written as

Φ0(I(ξ)) = − tr(cT0 I
−1(ξ)c0)

tr(cT0 I
−1(ξ∗0)c0)

, and

Φi(I(ξ)) = − tr(cTi I
−1(ξ)ci)

tr(cTi I
−1(ξ∗i )ci)

, i = 1, 2.

Consider three-objective optimal design problem

Maximize
ξ

EffiΦ0(ξ)

subject to

{
EffiΦ1(ξ) ≥ 0.7,

EffiΦ2(ξ) ≥ 0.65.

Utilizing the new algorithm, we find that the corresponding Lagrange function is

L(ξ,U∗) = Φ0 + 0.4944Φ1 + 0.2258Φ2.

The efficiencies of ξ∗0 , ξ∗1 , ξ∗2 , and the constrained optimal design ξ∗ under each of different
optimal criteria are shown in Table 4.

Table 5 shows the efficiencies and computational time comparisons of the constrained
optimal designs derived using the grid search, the sequential approach and the new algo-
rithm. The table shows that the new algorithm produces a desired design. Grid search also
produces a satisfied solution, although the computational time is around fifteen times of that
of the new algorithm. A notable fact is that the sequential approach could not produce a
proper solution. For sequential approach, all possible orders are tested and they all fail to
produce a proper design. Sequential approach results based on different orders are shown in
Table 6. ξ∗ijk is the derived design based on the order Φi → Φj → Φk using the sequential
approach. Since by the sequential approach procedure, ξ∗012 will be equivalent to ξ∗102 and
ξ∗021 is equivalent to ξ∗201, only four different orders are shown on the table. From Table 6,
we can see that ξ∗210 performs relative good. However the efficiency for Φ2 for ξ∗210 is 0.6726
while the corresponding constraint value is 0.65. This indicates ξ∗210 does not identify the
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Table 5: Example II: relative efficiencies of constrained optimal designs based on different
approaches

Efficiency

Techniques Φ0 Φ1 Φ2 Time Cost (Seconds)
Grid Search 0.9604 0.7000 0.6529 502
Sequential Approach Failed
New Algorithm 0.9609 0.7008 0.6505 34

Table 6: Example II: efficiencies of the derived designs based on different orders using se-
quential approach

Efficiency

Designs Φ0 Φ1 Φ2

ξ∗120 0.9036 0.6992 0.6854
ξ∗210 0.9437 0.6995 0.6726
ξ∗102 Fails
ξ∗201 Fails

active objective function Φ2.
Example III (Atkinson, Chaloner, Juritz and Herzberg , 1993) derived Bayesian designs

for a compartmental model which can be written as

y = θ3(e−θ1x − e−θ2x) + ε = η(x, θ) + ε. (16)

where ε is assumed to follow the normal distribution with mean zero and variance σ2 and
y represents the concentration level of the drug at time point x. (Clyde and Chaloner,
1996) derived multiple objective optimal designs under this model with parameter values
θT = (θ1, θ2, θ3) = (0.05884, 4.298, 21.80) and design space [0, 30]. Interests are on estimating
θ as well as the following quantities:

• Area under the curve (AUC),

h1(θ) =
θ3

θ1

− θ3

θ2

• Maximum concentration,
cm = h2(θ) = η(tmax, θ),

where tmax = 1.01.

Let ξ∗0 = argmin|I−1(ξ)|, ci be the gradient vector of hi(θ) according to parameter vector
θ and ξ∗i = argmintr(cTi I

−1(ξ)ci), i = 1, 2. The corresponding objective functions can be
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Table 7: Example III: relative efficiencies of ξ∗0 , ξ∗1 , ξ∗2 , and ξ∗

Efficiency

Design Type Φ0 Φ1 Φ2

ξ∗0 1.0000 0.3431 0.3634
ξ∗1 0.0036 1.0000 0.0000
ξ∗2 0.0042 0.0000 1.0000
ξ∗ 0.9761 0.4008 0.4046

written as follows:

Φ0(I(ξ)) = −(
|I−1(ξ)|
|I−1(ξ∗0)|

)
1
3 , and

Φi(I(ξ)) = − tr(cTi I
−1(ξ)ci)

tr(cTi I
−1(ξ∗i )ci)

, i = 1, 2.

Consider the following three-objective optimal design problem:

Maximize
ξ

EffiΦ0(ξ)

subject to EffiΦi(ξ) ≥ 0.4, i = 1, 2.

Utilizing the new algorithm, we find that the corresponding Lagrange function is

L(ξ,U∗) = Φ0 + 0.0916Φ1 + 0.0854Φ2.

The efficiencies of ξ∗0 , ξ∗1 , ξ∗2 , and the constrained optimal design ξ∗ under different optimality
criteria are shown in Table 7.

Table 8 shows the efficiencies and computational time comparisons of the constrained
optimal designs derived using the grid search, the sequential approach and the new algorithm.
The table clearly shows both new algorithm and grid search produce a satisfied solution. But
grid search takes around eighteen times calculational time of that of the new algorithm. On
the other hand, the sequential approach again fails to produce a satisfied solution. For
sequential approach, all possible orders are tested and results are shown in Table 9. ξ∗ijk
is the sequential optimal design based on order Φi → Φj → Φk. Table 9 shows sequential
approach with order Φ1 → Φ0 → Φ2 and order Φ2 → Φ0 → Φ1 fails to produce a design which
satisfies all the constraints. For optimal designs derived with the other two orders, although
constraints are satisfied. The efficiency of the target objective function Φ0 is far below
the results from the new algorithm and the grid search. All these indicate that sequential
approach may not be proper for finding multiple-objective optimal design problems.
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Table 8: Example III: relative efficiency of constrained optimal design based on different
techniques

Efficiency

Techniques Φ0 Φ1 Φ2 Time Cost (Seconds)
Grid Search 0.9761 0.4042 0.4009 1047
Sequential Approach Fails
New Algorithm 0.9761 0.4008 0.4046 59

Table 9: Example III: efficiencies of the derived designs based on different orders using
sequential approach

Efficiency

Designs Φ0 Φ1 Φ2

ξ∗120 0.5797 0.3908 0.5981
ξ∗210 0.4537 0.6135 0.3904
ξ∗102 Fails
ξ∗201 Fails
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5.2 Four-objective and Five-objective Optimal Designs

In this subsection, we shall mainly focus on the performance of the new algorithm when
there are four or five objectives. The sequential approach is dropped due to its unstable
performance. The grid search is not considered either due to its lengthy computational time.

Example IV Under the same set up as that of Example III, another parameter of
interest, time to maximum concentration tm is also considered, where

tm = h3(θ) =
log(θ2)− log(θ1)

θ2 − θ1

.

The corresponding objective function is

Φ3(I(ξ)) = − tr(c
T
3 I
−1(ξ)c3)

tr(cT3 I
−1(ξ∗3)c3

,

where c3 is the gradient vector of h3(θ) according to vector θ and ξ∗3 = argminξtr(c
T
3 I
−1(ξ)c3).

(Clyde and Chaloner, 1996) studied the following four-objective optimal design problem

Maximize
ξ

EffiΦ0(ξ)

subject to


EffiΦ1(ξ) ≥ 0.4,

EffiΦ2(ξ) ≥ 0.4,

EffiΦ3(ξ) ≥ 0.4.

is considered.
Utilizing the new algorithm, we find that the corresponding Lagrange funcion is

L(ξ,U∗) = Φ0 + 0.0916Φ1 + 0.0854Φ2.

This indicates that only two out of the three constrains are active, which are objective
functions Φ1 and Φ2. The efficiencies of ξ∗0 , ξ∗1 , ξ∗2 , ξ∗3 , and the constrained optimal design ξ∗

under different optimal criteria are shown in Table 10. The computational time is around
56 seconds.

Example V Based on the same settings as Example IV, we add one more objective
function:

Φ4(I(ξ)) = − tr(I−1(ξ))

tr(I−1(ξ∗4))
.

Here ξ∗4 = argmintr(I−1(ξ)). Then five-objective optimal design problem

Maximize
ξ

EffiΦ0(ξ)

subject to


EffiΦi(ξ) ≥ 0.4, i = 1, 2, 3

EffiΦ4(ξ) ≥ 0.75
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Table 10: Example IV: the relative efficiencies of ξ∗0 , ξ∗1 , ξ∗2 , ξ∗3 and ξ∗

Efficiency

Design Type Φ0 Φ1 Φ2 Φ3

ξ∗0 1.0000 0.3431 0.3634 0.6464
ξ∗1 0.0036 1.0000 0.0000 0.0000
ξ∗2 0.0042 0.0000 1.0000 0.0002
ξ∗3 0.0785 0.0001 0.0007 1.0000
ξ∗ 0.9761 0.4008 0.4046 0.5143

Table 11: Example V: the relative efficiencies of ξ∗0 , ξ∗1 , ξ∗2 , ξ∗3 , ξ∗4 and ξ∗

Efficiency

Design Type Φ0 Φ1 Φ2 Φ3 Φ4

ξ∗0 1.0000 0.3431 0.3634 0.6464 0.7044
ξ∗1 0.0036 1.0000 0.0000 0.0000 0.0000
ξ∗2 0.0042 0.0000 1.0000 0.0002 0.0005
ξ∗3 0.0785 0.0001 0.0007 1.0000 0.0010
ξ∗4 0.7904 0.1138 0.6460 0.5895 1.0000
ξ∗ 0.9616 0.4013 0.4184 0.4945 0.7501

is considered.
Result from new algorithm indicates that the corresponding Lagrange function is

L(ξ,U∗) = Φ0 + 0.3052Φ1 + 0.8362Φ4.

Only objective functions Φ1 and Φ4 are active in this case. The efficiencies of of ξ∗0 , ξ∗1 , ξ∗2 ,
ξ∗3 , ξ∗4 and the constrained optimal design ξ∗ under different optimal criteria are shown in
Table 11. It takes 2 minutes and 27 seconds for the new algorithm to find ξ∗.

Example VI
Consider Model (14) in Example I. Suppose that we want to maximize the efficiency

of D-optimal while guarantee that the efficiency of C-optimal for each parameter is above
0.7. All other settings are as the same as those of example I. Let ξ∗0 = argmin|I−1(ξ)| and
ξ∗i = argmintr(eTi I

−1(ξ)ei), i = 1, 2, 3, 4, where ei is the unit vector with i-th element equal
to 1.

22



Table 12: Example VI: the relative efficiencies of ξ∗0 , ξ∗1 , ξ∗2 , ξ∗3 , ξ∗4 and ξ∗

Efficiency

Design Type Φ0 Φ1 Φ2 Φ3 Φ4

ξ∗0 1.0000 0.8323 0.4461 0.6326 0.5967
ξ∗1 0.9141 1.0000 0.3294 0.6234 0.6136
ξ∗2 0.3849 0.1964 1.0000 0.3353 0.6422
ξ∗3 0.1471 0.0006 0.0232 1.0000 0.0051
ξ∗4 0.6044 0.4260 0.6867 0.6230 1.0000
ξ∗ 0.9259 0.7009 0.7007 0.7212 0.7027

The corresponding objective functions can be written as following:

Φ0(I(ξ)) = −(
|I−1(ξ)|
|I−1(ξ∗0)|

)
1
3 , and

Φi(I(ξ)) = − tr(eTi I
−1(ξ)ei)

tr(eTi I
−1(ξ∗i )ei)

, i = 1, 2, 3, 4.

Consider the following five-objective optimal design problem

Maximize
ξ

EffiΦ0(ξ)

subject to EffiΦi(ξ) ≥ 0.7, i = 1, 2, 3, 4.

Results from new algorithm show that the corresponding Lagrange function is

L(ξ,U∗) = Φ0 + 0.0183Φ1 + 0.3540Φ2 + 0.0305Φ4.

Only objective function Φ3 is inactive in this case. The efficiencies of ξ∗0 , ξ∗1 , ξ∗2 , ξ∗3 , ξ∗4 and
the constrained optimal design ξ∗ under different optimal criteria are shown in Table 12. It
takes about 42 minutes on a laptop.

6 Discussion

While the importance of multiple objective optimal designs is well recognized in scientific
studies, their applications are still undeveloped due to a lack of a general and efficient
algorithm. The combination of OWEA algorithm for compound optimal design problem
and the new algorithm provides an efficient and stable framework for finding the general
multiple-objective optimal designs. Examples show that we can easily find the optimal
designs for multiple-objective design problems with a laptop even when there are more than
four objective functions involved. The difference of computational cost between the grid
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search and the new algorithm become more and more remarkable as increase of required
accuracy.

In the process of solving multiple-objective optimal design problems, the new algorithm
searches for the corresponding compound optimal design problem from the simplest case -
all constraints are inactive to the most complex case - all constraints are active. During the
searching process, once a weight vector U∗ satisfying the sufficient condition is found, the
new algorithm stops and outputs that U∗. The corresponding compound optimal design can
be constructed based on U∗.

For optimal designs with no more than four objective functions, the new algorithm can
derive the desired solution efficiently. When there are five or more objective functions, it
is unlikely all constraints are active. If only less than four constraints are active, the new
algorithm can still solve the optimal design efficiently. However, in a rare situation where
there are four or more active constraints, the computation time can become lengthy. More
research works are needed to deal with these cases.

To guarantee the convergence of new algorithm, the strict concavity of the objective
function Φ0 is required. However, various cases are tested and the convergence hold for
virtually all situations based on our experience. Like in Example II, Φ0 is just a concave
function, but the new algorithm still performs properly. It may be worthwhile to look into the
theoretical properties for these cases. On the other hand, the new algorithm is implemented
under locally optimal designs context for all examples. It is possible to extend the results to
other settings, like to the cases dicussed in (Cook and Fedorov, 1995). More research works
are certainly needed to realize this idea.

Although computer codes of this new algorithm is not straightforward, the main body
of the code work for all multiple-objective design problems. One only needs to change the
information matrix for the specific model and the specific objective functions in a multiple-
objective optimal design problem. The SAS IML codes for all examples in this article can
be downloaded from http://homepages.math.uic.edu/∼minyang. These codes can be easily
modified for different multiple objective optimal problems.

7 Appendix

Let S ⊂ {1, . . . , n}, for easy presentation, we denote USΦ̂S(ξ) =
∑

i∈S uiΦ̂i(ξ). We also

denote Φ̂(ξ) = (Φ̂1(ξ), . . . , Φ̂n(ξ)).
Proof of Theorem 2. Let u0

a > u1
a be two nonnegative values. Let U0

S and U1
S be the

corresponding value sets for US satisfying the two conditions in the theorem when ua = u0
a

and u1
a, respectively. Let U0 be the combination of U0

S, u0
a, and US′ by their corresponding

indexes. Similarly let U1 be the counterpart of U1
S, u1

a, and US′ .
Notice that for U0

S and U1
S, the classification of S1 and S2 could be different. That means

elements in S1 for U0
S may fall into S2 for U1

S and versus the same. We just need to check
that the two disjoint subsets from S satisfy Condition (8) in the theorem separately.

By the properties of ξU0 and ξU1 , we have

Φ0(ξU0) + (U0)T Φ̂(ξU0) ≥ Φ0(ξU1) + (U0)T Φ̂(ξU1), and

Φ0(ξU1) + (U1)T Φ̂(ξU1) ≥ Φ0(ξU0) + (U1)T Φ̂(ξU0).
(17)
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Notice that

(U0)T Φ̂(ξU0) = (U0
S)T Φ̂S(ξU0) + u0

aΦ̂a(ξU0) + (US′)
T Φ̂S′(ξU0),

(U0)T Φ̂(ξU1) = (U0
S)T Φ̂S(ξU1) + u0

aΦ̂a(ξU1) + (US′)
T Φ̂S′(ξU1),

(U1)T Φ̂(ξU0) = (U1
S)T Φ̂S(ξU0) + u1

aΦ̂a(ξU0) + (US′)
T Φ̂S′(ξU0), and

(U1)T Φ̂(ξU1) = (U1
S)T Φ̂S(ξU1) + u1

aΦ̂a(ξU1) + (US′)
T Φ̂S′(ξU1).

(18)

Adding up the two inequalities in (17) and utilizing (18), we have

(u0
a − u1

a)(Φ̂a(ξU0)− Φ̂a(ξU1)) + (U0
S −U1

S)T (Φ̂S(ξU0)− Φ̂S(ξU1)) ≥ 0. (19)

Suppose i ∈ S1 when ua = u0
a and i ∈ S2 when ua = u1

a. Clearly that (u0
i − u1

i ) ≤ 0
while (Φ̂i(ξU0)− Φ̂i(ξU1)) ≥ 0. The conclusion holds for all other cases through the similar
argument. Thus we have, for any i ∈ S, (u0

i − u1
i )(Φ̂i(ξU0)− Φ̂i(ξU1)) ≤ 0. Consequently, we

have

(U0
S −U1

S)T (Φ̂S(ξU0)− Φ̂S(ξU1)) =
∑
i∈S

(u0
i − u1

i )(Φ̂i(ξU0)− Φ̂i(ξU1)) ≤ 0, (20)

which indicates

(u0
a − u1

a)(Φ̂a(ξU0)− Φ̂a(ξU1)) ≥ 0. (21)

Thus the conclusion follows.
Proof of Theorem 3. By the definitions of ξU0 and ξU1 , we have

Φ0(ξU0) + (U0)T Φ̂(ξU0) ≥ Φ0(ξU1) + (U0)T Φ̂(ξU1), and

Φ0(ξU1) + (U1)T Φ̂(ξU1) ≥ Φ0(ξU0) + (U1)T Φ̂(ξU0).
(22)

By (9), (22) can be rewritten as

Φ0(ξU0) ≥ Φ0(ξU1), and

Φ0(ξU1) ≥ Φ0(ξU0),
(23)

which implies

Φ0(ξU0) = Φ0(ξU1). (24)

Since Φ0 is strictly concave function on information matrices, ξU0 and ξU1 have the same
information matrix. Thus ξU0 is equivalent to ξU1 .

Proof of Theorem 4. Define S11 = {i|Φ̂i(ξU0) > 0, i ∈ S1}. By the properties of U0,
clearly we have u0

i = 0 for i ∈ S11 and u0
i = Ni for i ∈ S2. Suppose there exists a positive
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value set U+ = {U+
S , 0} with Φ̂i(ξU+) = 0 for i ∈ S. Then we have

Φ0(ξU0) + (U0)T Φ̂(ξU0) ≥ Φ0(ξU+) + (U0)T Φ̂(ξU+) and

Φ0(ξU+) + (U+)T Φ̂(ξU+) ≥ Φ0(ξU0) + (U+)T Φ̂(ξU0).
(25)

Then the summation of two inequalities in (25) returns

(U0
S/(S11∪S2) −U+

S/(S11∪S2))
T (Φ̂S/(S11∪S2)(ξU0)− Φ̂S/(S11∪S2)(ξU+))

+ (U0
S11
−U+

S11
)T (Φ̂S11(ξU0)− Φ̂S11(ξU+)) + (U0

S2
−U+

S2
)T (Φ̂S2(ξU0)− Φ̂S2(ξU+)) ≥ 0.

(26)

By Condition (10) and our assumption, we have (i) Φ̂i(ξU0) = 0 for i ∈ S/(S11 ∪ S2); (ii)
u0
i = 0 for i ∈ S11; and (iii) Φ̂i(ξU+) = 0 for i ∈ S. Thus, (26) can be reduced to

(−U+
S11

)T Φ̂S11(ξU0) + (U0
S2
−U+

S2
)T (Φ̂S2(ξU0)) ≥ 0. (27)

Notice that, for i ∈ S11, Φ̂i(ξU0) > 0 and U+
S11

> 0. We have

(−U+
S11

)T Φ̂S11(ξU0) < 0. (28)

On the other hand, for i ∈ S2, u0
i = Ni > U+

i and Φ̂i(ξU0) < 0, we have

(U0
S2
− U+

S2
)T (Φ̂S2(ξU0)) < 0. (29)

Since S11

⋃
S2 6= ∅, we have

(−U+
S11

)T Φ̂S11(ξU0) + (U0
S2
−U+

S2
)T (Φ̂S2(ξU0)) < 0. (30)

This is contradiction to (27). Thus the conclusion follows.
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