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Abstract

We study the optimality, efficiency, and robustness of crossover designs for com-
paring several test treatments to a control treatment. Since A-optimality is a natural
criterion in this context, we establish lower bounds for the trace of the inverse of the
information matrix for the test treatments versus control comparisons under various
models. These bounds are then used to obtain lower bounds for efficiencies of a design
under these models. Two algorithms, both guided by these efficiencies and results from
optimal design theory, are proposed for obtaining efficient designs under the various
models.

KEY WORDS: Crossover designs; Repeated measurements; Carryover effect; Balanced
designs; A-optimal designs.

1 Introduction

Crossover designs are used in many clinical trials and other studies. In such studies, sub-
jects receive a sequence of treatments, specified by the design, over successive periods of
time. Treatments can then be compared using repeated measurements from the same sub-
ject and the individual subjects are used as blocks. Thus, between-subject variation is re-
moved from the experimental error to increase the sensitivity of the experiment. Crossover
designs also facilitate economical use of resources when a limited number of subjects is
available for the study. In particular, they require fewer subjects than a parallel study for
an equal number of treatment replications.

A disadvantage of crossover designs is the possibility that the effect of a treatment
applied in one period may persist into the next period (carry-over effects). Ideally, an
experiment that uses a crossover design will have sufficiently long wash-out periods between
active treatment periods to make any carry-over effects negligible. This will, however,
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inevitably increase the duration of the experiment. Moreover, ethical reasons (how long
can we deny a suffering patient treatment during a wash-out period?) and incomplete
knowledge (how long is long enough for an effective wash-out period?) may result in
inadequate wash-out periods. It is therefore prudent to use a design that, if needed, allows
for efficient estimation of differences between treatment effects under a statistical model
that includes carry-over effects. Section 2 will describe several models that have been
proposed.

While these models are fairly simple (and possibly too simplistic), when, at the time of
planning the experiment, it is difficult to postulate an appropriate model, it is prudent to
select a design that allows for efficient estimation of treatment differences under a variety of
these models. Hedayat and Stufken (2003) study the efficiencies of crossover designs under
different models when all treatment comparisons are equally important. However, in many
clinical trials the main goal of the experiment is to compare several test treatments to a
control treatment or placebo. Optimal or efficient designs for the case that all treatment
comparisons are equally important may not be efficient for comparing test treatments to
a control treatment.

Universal optimality, which is the design optimality criterion most commonly used
in the crossover design literature when all treatment comparisons are equally important,
is inappropriate when comparing test treatments to a control treatment. An appealing
optimality criterion for the latter is A-optimality. With Ad denoting the information matrix
for θ = (τ1− τ0, . . . , τt− τ0)′ under design d, an A-optimal design minimizes Tr(A−1

d ) over
all competing designs d. (Here and elsewhere, 0 denotes the control treatment and τi

the effect of treatment i.) The criterion is appealing because an A-optimal design also
minimizes

∑t
i=1 V ard(τ̂i − τ̂0) over d, where τ̂i − τ̂0 is the BLUE of τi − τ0, i = 1, . . . , t.

Throughout this paper, A-optimality will be used as the optimality criterion. In order
to find designs that are efficient under this criterion for a variety of models, we need to
establish lower bounds for the efficiency of the designs under the A-criterion and we need
to be able to generate efficient designs. This paper presents tools for doing this when
p ≤ t + 1, which is arguably the most important case that is assumed to hold throughout
the paper.

The layout of the paper is as follows. The models to be considered will be presented
in Section 2, while lower bounds for the trace of the inverse of the information matrices
are established in Section 3. In Section 4, we introduce two simple but fast algorithms to
construct robust designs, i.e., designs that are efficient under a variety of models.

2 Statistical models and notation

We will now present a number of statistical models for crossover designs when the response
variable is continuous. While some of these models may only be useful for special situations,
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others have received considerably more coverage in the literature.
The first model is the “traditional” first-order carryover effects model, first considered

in the optimal design literature by Hedayat and Afsarinejad (1975). This model can be
written as

Ydks = µ + αk + βs + τd(k,s) + ρd(k−1,s) + eks, k = 1, . . . , p; s = 1, . . . , n, (2.1)

where Ydks denotes the response from subject s in period k to which treatment d(k, s)
was assigned. In this model µ is the general mean, αk is the effect due to period k, βs is
the effect due to subject s, τd(k,s) is the direct treatment effect of treatment d(k, s), and
ρd(k−1,s) is the carryover or residual effect of treatment d(k − 1, s). By convention, ρd(0,s)

is taken as 0, so that there is no carryover effect in the first period. All these effects are
assumed to be fixed effects. The error terms eks are assumed to be independently normally
distributed with mean 0 and variance σ2.

Model (2.1), while commonly used in the optimal design literature, has been criticized
for its simplistic view of the carryover effects. Recently another model, the self and mixed
carryover effects model, was introduced by Afsarinejad and Hedayat (2002) and studied by
Kunert and Stufken (2002, 2005). It allows each treatment to have two different carryover
effects, one a self carryover effect (which applies if the carryover effect and direct treatment
effect are from the same treatment) and the other a mixed carryover effect (which applies
in all other cases). If there are only two treatments, this is a parameterization of the model
that includes the direct by carryover interaction; for more than two treatments the model
only captures part of that interaction, not requiring nearly as many parameters as for the
full interaction model. Using the same notation as in Model (2.1), the self and mixed
carryover effects model can be written as

Ydks = µ + αk + βs + τd(k,s) + (1− δd(k,s),d(k−1,s))γd(k−1,s) + δd(k,s),d(k−1,s)ϕd(k−1,s)

+eks, k = 1, . . . , p; s = 1, . . . , n. (2.2)

In this model, γd(k−1,s) and ϕd(k−1,s) represent mixed and self carryover effects, respectively.
δd(k,s),d(k−1,s) is an indicator variable that is 1 if d(k, s) = d(k − 1, s) and 0 otherwise. So
a carryover effect will be either γd(k−1,s) or ϕd(k−1,s) depending on whether treatment
d(k − 1, s) is followed by a different treatment or not. As in Model (2.1), there is no
carryover effect in the first period, i.e., γd(0,s) = ϕd(0,s) = 0.

If washout periods are sufficiently long, we will not have to worry about carryover
effects (cf. Senn, 2002). Other effects in Model (2.1) may turn out to be negligible for other
situations. In any case, we would still want our design to be efficient for the estimation
of differences in direct treatment effects. We will therefore also consider the following
variations on Models (2.1) and (2.2), where each time k = 1, . . . , p and s = 1, . . . , n.

No period effects:
Ydks = µ + βs + τd(k,s) + ρd(k−1,s) + eks, (2.3)
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No carryover effects:
Ydks = µ + αk + βs + τd(k,s) + eks, (2.4)

No carryover and period effects:

Ydks = µ + βs + τd(k,s) + eks, (2.5)

Only treatment effects:
Ydks = µ + τd(k,s) + eks, (2.6)

No subject effects:
Ydks = µ + αk + τd(k,s) + ρd(k−1,s) + eks, (2.7)

No carryover and subject effects:

Ydks = µ + αk + τd(k,s) + eks, (2.8)

No period and subject effects:

Ydks = µ + τd(k,s) + ρd(k−1,s) + eks. (2.9)

Observe that Models (2.4), (2.5), and (2.6) correspond to the two-way, one-way, and
zero-way elimination models, respectively, with periods and subjects as blocking variables.

Denoting the test treatments by 1, 2, . . . , t and the control treatment by 0, we use the
notation:

ndis: the number of times that treatment i is assigned to subject s

ñdis: the number of times that treatment i is assigned to subject s in the first p−1 periods

ldik: the number of times treatment i is used in period k

mdij : the number of times treatment i is immediately preceded by treatment j

rdi: the replication of treatment i

r̃di: the replication of treatment i in the first p− 1 periods of the design

Ωt+1,n,p: all designs based on t + 1 treatments (denoted by 0, . . . t) for n subjects and p

periods

Ω1
t+1,n,p: the subclass of Ωt+1,n,p in which the control treatment appears equally often in

each period

Ω2
t+1,n,p: the subclass of Ω1

t+1,n,p in which no treatment is immediately followed by itself

We also define zd =
∑n

s=1

∑t
i=1(ndis − 1)+. Here, m+ = max(m, 0).
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3 Efficiency bounds for designs under the various models

The purpose of this section is to identify lower bounds for the trace of A−1
d , where Ad is

the information matrix for (τ1 − τ0, . . . , τt − τ0)′. These design-independent bounds will
either apply to all designs in Ωt+1,n,p or to all designs in a subclass. While designs that
achieve these bounds do not always exist (this depends on the values of t, n and p), the
bounds are always useful to obtain lower bounds for the efficiencies of existing designs. We
will study this problem here for all the models introduced in Section 2.

3.1 Model (2.1)

Hedayat and Yang (2005) establish the following optimality result in Ω2
t+1,n,p.

Theorem 1. For p ≤ t+1, a design d∗ ∈ Ω2
t+1,n,p is A-optimal in Ω2

t+1,n,p if d∗ is a totally
balanced test-control incomplete crossover design and Tr(A−1

d∗ ) is equal to

min
rd0

(
t(t− 1)2p

x1
+

tp

y1

)
, (3.1)

where

x1 = t(p− 1)(np− rd0)− p(rd0 − 1
p

min
δ

n∑

s=1

n2
d0s)−

[nt(p− 1)− tr̃d0 −minδ
∑n

s=1 nd0sñd0s]2

n(p− 1)(pt− t− 1)− (pt− t + p− 2)r̃d0 + minδ
∑n

s=1 ñ2
d0s

and

y1 = p(rd0 − 1
p

min
δ

n∑

s=1

n2
d0s)−

n(p− 1)(minδ
∑n

s=1 nd0sñd0s)2

np(p− 1)r̃d0 − r̃2
d0 − n(p− 1)minδ

∑n
s=1 ñ2

d0s

.

For a given design d ∈ Ω2
t+1,n,p, the minimizations in the expressions for x1 and y1 are

over all designs δ ∈ Ω2
t+1,n,p with rδ0 = rd0. For designs in Ω2

t+1,n,p, since all these minima
are a function of rd0, t, n and p only and since r̃d0 = (p − 1)rd0/p, the minimization in
(3.1) is a numerical minimization over possible values of rd0 rather than over all designs in
Ω2

t+1,n,p.
We refer the reader to Hedayat and Yang (2005) for the definition of a totally balanced

test-control incomplete crossover design, who also give examples of such designs that are
optimal in Ω2

t+1,n,p for p = 3, 4, and 5, t = p− 1,..., 9, and certain values of n.
Hedayat and Yang (2004) considered the larger class Ω1

t+1,n,p, where the same treatment
can appear in consecutive periods. Through tedious algebra, they obtained a lower bound
for Tr(A−1

d ) in this larger class, and found that, in general, optimal designs in the subclass
Ω2

t+1,n,p may no longer be optimal in the larger class, but are still highly efficient.
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To formulate this bound for Ω1
t+1,n,p, let Γd be the set of all treatment sequences with

the control treatment in the last period, and define Ψd =
∑

s∈Γd
ñd0s. Furthermore, define

A(t, n, p) = min
rd0,Ψd,md00,zd

(
t(t− 1)2p

x2
+

tp

y2

)
, (3.2)

where

x2 = t(p− 1)(np− rd0)− 2tzd − p(rd0 − 1
p

min
δ

n∑

s=1

n2
δ0s)

− [t(p− 1)(n− zd)− tr̃d0 − (minδ
∑n

s=1 nδ0sñδ0s − pmd00)]2

n(p− 1)(pt− t− 1)− (pt− t + p− 2)r̃d0 + minδ
∑n

s=1 ñ2
δ0s

(3.3)

and

y2 = p(rd0 − 1
p

min
δ

n∑

s=1

n2
δ0s)−

n(p− 1)(minδ
∑n

s=1 nδ0sñδ0s − pmd00)2

np(p− 1)r̃d0 − r̃2
d0 − n(p− 1)minδ

∑n
s=1 ñ2

δ0s

. (3.4)

For a given design d ∈ Ω1
t+1,n,p, the minima that appear in the expressions in (3.3) and

(3.4) are over all designs δ ∈ Ω1
t+1,n,p with rδ0 = rd0, Ψδ = Ψd and mδ00 = md00. All of these

minima depend only on rd0, Ψd, md00, t, n and p. We also note that r̃d0 = (p− 1)rd0/p for
designs in Ω1

t+1,n,p, which is used in the computations for (3.2). The minimization in (3.2)
is not accomplished by considering all possible designs (there are simply too many), but
by a numerical minimization over the possible ranges of the four parameters rd0, Ψd, md00,
and zd.

Theorem 2. Let n ≥ p(p− 1)/2. For any design d ∈ Ω1
t+1,n,p, we have

Tr(A−1
d ) ≥ A(t, n, p). (3.5)

Hedayat and Yang (2004) have a restriction on t in their formulation of our Theorem 2,
which turns out to be unnecessary.

3.2 Models (2.2) and (2.3)

The self and mixed carryover effects model is more complicated than the traditional
model. However, efficiency bounds for Model (2.1) are also useful for Model (2.2). Writ-
ing Yd = (Yd11, Yd21, . . . , Ydpn)′, α = (α1, . . . , αp)′, β = (β1, . . . , βn)′, τ = (τ0, . . . , τt)′,
γ = (γ0, . . . , γt)′, ϕ = (ϕ0, . . . , ϕt)′, e = (e11, e21, . . . , epn)′, P = 1n ⊗ Ip, and U = In ⊗ 1p,
the self and mixed carryover effects model can be written as

Yd = µ1 + Pα + Uβ + Tdτ + Mdγ + Sdϕ + e,
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where Td is the design matrix for the direct treatments, Md the design matrix for the mixed
carryover effects, and Sd the design matrix for the self carryover effects. Note that Md and
Sd are determined by Td.

Using a similar notation, the traditional model can be written as

Yd = µ1 + Pα + Uβ + Tdτ + Fdρ + e,

where Fd is the design matrix for the carryover effects. Since Fd = Md + Sd, we have that
C(P |U |Fd) ⊂ C(P |U |Md|Sd). Here C(X) denotes the column space of the matrix X. If we
write A2.2

d for the information matrix of (τ1 − τ0, . . . , τt − τ0)′ under the self and mixed
carryover effects model, then it follows that A2.2

d ≤ Ad (in the Loewner order) for any
design d, and that

Tr
(
(A2.2

d )−1
) ≥ Tr(A−1

d ). (3.6)

Consequently, a lower bound for Tr(A−1
d ) is also valid for Tr

(
(A2.2

d )−1
)

and can therefore
be used for computing efficiency bounds for designs under Model (2.2).

Note that if d ∈ Ω2
t+1,n,p, then Sd is the zero matrix and Fd = Md. Hence for such

designs A2.2
d and Ad are identical, so that equality holds in (3.6).

Turning to Model (2.3), the without period effects model, for design d we denote the
information matrix for (τ1−τ0, . . . , τt−τ0)′ under this model by A2.3

d . The lower bounds in
Theorems 1 and 2 are actually based on bounds for Tr

(
(A2.3

d )−1
)

(see Hedayat and Yang,
2004, 2005) and can therefore immediately be applied to Model (2.3).

3.3 Models (2.4) and (2.5)

Model (2.4), the two-way elimination model with subject and period effects as block effects,
and Model (2.5), the one-way elimination model with subject effects as block effects, can
be written as

Yd = µ1 + Pα + Uβ + Tdτ + e

and

Yd = µ1 + Uβ + Tdτ + e,

respectively. With A2.4
d and A2.5

d as the information matrices for (τ1 − τ0, . . . , τt − τ0)′

under these two models, we have by an argument analogous to that in Subsection 3.2,
that Tr

(
(A2.4

d )−1
) ≥ Tr

(
(A2.5

d )−1
)
. Consequently, a lower bound for Tr

(
(A2.5

d )−1
)

is also
a lower bound for Tr

(
(A2.4

d )−1
)
, and we cannot do better in general because there are

optimal designs for which A2.4
d = A2.5

d . Majumdar and Notz (1983), studying the one-way
elimination model, derive the following lower bound, which we will use for both models in
this section:

min
d

Tr
(
(A2.5

d )−1
)

= min
x,z
{g(x, z) : x = 0, . . . , [p/2]− 1; z = 1, . . . , n}, (3.7)
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where

g(x, z) =
t(t− 1)2p

ntp(p− 1)− (nx + z)(pt− t + p) + nx2 + 2xz + z
+

tp

p(nx + z)− (nx2 + 2xz + z)
.

3.4 Models (2.6), (2.7), (2.8) and (2.9)

We will use a common lower bound for these four models without subject effects. While
the models may not be very plausible, we include them for completeness. By similar
arguments as used in the previous subsections, it follows immediately that Tr

(
(A2.6

d )−1
)

is a lower bound for the trace of the information matrix under each of the other three
models. Moreover, it can be shown that Tr

(
(A2.6

d∗ )−1
)

= Tr
(
(A2.7

d∗ )−1
)
= Tr

(
(A2.8

d∗ )−1
)

= Tr
(
(A2.9

d∗ )−1
)

if design d∗ satisfies the following two conditions: (i) ld∗ik = rd∗i/p, for
i = 0, . . . , t and k = 1, . . . , p (ii) md∗ij = 1

nprd∗ir̃d∗j for 0 ≤ i, j ≤ t. Such designs do exist,
as is shown by the following example:

1 1 1 2 2 2 3 3 3 4 4 4 0 0 0 0 0 0
1 2 3 2 3 4 3 4 0 4 0 0 0 0 1 0 1 2
4 0 0 0 1 2 2 1 2 3 4 0 3 3 0 4 0 1

A lower bound for Model (2.6), the zero-way elimination model, is (see Hedayat, Jacroux
and Majumdar, 1988) given by:

min
d

Tr
(
(A2.6

d )−1
)

= min
x
{ t

x
+

t− np + x + tbnp−x
t c

bnp−x
t c +

np− x− tbnp−x
t c

bnp−x
t c+ 1

, x = 1, . . . , np− t},
(3.8)

4 Obtaining efficient designs

Hedayat and Yang (2005) identified optimal designs under Model (2.2) in Ω2
t+1,n,p by using

Theorem 1. However, such designs exist only for selected values of t, n, and p. With the
bounds derived in this paper, we can easily obtain lower bounds for the efficiency of a
non-optimal design, whether in Ω1

t+1,n,p or Ω2
t+1,n,p, and not only for one specific model.

The efficiency of a design d in a class of designs is defined as 100× Tr(B−1
d∗ )/Tr(B−1

d ) %,
where d∗ is the A-optimal design in the class and Bd is the appropriate information matrix
for design d. Lower bounds for this efficiency are obtained by replacing Tr(B−1

d∗ ) with the
lower bounds in Section 3. For most models we compute the efficiency bounds in Ωt+1,n,p;
for Models (2.1), (2.2) and (2.3) we will do it in the classes Ω1

t+1,n,p or Ω2
t+1,n,p since we

don’t have a sharp bound for the entire class.
If an experimenter has a particular design in mind, lower bounds can be computed

easily in this way. If there is no candidate design, then, irrespective of the values of t, n
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and p, the two algorithms presented in this section are useful for generating designs that
are efficient under a variety of models, including those presented in this paper. Underlying
these algorithms is the premise that totally balanced test-control incomplete crossover
designs (see Theorem 1) are highly efficient under most of the models studied here. These
designs play therefore a critical role in the algorithms, and the theme of the algorithms is
not to stray too far from such designs.

Both of the algorithms have been made available (coded in SAS) by one of the authors
(MY) at http://www.missouri.edu/∼yangmi/programs.html, along with instructions on
how to use them. For both algorithms it must hold that p = 3, 4 or 5, and t = p− 1, . . . , 9,
while n can be any integer greater than or equal to t. These constraints on the parameters
cover the most important cases.

User inputs for both algorithms are t, n and p. The output consists of a design in Ωt,n,p

and efficiency bounds for that design under the various models discussed in this paper.
Algorithm I consists of the following four steps:
(i) For the input values of t and p, a value ñ is found so that an optimal design in

Ω2
t+1,en,p, say d∗ is available. The sequences of d∗ will be used to construct the requested

design.
(ii) Let λ = bn

enc. If λ > 0, form a starting design by taking λ copies of each sequence
in d∗. If λ = 0, take a starting design d that consists of a small number of sequences, say
t, selected from d∗ so that it has the maximum efficiency under Model (2.1).

(iii) Add one sequence to the design constructed so far. This sequence is selected from
d∗ so that it maximizes the efficiency of the resulting design under Model (2.1).

(iv) If the number of sequences in the constructed design is less than n, repeat step
(iii).

While Algorithm I is based on Model (2.1), it may not generate an optimal design under
that model. The efficiencies suggest however that it is almost always highly efficient, and
not only under Model (2.1). An advantage of Algorithm I is that, due its simplicity, it is
very fast even when n is large.

As an example, suppose we are interested in a design for comparing 4 test treatments to
a control on 20 subjects in 3 periods. The design obtained by Algorithm I is the following:

0 2 4 1 3 0 1 3 0 2 4 0 0 1 0 0 3 4 2 4
1 4 2 0 0 3 0 0 3 3 1 1 3 2 2 4 4 3 0 0
4 0 0 3 4 1 2 1 2 0 0 3 4 0 1 2 0 0 3 1

For this design, the efficiency lower bounds under Models (2.1) and (2.2) are 98.7% in
Ω2

4+1,20,3 and 98.3% in Ω1
4+1,20,3, respectively; under Models (2.4), (2.5), (2.6), (2.3), (2.7),

(2.8), and (2.9) the lower bounds are 99.0%, 99.5%, 99.7%, 98.5%, 89.0%, 99.3%, and
89.2% respectively. Here, the efficiency under Model (2.3) is in Ω1

4+1,20,3. Hence, with the
possible exception of Models (2.7) and (2.9), the efficiencies of this design are very high.
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Under the latter models, which both include carryover effects but no subject effects, a good
design tends to have each treatment immediately followed by itself at some occasions. This
does not happen at all for designs constructed by Algorithm I.

Algorithm I works nevertheless remarkably well. The efficiency bounds are usually quite
high, though they tend to be a bit lower for small values of n (especially when n happens to
be smaller than ñ). One reason for this is that the bounds are based on approximate design
theory, and that, for smaller n, there is possibly NO design that comes close to attaining
them. Hence the bounds are conservative, and the constructed design is possibly much
better than suggested by the bounds. A second reason can be that Algorithm I is just not
as effective for small n. For that reason we developed a second algorithm, Algorithm II.
This is a 5-step algorithm, in which steps (i), (ii) and (iv) are identical as for Algorithm I.
Step (iii) is modified as follows:

(iii) Add two sequences to the design constructed so far, both from d∗, so that the re-
sulting design has maximum efficiency. Next, again using design efficiency as the criterion,
delete the ‘worst’ sequence from the resulting design.

Hence, just as for Algorithm I, step (iii) of Algorithm II also increases the size of the
design by one sequence, but it facilitates the deletion of sequences that looked good at one
time but that appear to be the weakest link now.

Once a design of n sequences has been obtained, Algorithm II still tries to improve the
design by the following fifth step:

(v) Replace a sequence from the current design by a sequence from d∗ so that the
increase in efficiency is maximized. This step is repeated until improvements in efficiency
are smaller than a pre-set value, say 0.001.

For the second algorithm, the efficiencies in steps (iii) and (v) need not be based on
Model (2.1) alone. Based on user input, they can be based on a weighted average of the
efficiencies under Models (2.1), (2.2) and (2.4). This can especially be important for small
n. For example, for t = 5, p = 3, and n = 6, if we use the weights 1, 0, 0 for Models
(2.1), (2.2), and 2.4), respectively, the design constructed by Algorithm II has efficiency
65% under Models (2.1) and (2.2) in Ω2

5+1,6,3 and 70% under Model (2.4). If we use the
weights 0, 0, 1 for the three models then we obtain a design that has efficiency 15% under
Models (2.1) and (2.2) in Ω2

5+1,6,3 and 89% under Model (2.4).
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