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Abstract

A procedure for constructing a vector of regression weights is considered. Under the re-

gression superpopulation model, the ridge regression estimator that has minimum model mean

squared error is derived. Through a simulation study, the ridge regression weights, regression

weights, quadratic programming weights and raking ratio weights are compared. The ridge

regression procedure with weights bounded by zero performed very well.

Keywords: Regression superpopulation model, Ridge regression, Model MSE, Design consis-

tency

1 Introduction

In survey sampling, information about the population, often called auxiliary information, is com-

monly incorporated by means of regression estimation or raking. A review of the use of auxiliary

information in regression estimation for sample surveys is given by Fuller (2002). The raking

method is credited to Deming and Stephan (1940). One regression estimator of the population

mean can be defined as a linear estimator, ȳlin =
∑n

i=1 wi yi, where the wis’ minimize
n∑

i=1

(wi − αi)
2α−1

i , (1.1)
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subject to the vector of constraints
n∑

i=1

wixi = x̄N , (1.2)

αi =
(∑n

j=1 π−1
j

)−1

π−1
i , x is a vector of auxiliary variables, x̄N is the population mean of x and

the πi’s are the selection probabilities.

In defining the regression estimator, regression superpopulation model is often introduced to

describe a population and (or) as a basis of the estimation of the population characteristics. If the

auxiliary variables have strong linear relationship with study variables then regression estimator

permits a significant gain in efficiency by the constraints (1.2). In a large scale survey, many vari-

ables of interest are considered and it is not possible to construct a single model that is appropriate

for all variables of interest. In such a case, if relevant auxiliary variables to a certain set study vari-

ables are omitted from the model then estimators may have substantial model bias. On the other

hand, if one attempts to use a large vector of the auxiliary variables, some of the weights for the

estimator could be extremely large or negative or it may be impossible to satisfies the restrictions

on weights (1.2). If the regression weights are to be used to estimate a finite population total in

a general purpose survey, it seems reasonable that no individual weight should be less than one.

Also, it seems reasonable, on robustness ground, to avoid very extreme weights.

There are several ways to reduce the range of regression weights directly. One is to modify the

wi defining the estimator so that there are no negative weights and no large weights. Huang and

Fuller (1978) is an early paper defining such a procedure. A number of procedures build on the

fact that the weights can be defined as values that optimize some function. Deville and Särndal

(1992) considered several objective functions that can be used to construct weights. Singh and

Mohl (1996) compared several nonnegative regression type estimators through numerical exam-

ples. Using conditional inclusion probabilities, Park and Fuller (2005) introduced a set of regres-

sion weights that are positive in most samples.

Another modification of regression weights is to reduce the number of constraints or to re-

lax some of the restrictions used in constructing the estimator. Bardsley and Chamber (1984)

introduced a ridge regression estimator in which the restrictions (1.2) were added to the objective
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function (1.1) with a certain coefficient matrix. However no suggestion for choosing the coefficient

matrix was made.

In this paper, we consider a procedure that replaces some of the linear restrictions in (1.2)

with added components in the objective function (1.1). We derive the coefficient matrix for the

added components such that the defined ridge regression estimator has approximately the minimum

model mean squared error (MSE). Using quadratic programming, we generate nonnegative ridge

regression weights. To investigate the performance of alternative regression type estimators when

the model is misspecified, we compare regression weights, ridge regression weights, quadratic

programming weights and raking ratio weights as weights for estimating the population percentiles.

2 Ridge Regression Estimation

Consider the regression superpopulation model

yi = β0 + xiβ + ei , (2.1)

where xi = (xi1, · · · , xip) and (β0,β
′)′ is the vector of regression coefficients. Assume we have

a working diagonal covariance matrix for (e1, · · · , en), denoted by Φ = Diag(φ11, · · · , φnn), for

the model (2.1). It is often assumed, in practice, that Φ is known up to a constant. The possible

choices of Φ are well discussed in Särndal, Swensson and Wretman (1991, Ch. 5, 6). A ridge

regression estimator of the vector of regression coefficients was originally proposed by Hoerl and

Kennard (1970) to construct a nonsensitive estimator for the regression coefficients when there is

multicollinearity among predictors or when sample size is small relative to the number of predic-

tors. Bardsley and Chamber (1984) introduced a procedure that relaxes the constraints on weights

(1.2) and showed that the procedure is a type of ridge estimator.

To define a ridge regression estimator, consider the procedure that replaces the restrictions (1.2)

with an added component in the objective function (1.1) with a coefficient diagonal matrix Ψ. That

is, the weights for the ridge regression estimator is obtained by minimizing

Q = (w −α)′Φ(w −α) + (w′X− x̄N)Ψ(w′X− x̄N)′ , (2.2)
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with a constraint w′Jn−1 = 0, where w = (w1, · · · , wn)′, X = (x′1, · · · ,x′n)′, x̄N = (x̄1,N , · · · , x̄p,N),

xi = (xi1, · · · , xip), Ψ is a positive definite diagonal matrix, and Jn is the column vector of ones.

The solution for the vector of weights is

w = α + Φ−1/2(I−PJ∗n)X∗ [
X∗′(I−PJ∗n)X∗ + Ψ−1

]−1
(x̄N − x̄π)′ (2.3)

where PJ∗n = J∗n(J∗n
′J∗n)−1J∗n

′, (J∗n,X
∗) = Φ−1/2(Jn,X), x̄π =

∑n
i=1 αixi and αi is of (1.1). The

ridge regression estimator defined with the vector of weights (2.3) is

ȳrreg = w′y = ȳπ + (x̄N − x̄π)β̂rid , (2.4)

where

β̂rid =
[
X∗′ (I−PJ∗n

)
X∗ + Ψ−1

]−1 [
X∗′ (I−PJ∗n

)
y∗

]

=

[
n∑

i=1

φ−1
ii (xi − x̄φ)

′(xi − x̄φ) + Ψ−1

]−1 [
n∑

i=1

φ−1
ii (xi − x̄φ)

′yi

] (2.5)

x̄φ =
(∑n

i=1 φ−1
ii

)−1 ∑n
i=1 φ−1

ii xi, y∗ = Φ−1/2y and y = (y1, · · · , yn)′. Note that β̂rid has the

form of a generalized ridge estimator of β in (2.1).

3 Optimal Coefficient Matrix Ψ

In this scetion, we show that deriving a linear estimator that has the minimum model MSE is

equivalent to deriving the optimal value of Ψ for the ridge regression estimator of (2.4) and define

the optimal ridge regression estimator under the multiple regression superpopulation model. To

motivate the procedure of deriving the optimal Ψ that minimizes the MSE of the ridge regression

estimator, consider a single x-variable. Assume the linear model (2.1) with a single explanatory

variable xi where ei’s are independently distributed with mean zero and variance σ2
e , and β0 and

β are the regression coefficients. Consider a linear estimator of the population mean of y, ȳlin =
∑n

i=1 wi yi, where
∑n

i=1 wi = 1. Then the error of the linear estimator in estimating the population

mean of y is ȳlin − ȳN =
∑n

i=1 wiei − ēN + (
∑n

i=1 wixi − x̄N) β, where ȳN , x̄N and ēN are the

4



population means of y, x and e, respectively. The model MSE of the linear estimator for the known

x̄N and conditional on the sample x’s, if we ignore the finite population correction factor, is

E





(
n∑

i=1

wiyi − ȳN

)2 ∣∣∣∣x


 =

n∑
i=1

w2
i σ

2
e +

(
n∑

i=1

wixi − x̄N

)2

β2 (3.1)

=
(
1−R2

)
σ2

y




n∑
i=1

w2
i +

R2

(1−R2) σ2
x

(
n∑

i=1

wixi − x̄N

)2

 ,

where σ2
y and σ2

x are the population variances of y and x, σxy is the population covariance between

x and y and R2 = (σ2
xσ

2
y)
−1σ2

xy. Let R2 and σ2
x be known and the quadratic function of weights can

be approximated by
∑n

i=1(wi − αi)
2α−1

i ≈ ∑n
i=1(wi − αi)

2ᾱ−1 ≈ ∑n
i=1 w2

i ᾱ
−1 − nᾱ, where αi

is the initial weight and ᾱ is the sample mean of the αi. Then the set of weights which minimizes

the objective function (2.2), with X = (x1, · · · , xn)′, Φ = diag(α−1
1 , · · · , α−1

n ), Ψ = ψI and

ψ = [(1−R2)ᾱσ2
x]
−1R2, (3.2)

would minimizes the model MSE of the linear estimator ȳlin, where I is an identity matrix. Thus,

the procedure that replaces the linear restriction of (1.2) with an added component in the objective

function (1.1) with the coefficient ψ of (3.2) is approximately equivalent to finding weights that

minimize the MSE of the linear estimator.

The weights and corresponding ridge regression estimator with αi = n−1, by (2.3) and (2.4),

are wi = n−1 + ψ [n + ψsxx]
−1 (x̄N − x̄n)(xi − x̄n) , and

ȳrreg = (1− γ)ȳn + γȳreg , (3.3)

where ȳreg = ȳn + (x̄N − x̄n) β̂, β̂ = s−1
xx sxy, γ = [n + ψsxx]

−1 ψsxx, sxx =
∑n

i=1(xi − x̄n)2,

sxy =
∑n

i=1(xi − x̄n)(yi − ȳn) and ψ of (3.2). The ridge regression estimator ȳrreg of (3.3) is a

linear combination of the sample mean and the ordinary least square (OLS) regression estimator.

If ψ →∞, which implies that the correlation between x and y becomes one, then ȳrreg converges

to the regression estimator. If ψ → 0, implying that the correlation becomes zero, then ȳrreg

converges to the sample mean.
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With the relationship between the model MSE of a linear estimator
∑n

i=1 wiyi and the model

MSE of ridge regression estimator, optimal γ and the corresponding ψ can be also obtained directly

by minimizing the model MSE of the ridge regression estimator. Under the linear model, the

conditional MSE of ȳrreg is

E{(ȳrreg − ȳN)2|x} =E{[ēn − ēN + (1− γ)(x̄n − x̄N)β + γ(x̄N − x̄n)(β̂ − β)]2|x} (3.4)

≈
(
1− n

N

) σ2
e

n
+ (1− γ)2(x̄n − x̄N)2R2

σ2
y

σ2
x

+ γ2(x̄n − x̄N)2
(1−R2)σ2

y

(n− 2)σ2
x

.

The approximation is due to the approximation of (n − 2)−1sxx by σ2
x. If we differentiate the

approximate conditional MSE of (3.4) with respect to γ and set the result equal to zero, then the

MSE is minimized with

γopt = [1 + (n− 3)R2]−1(n− 2)R2 . (3.5)

The corresponding ψ is ψopt = {(1−R2) [sxx/(n−2)]}−1(nR2). Given the ψ of (3.2), we confirm

that the γ of (3.3) is equal to γopt of (3.5). In practice, the population correlation coefficient R2 is

often unknown. A design consistent estimator of R2 such as the sample correlation coefficient can

be used to define the ȳrreg.

For the case that multiple auxiliary variables are available, we consider a procedure that re-

places some of the linear restrictions in (1.2), with a component in (1.1) that is a positive definite

quadratic form in the replaced restrictions. Assume the linear model (2.1). Let α = (α1, · · · , αn)′

be the column vector of initial weights given in (1.1) and assume the population mean of x, x̄N , is

known. Let the matrix of observations on the auxiliary variables, X, be partitioned as (X1,X2),

where X1 is the set of p1 < p variables for which exact constraints are required and X2 is the set of

p2 = p− p1 variables for which the constraints can be relaxed. The partition of auxiliary variables

X could be based on the strength of the relationship of auxiliary variables with the set of variables

of interest or based on the relative number of auxiliary variables to sample size. For example, if the

researcher believes that subset of auxiliary variables, denoted by X1, are significantly correlated

with the study variables, he or she will keep the exact constraints for these variables and relax the

constraints for the remaining auxiliary variables. If the number of auxiliary variables is large then

we can obtain a stable solution for the regression coefficient estimator and an stable estimator of
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the population means of the study variables by relaxing the subset or all linear constraints.

A generalization of (1.1) and (1.2) is the function

(w −α)′Φ(w −α) + (w′X2 − x̄2,N)Ψ(w′X2 − x̄2,N)′ , (3.6)

and the constraint

w′(Jn,X1)− (1, x̄1,N) = (0,0) , (3.7)

where w = (w1, · · · , wn)′, X1 = (x′1,1, · · · ,x′1,n)′, X2 = (x′2,1, · · · ,x′2,n)′, x̄1,N = (x̄1,N , · · · , x̄p1,N),

x̄2,N = (x̄p1+1,N , · · · , x̄p,N), x1,i = (xi1, · · · , xip1), x2,i = (xi(p1+1), · · · , xip), Φ is a known pos-

itive definite diagonal matrix and Ψ is a positive definite diagonal matrix to be determined, and

Jn is the column vector of ones. We add the column of ones in the constraints (3.7) so that the

resulting estimator is location invariant. The solution for w is

w = α + Φ−1/2(I−PJ∗n)X∗ [
X∗′(I−PJ∗n)X∗ + Ψ†]−1

(x̄N − x̄π)′ , (3.8)

where Ψ† = Diag
(
0,Ψ−1

)
, X = (X1,X2), and PJ∗n , J∗n and X∗ are defined in (2.3). The ridge

regression estimator defined with the vector of weights (3.8) is

ȳrreg = w′y = ȳπ + (x̄N − x̄π)Γβ̂ , (3.9)

where

Γ =

[
n∑

i=1

φ−1
ii (xi − x̄φ)

′(xi − x̄φ) + Ψ†
]−1 [

n∑
i=1

φ−1
ii (xi − x̄φ)

′(xi − x̄φ)

]
, (3.10)

and β̂ =
[∑n

i=1 φ−1
ii (xi − x̄φ)

′(xi − x̄φ)
]−1 [∑n

i=1 φ−1
ii (xi − x̄φ)

′yi

]
. Note that the ridge regres-

sion estimator (3.9) with y = x is x̄rreg = x̄π + (x̄N − x̄π)Γ, and is not equal to x̄N unless Γ = I.

That is, by relaxing the linear constraints on weights, the estimator does not generate the exact

population mean of x when the estimator is applied to auxiliary variables. The error of ȳrreg in

estimating ȳN is

ȳrreg − ȳN = x̄πβ + ēπ + (x̄N − x̄π)Γβ̂ − x̄Nβ − ēN

= ēπ − ēN + (x̄π − x̄N)(I− Γ)β + (x̄N − x̄π)Γ(β̂ − β) .

(3.11)
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Without loss of generality, assume X is transformed such that X∗
1
′ (I−PJ∗n

)
X∗

2 = 0, and a

variance estimator V̂{x̄2π} and X∗
2
′ (I−PJ∗n

)
X∗

2 are diagonal matrices. For simultaneous diago-

nalization of two symmetric matrices, see Harville (1997, Ch. 21). Then, the matrix Γ defined in

(3.10) is Γ = Diag (I,Γ22), where Γ22 =
[
Ψ−1 + X∗

2
′ (I−PJ∗n

)
X∗

2

]−1
X∗

2
′ (I−PJ∗n

)
X∗

2. Thus

the conditional MSE of the ȳrreg under the model (2.1) can be approximated by, if we ignore the

finite population correction factor,

E{(ȳrreg − ȳN)2|X} ≈ α′Φα + (x̄1,π − x̄1,N)
[
V{β̂1|X}

]
(x̄1,π − x̄1,N)′

+ β′2 (I− Γ22) (x̄2,π − x̄2,N)′ (x̄2,π − x̄2,N) (I− Γ22) β2

+ (x̄2,π − x̄2,N)Γ22

[
V{β̂2|X}

]
Γ22 (x̄2,π − x̄2,N)′ .

(3.12)

The approximation is due to the approximation of the covariance between ēπ and β̂ by zero. If the

initial weights and variance matrix satisfy the condition, α′Φ = cJn for some c, the covariance

is exactly zero. By replacing (x̄π − x̄N)′(x̄π − x̄N) with V{x̄π}, and replacing conditional vari-

ances of regression coefficient estimators with unconditional variances, we obtain an approximate

unconditional MSE of ȳrreg as

E
{
(ȳrreg − ȳN)2

} ≈ α′Φα + Tr
{[

V
(
β̂1

)]
[V (x̄1,π)]

}

+

p∑
i=p1+1

β2
i (1− γii)

2 [V{x̄i,π}] +

p∑
i=p1+1

γ2
ii

[
V{β̂i}

]
[V{x̄i,π}] ,

(3.13)

where γii is a diagonal element of Γ and V (x̄π) is a model variance of x̄π under a certain model

assumption on xi such as xi are independently distributed with common mean and finite variance.

If Φ = φI and xi are independent multivariate normal random variables with a common mean and

covariance, then the conditional model MSE can be calculated using the moments of the Wishart

and Hotelling’s T 2 distributions. Note that
[
V{β̂|X}

]−1

has a Wishart distribution and c (x̄N −
x̄π)

[
V{β̂|X}

]
(x̄N − x̄π)′ has a Hotelling’s T 2 distribution for some constant c under the normal

assumption on x. See Ch.5 and Ch.6 of Anderson (1984).

The diagonal Γ that minimizes the approximate model MSE defined in (3.13) is γjj,opt =[
β2

j + V(β̂j)
]−1

β2
j , for j = p1+1, · · · , p. By the relationship between Γ and Ψ in (3.10), the opti-

mal ψjj is ψjj,opt =
[
sjφjV(β̂j)

]−1

β2
j , where sjφj is the j-th diagonal element of X∗

2
′ (I−PJ∗n

)
X∗

2.
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Husain (1969) considered the objective function (3.6) and the constraints (3.7) for a simple random

sample from a normal distribution with Φ = φI and Ψ−1 = ψ−1I and derived the ψ that mini-

mizes the MSE of the estimator of the form (3.9). For a diagonal matrix Ψ, Rao and Singh (1997)

introduced the tolerance matrix ∆ = diag(δ1, · · · , δp) where each diagonal element δi is the toler-

ance for the i-th linear constraint on x. In practice, the regression coefficients and the variances of

the regression coefficient estimators are unknown. Design consistent estimators of these unknown

parameters can be used to define the ridge regression estimator.

4 Design Consistency of a Ridge Regression Estimator

To investigate the large sample properties of the ridge regression estimator, we consider a sequence

of populations, samples, and sampling designs. The set of indices for the N -th finite population

is UN = {1, · · · , N}, where N = 1, 2, · · · . Associated with j-th element of the N -th finite

population is a vector of characteristics, denoted by yjN . Let FN = {y1N , · · · ,yNN} be the set of

vectors for the N -th finite population. The population mean of y for the N -th finite population is

ȳN = N−1
∑N

i=1 yiN . Let AN denote the set of indices appearing in the sample selected from the

N -th finite population. The sample size is denoted by nN . We assume that samples are selected

according to the probability rule PN(·). Under the specified sequence of populations, samples, and

sampling designs, we define a sequence of estimators θ̂N of the population mean ȳN to be design

consistent, if for all ε > 0, limN→∞ P
{
|θ̂N − ȳN | > ε

∣∣ FN

}
= 0, where the notation indicates

that N -th finite population is held fixed and the probability depends only on the sampling design.

The optimal diagonal matrix Γ can be estimated using the design consistent estimators of βj

and V
(
β̂j

)
. The estimated optimal matrix is denoted by Γ̂ = diag (γ̂jj,opt), where

γ̂jj,opt =
[
β̂2

j + V̂
(
β̂j

)]−1

β̂2
j , (4.1)

and V̂
(
β̂j

)
is a design consistent estimator of the variance of β̂j . Design consistent variance esti-

mator of the regression coefficient estimator is given in Fuller (1975). See also Särndal, Swensson

and Wretman (1991). The estimator defined in (3.9) with γ̂jj,opt, j = p1 + 1, · · · , p, is asymptoti-

cally equivalent to the regression estimator and is design consistent.
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Theorem. Let {FN , AN} be a sequence of populations and samples such that

(ȳπ , x̄π)− (ȳN , x̄N) = Op

(
n
− 1

2
N

)
, (4.2)

where (ȳπ , x̄π) =
∑

i∈AN
αi(yi , xi) , nN is the sample size for the N -th sample, α′ =

(α1, · · · , αnN
), αi =

(∑
j∈AN

π−1
j

)−1

π−1
i , πi is the probability that element i is selected for

the sample, and (ȳN , x̄N) is the population mean of (y,x). Assume there exists a sequence Mzφz,N

and a sequence qj,N such that

Mzφz,n −Mzφz,N = Op

(
n
− 1

2
N

)
, lim

N→∞
Mzφz,N = Mzφz , (4.3)

nN V̂
(
β̂j

)
− qj,N = Op

(
n
− 1

2
N

)
, lim

N→∞
qj,N = qj (4.4)

for j = 1, · · · , p, where Mzφz,n = n−1
N Z∗′

(
I−PJ∗n

)
Z∗, Z∗ = (y∗,X∗), Mzφz is a positive

definite matrix. Then, the ridge regression estimator (3.9) with γ̂jj of (4.1) satisfies

ȳrreg = ȳreg + Op

(
n−1

N

)
(4.5)

= ȳN + Op

(
n
−1/2
N

)
(4.6)

where ȳreg = ȳπ + (x̄N − x̄π)β̂.

Proof. By adding and subtracting (x̄N − x̄π)β̂, the estimator defined in (3.9) with Γ̂ can be

written as

ȳrreg = ȳπ + (x̄N − x̄π)β̂ + (x̄N − x̄π)
(
Γ̂− I

)
β̂ . (4.7)

For j = p1 + 1, · · · , p,

[β̂2
j + V̂ (β̂j)]

−1β̂2
j = 1 + Op

(
n
− 1

2
N

)
(4.8)

because β̂−βN = Op

(
n
− 1

2
N

)
by (4.3), and n−1

N [nN V̂ (β̂j)] → 0 by (4.4), where βN = M−1
xφx,NMxφy,N .

Result (4.5), then, follows by (4.7), (4.8) and (4.2). By (4.3), ȳreg = ȳπ +(x̄N − x̄π)βN +Op (n−1
N )

and thus result (4.6) is immediate by the assumption (4.2). ¥
It is well known that regression estimator is superior to ȳπ if the multiple regression coefficient

between y and x is greater than p/nN , where p is the dimension of x and nN is a sample size.

See Park (2002). Thus, by Theorem 1, we conclude that ridge regression estimator is always
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almost superior to ȳπ because it is asymptotically equivalent to regression estimator. Theorem 1

also provides robust property of the ridge regression estimator to model failure in large sample

framework. That is, ridge regression estimator approaches to the true value of the population mean

of variable of interest as sample size increase even when the assumed superpopulation model is

not true.

5 Simulation Study

We conduct a simulation study to compare the alternative methods of constructing regression

weights. A population with six post strata was considered. 30,000 simple random samples of

size 60 were selected. The regression superpopulation model (2.1) was used to generate the study

variable Y in which xi = (Ii1, Ii2, Ii3, Ii4, Ii5, xi) , Iih = 1 if i-th element is in stratum h, and

Iih = 0 elsewhere, for h = 1, · · · , 5, xi is the value generated from the χ2 distribution with two

degrees of freedom, β = (0, 0, 0, 0, 0, 1)′ and ei has a normal distribution with mean zero and

variance one. All six auxiliary variables are considered as ones for which the constraints would

be relaxed. The parameters being estimated are those of the infinite generating mechanism. Along

with the variable Y generated from the assumed model, the estimated percentiles of the distribu-

tion function of x were also considered to investigate the small sample properties of the procedures

when linear regression superpopulation model is not appropriate. Five estimation procedures were

considered: 1. Ordinary least square regression (OLS-Reg); 2. Ridge regression (Ridge-Reg); 3.

Quadratic programming for regression weights (QP-Reg); 4. Quadratic programming for ridge

regression weights (QP-Ridge); 5. Raking regression (Raking-Reg).

The weights for the ordinary least squares regression estimator are

wi = n−1 + (x̄N − x̄n)

[
n∑

i=1

(xi − x̄n)′ (xi − x̄n)

]−1

(xi − x̄n)′ .

Ridge regression weights were calculated by (3.9) with the estimated γ̂jj,opt of (4.1). In defining

the optimal γ, we used the regression coefficient estimators and estimated model variances of re-

gression coefficient estimators for the study variable Y . That is, a single vector of ridge regression
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weights was calculated and used to estimate all parameters of interest. In large scale survey, where

we have large number of variables of interest, a single set of weights is usually used to construct

estimators for all variables of interest. Quadratic programming was used to derive the nonnega-

tive regression and ridge regression weights. In quadratic programming for regression estimator,

weights that minimize (1.1) subject to the linear constraint (1.2) and range restriction wi ≥ 0 were

derived. In quadratic programming for ridge regression estimator, weights that minimize (3.6) sub-

ject to the constraint
∑n

i wi = 1 and range restriction wi ≥ 0 were derived. The weights for raking

regression were derived by minimizing
∑n

i=1 wi log (nwi) − wi + n−1, subject to the constraint

(1.2).

Table 1: Monte Carlo MSE of the estimators of the mean of Y .

OLS-Reg Ridge-Reg QP-Reg QP-Ridge Raking-Reg

MSE ×102 1.864 1.775 1.866 1.775 1.870

Table 1 shows the MSE of the estimators of the population mean of the variable Y . Ridge

regression procedures have the smallest MSE because the estimated MSE of a linear estimator is

the objective function minimized by these procedures. The estimated biases of OLS regression

estimator and ridge regression estimator are−0.72×10−4 and−2.9×10−4 respectively. Although

ridge regression gives larger bias but both estimated biases are not significantly different from zero.

Table 2: Monte Carlo Mean and Variance of the minimum and maximum weight.

Minimum Weight Maximum Weight

Procedure Mean (×102) Variance (×105) Mean(×102) Variance(×105)

OLS-Reg 0.84 0.14 3.19 1.09

Ridge-Reg 1.08 0.13 2.53 0.42

QP-Reg 0.85 0.11 3.19 1.09

QP-Ridge 1.09 0.12 2.53 0.42

Raking-Reg 0.96 0.05 3.40 1.44

Table 2 shows the properties for the minimum and maximum of the weights. Among 30,000

samples, 1,066 samples have at least one negative OLS regression weight. At least one ridge
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regression weight is negative in 382 samples. Ridge regression has the largest average minimum

weight and OLS regression has the smallest average minimum weight. Ridge regression has the

smallest maximum average weight with the smallest variance. Raking regression has the largest

maximum average weight with the largest variance. Raking regression has the largest range of

weights.

Table 3: Monte Carlo Standardized Bias in Percentile Estimators.

Percentile

Procedure 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

OLS-Reg -4.15 -4.01 -3.56 -2.69 -1.58 -1.16 1.45 5.54 19.25

Ridge-Reg -3.90 -4.02 -3.60 -2.64 -1.55 -1.13 1.45 5.55 19.25

QP-Reg -4.05 -3.94 -3.50 -2.64 -1.55 -1.11 1.48 5.48 18.54

QP-Ridge -3.87 -4.00 -3.58 -2.62 -1.54 -1.10 1.48 5.55 18.96

Raking-Reg -2.77 -2.79 -2.41 -1.78 -1.10 -0.93 0.63 3.76 15.21

Table 3 contains the Monte Carlo bias of the estimators for the percentiles of the distribution of

x, where the table entries are {min [p , (1− p)]}−1
[
Ê (p̂)− p

]
×100, and p is the true percentiles.

Thus, the Monte Carlo estimated relative bias of the regression estimator of the 0.01 percentile is

-4.15%. The OLS regression estimator has the largest biases for p = 0.01, 0.25, 0.50, 0.75 and

0.99, and ridge regression has the largest biases for p = 0.05, 0.10 and 0.95. Except p = 0.01, the

biases of OLS regression and ridge regression procedures do not differ significantly. Raking ratio

has the smallest bias for all percentiles.

Table 4 gives the Monte Carlo relative MSE of the estimators where the table entries are

{min [p , (1− p)]}−2
[
Ê (p̂)− p

]2

× 100. Ridge regression estimator has the smallest MSE in

all percentiles. For extreme percentiles, raking regression has the largest MSE. In the middle per-

centiles, OLS regression has the largest MSE. Note that the raking regression has a significantly

smaller bias for the extreme percentiles.

Table 5 gives the Monte Carlo MSE for the 1,066 samples with negative OLS-regression

weights. Quadratic programming for the ridge regression is superior to other nonnegative weight
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procedures for all percentiles except p = 0.50, 0.99. Especially, the efficiency of quadratic pro-

gramming with ridge regression relative to other procedures is outstanding for lower percentiles.

For the middle and large percentiles, the performances of raking regression and quadratic program-

ming with ridge regression are comparable.

Table 4: Monte Carlo Relative MSE of Percentile Estimators.

Percentile

Procedure 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

OLS-Reg 171.78 32.34 14.75 4.34 1.06 2.06 7.39 21.07 138.44

Ridge-Reg 159.42 29.86 13.60 4.03 0.99 1.91 6.90 19.84 127.54

QP-Reg 172.86 32.67 14.87 4.35 1.06 2.05 7.39 21.04 137.54

QP-Ridge 159.48 29.87 13.61 4.03 0.99 1.90 6.90 19.82 129.05

Raking-Reg 175.45 32.88 14.81 4.24 1.02 2.05 7.27 20.92 138.95

Table 5: Monte Carlo Relative MSE of Percentile Estimators for Samples with at least One Nega-

tive OLS-Reg weight.

Percentile

Procedure 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

OLS-Reg 178.62 38.06 17.71 5.74 1.67 2.40 9.83 28.22 160.08

Ridge-Reg 172.12 35.90 16.52 5.29 1.50 1.94 8.62 23.06 104.36

QP-Reg 209.02 47.42 21.11 5.91 1.60 2.14 9.88 27.34 134.92

QP-Ridge 173.78 36.22 16.61 5.25 1.46 1.83 8.62 22.65 90.98

Raking-Reg 222.72 48.59 20.60 5.32 1.37 2.00 8.80 22.81 87.86

6 Summary and discussion

We considered a situation in which many variables are of interest and thus a single regression su-

perpopulation model may fail to explain the relationships between study variables and auxiliary

variables. For such a situation, construction of regression type estimator, that is approximately ef-

ficient for the main variables of interest and is also robust to model misspecification, is considered.
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Under the model in which many auxiliary variables are used, ridge regression estimator is derived

by relaxing the linear constraints.

Through a simulation study, ridge regression weight is compared to alternative regression type

weights. The ridge regression weights have the largest minimum weight and the smallest maxi-

mum weight. The OLS-regression has the smallest minimum weights and raking regression has the

largest maximum weight. In estimating the population percentiles of a skewed distribution, raking

ratio has smaller bias than other procedures. The ridge regression estimator with the optimal coef-

ficient matrix derived under the assumed regression superpopulation model has the smallest MSE

for all percentiles. By relaxing the linear constraints on weights with an appropriate coefficient

matrix, the ridge regression estimator not only generates the optimal estimator for the population

parameter for the assumed model but it also shows better performance in estimating the population

percentiles in which the assumed model is not appropriate. Based on the results of the simulation

study, the use of the ridge regression estimator with the optimal coefficient matrix for the important

variables could be recommended for large scale surveys in which a large number of variables are

considered.
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