
A STABLE HIGH–ORDER PERTURBATION OF1

SURFACES/ASYMPTOTIC WAVEFORM EVALUATION METHOD2

FOR THE NUMERICAL SOLUTION OF GRATING SCATTERING3

PROBLEMS ∗4

MATTHEW KEHOE AND DAVID P. NICHOLLS †5

Abstract. The scattering of electromagnetic radiation by a layered periodic diffraction grating6
is an important model in engineering and the sciences. The numerical simulation of this experiment7
has been widely explored in the literature and we advocate for a novel interfacial method which is8
perturbative in nature. More specifically, we extend a recently developed High–Order Perturbation of9
Surfaces/Asymptotic Waveform Evaluation (HOPS/AWE) algorithm to utilize a stabilized numerical10
scheme which also suggests a rigorous convergence result. An implementation of this algorithm is11
described, validated, and utilized in a sequence of challenging and physically relevant numerical12
experiments.13

Key words. High–Order Perturbation of Surfaces Methods; Asymptotic Waveform Evaluation;14
High–Order Spectral Methods; Helmholtz equation; Layered Media.15

AMS subject classifications. 65N35, 78A45, 78B2216

1. Introduction. The scattering of linear waves by a periodic layered structure17

is a central model in many problems of scientific and engineering interest. Examples18

arise in areas such as geophysics [58, 5], imaging [38], materials science [24], nanoplas-19

monics [52, 35, 23], and oceanography [7]. In the particular case of nanoplasmonics,20

there are many important topics such as extraordinary optical transmission [22], sur-21

face enhanced spectroscopy [36], and surface plasmon resonance (SPR) biosensing22

[27, 37, 28, 31].23

Due to their technological importance, the numerical simulation of these diffrac-24

tion gratings has generated a huge amount of interest including the application of all25

of the classical approaches, e.g., Finite Differences [33], Finite Elements [29], Discon-26

tinuous Galerkin [26], Spectral Elements [21], and Spectral Methods [25, 6, 56]. For27

general geometries these specify extremely useful and accurate tools (e.g., COMSOL28

Multiphysics [18]) for engineers and scientists alike. However, for structures with29

simplifying features, such as homogeneous layering, these can be needlessly expensive30

due to the unnecessary discretization of layer interiors. To address this, a whole class31

of interfacial methods have been developed of which Boundary Integral/Boundary32

Element Methods (BIM/BEM) are the most widely used [17, 32, 55]. These posit33

unknowns at the layer interfaces thereby reducing the number of degrees of freedom34

by an order of magnitude. While these schemes require particular care in their imple-35

mentation (e.g., the design of special quadrature rules to achieve high–order accuracy,36

sophisticated algorithms to rapidly sum the quasi–periodized Green function, and ap-37

propriate preconditioning strategies for the iterative solution of the Non–Symmetric38

Positive Definite linear system of equations) there are well–known implementations39

that deliver results of surpassing accuracy and stability, see, e.g., [9, 10, 11].40

In this paper we focus upon a very particular Quantity of Interest (QoI) in the41

study of diffraction gratings, the Reflectivity Map, which is representative of a class42
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2 MATTHEW KEHOE AND DAVID P. NICHOLLS

of performance metrics for which we develop a special class of interfacial numerical43

algorithms. The Reflectivity Map, R, measures the response (reflected energy) of a44

periodically corrugated grating structure as a function of illumination frequency, ω,45

and corrugation amplitude, h. For each of the algorithms listed above, the response at46

any given (ω, h) pair requires a new simulation restarted from scratch. A High–Order47

Perturbation of Surfaces (HOPS) method [46, 47] takes a perturbative view towards48

the geometric dependence of R on h = ε, ε� 1, by seeking the terms in the expansion49

about ε = 0,50

R = R(ε) =

∞∑
n=0

Rnε
n.51

With this one can realize an enormous savings in computational effort by conducting52

a new computation only for each choice of ω and simply summing the formula above53

for any desired value of ε. We point out that the smallness requirement on ε can54

probably be dropped provided that ε is chosen to be real (see [45] for one possible55

strategy for establishing this result rigorously).56

Taking this philosophy to its natural conclusion, in [40] we considered ω = (1 +57

δ)ω = ω + δω and performed a joint expansion of this map about (ε = 0, ω = ω)58

R = R(ε, δ) =

∞∑
n=0

∞∑
m=0

Rn,mε
nδm.59

It seems that a single computation, recovering all of the Rn,m, should be sufficient to60

discover the entire Reflectivity Map. In fact the situation is not so simple as these ex-61

pansions are not valid for all values of (ε, δ) and it was found in [40] that the Rayleigh62

singularities (often called the Wood anomalies) enforced finite–size domains of conver-63

gence in δ. However, the results were so encouraging that we now undertake a more64

in–depth investigation featuring a new formulation in terms of Dirichlet–Neumann65

Operators computed via an application of the stable, accurate, and rapid Tranformed66

Field Expansions (TFE) algorithm [47] appropriate for a joint perturbation expan-67

sion. Not only does this deliver an implementation with greatly enhanced stability68

properties [47], but it also describes an algorithm that can be rigorously justified to69

be convergent as we demonstrate in a forthcoming publication.70

The paper is organized as follows. In Section 2 we summarize the equations71

which govern the propagation of linear electromagnetic waves in a two–dimensional72

periodic structure. In Section 2.1 we discuss the Transparent Boundary Conditions73

we utilize to enforce the outgoing wave conditions rigorously, while in Section 2.274

we define the object of our study, the Reflectivity Map. In Section 3 we restate our75

governing equations in terms of interfacial quantities via a Non–Overlapping Domain76

Decomposition phrased in terms of Dirichlet–Neumann Operators (DNOs). We dis-77

cuss our HOPS/AWE approach in Section 4 and our novel approach to computing the78

DNOs in Section 5 (supplemented with a discussion of expansions of the surface data79

in Section 5.1). In Section 6 we present our numerical results with a description of80

implementation details in Section 6.1, our Fourier–Chebyshev method in Section 6.2,81

and our use of Padé approximation in Section 6.3. We comment on issues of the82

bounded domains of analyticity in our expansions in Section 6.4. In Section 6.5 we83

validate our code with the Method of Manufactured Solutions, while in Section 6.684

we present results of multiple numerical simulations of the Reflectivity Map which we85

conducted. In Section 6.7 we discuss the superior computational complexity our al-86
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A STABLE HOPS/AWE METHOD FOR GRATING SCATTERING 3

gorithm enjoys for computing objects like the Reflectivity Map. Concluding remarks87

are given in Section 7.88

2. The Governing Equations. In this paper we consider a y–invariant, doubly89

layered structure with a periodic interface separating the two materials; see Figure 1.90

The d–periodic interface shape is specified by the graph of the function z = g(x),

Fig. 1: A two-layer structure with a periodic interface, z = g(x), separating two
material layers, S(u) and S(w), illuminated by plane–wave incidence.

91
g(x + d) = g(x). A dielectric (with refractive index nu) occupies the domain above92

the interface93

S(u) := {z > g(x)},94

while a material of refractive index nw is in the lower layer95

S(w) := {z < g(x)}.96

The superscripts are chosen to conform to the notation of the authors in previous97

work [39, 42]. The structure is illuminated from above by monochromatic plane–wave98

incident radiation of frequency ω and wavenumber ku = nuω/c0 = ω/cu (c0 is the99

speed of light) aligned with the grooves100

Ei(x, z, t) = Ae−iωt+iαx−iγ
uz, Hi(x, z, t) = Be−iωt+iαx−iγ

uz,101

α := ku sin(θ), γu := ku cos(θ).102103

We consider the reduced incident fields104

Ei(x, z) = eiωtEi(x, z, t), Hi(x, z) = eiωtHi(x, z, t),105
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4 MATTHEW KEHOE AND DAVID P. NICHOLLS

where the time dependence exp(−iωt) has been factored out. As shown in [49],106

the reduced electric and magnetic fields {E,H} are α–quasiperiodic like the incident107

radiation. To close the problem we specify that the scattered radiation is “outgoing,”108

upward propagating in S(u) and downward propagating in S(w).109

It is well known (see, e.g., Petit [49]) that in this two–dimensional setting, the110

time–harmonic Maxwell equations decouple into two scalar Helmholtz problems which111

govern the Transverse Electric (TE) and Transverse Magnetic (TM) polarizations.112

We define the invariant (y) direction of the scattered (electric or magnetic) field by113

ũ = ũ(x, z) and w̃ = w̃(x, z) in S(u) and S(w), respectively. The incident radiation in114

the upper field is defined as ũi(x, z).115

Following our previous work [40] we further factor out the phase exp(iαx) from116

the fields ũ and w̃117

u(x, z) = e−iαxũ(x, z), w(x, z) = e−iαxw̃(x, z),118

which, we note, are d–periodic. In light of all of this, we are led to seek outgoing,119

d-periodic solutions of120

∆u+ 2iα∂xu+ (γu)2u = 0, z > g(x),(2.1a)121

∆w + 2iα∂xw + (γw)2w = 0, z < g(x),(2.1b)122

u− w = ζ, z = g(x),(2.1c)123

∂Nu− iα(∂xg)u− τ2 [∂Nw − iα(∂xg)w] = ψ, z = g(x),(2.1d)124125

where N := (−∂xg, 1)T . The Dirichlet and Neumann data are126

ζ(x) := −e−iγ
ug(x),(2.1e)127

ψ(x) := (iγu + iα(∂xg))e−iγ
ug(x),(2.1f)128129

and130

τ2 =

{
1, TE,

(ku/kw)2 = (nu/nw)2, TM,
131

where kw = nwω/c0 = ω/cw and γw = kw cos(θ). Due to its importance in the132

classical study of SPRs we will focus on TM polarization [52].133

2.1. Transparent Boundary Conditions. The Upward Propagating Condi-134

tion (UPC) and Downward Propagating Condition (DPC) [1] rigorously enforce the135

outgoing wave conditions which we mentioned earlier. We now demonstrate how these136

can be stated in terms of Transparent Boundary Conditions which also truncate the137

bi–infinite problem domain to one of finite size. For this we choose values a and b138

such that139

a > |g|∞ , −b < − |g|∞ ,140

and define the artificial boundaries {z = a} and {z = −b}. In {z > a} the Rayleigh141

expansions [49] tell us that upward propagating solutions of (2.1a) are142

(2.2) u(x, z) =

∞∑
p=−∞

âpe
ip̃x+iγu

p z,143
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A STABLE HOPS/AWE METHOD FOR GRATING SCATTERING 5

where, for q ∈ {u,w},144

(2.3) p̃ :=
2πp

d
, αp := α+ p̃, γqp :=

√
(kq)2 − α2

p, Im
{
γqp
}
≥ 0.145

In a similar fashion, downward propagating solutions of (2.1b) in {z < −b} can be146

expressed as147

w(x, z) =

∞∑
p=−∞

d̂pe
ip̃x−iγw

p z.148

With these we can define the Transparent Boundary Conditions in the following way:149

Focusing on the UPC (the DPC is similar) we rewrite (2.2) as150

u(x, z) =

∞∑
p=−∞

(
âpe

iγu
p a
)
eip̃x+iγ

u
p (z−a) =

∞∑
p=−∞

ξ̂pe
ip̃x+iγu

p (z−a),151

and note that,152

u(x, a) =

∞∑
p=−∞

ξ̂pe
ip̃x =: ξ(x),153

and154

∂zu(x, a) =

∞∑
p=−∞

(iγup )ξ̂pe
ip̃x =: Tu[ξ(x)],155

which defines the order–one Fourier multiplier Tu. From this we state that upward–156

propagating solutions of (2.1a) satisfy the Transparent Boundary Condition at z = a157

(2.4) ∂zu(x, a)− Tu[u(x, a)] = 0, z = a.158

We note that a similar calculation leads to the Transparent Boundary Condition at159

z = −b160

(2.5) ∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b,161

where162

Tw[ψ(x)] :=

∞∑
p=−∞

(−iγwp )ψ̂pe
ip̃x.163

We also point out that solutions which satisfy (2.4) and (2.5) equivalently satisfy the164

UPC and DPC, respectively [1].165
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6 MATTHEW KEHOE AND DAVID P. NICHOLLS

With these we now state the full set of governing equations as166

∆u+ 2iα∂xu+ (γu)2u = 0, z > g(x),(2.6a)167

∆w + 2iα∂xw + (γw)2w = 0, z < g(x),(2.6b)168

u− w = ζ, z = g(x),(2.6c)169

∂Nu− iα(∂xg)u− τ2 [∂Nw − iα(∂xg)w] = ψ, z = g(x),(2.6d)170

∂zu(x, a)− Tu[u(x, a)] = 0, z = a,(2.6e)171

∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b,(2.6f)172

u(x+ d, z) = u(x, z),(2.6g)173

w(x+ d, z) = w(x, z).(2.6h)174175

2.2. The Reflectivity Map. Building upon the developments in the previous176

section we can now define our QoI, the Reflectivity Map. Regarding the solution (2.2)177

we note the very different character of the solution for wavenumbers p in the set178

Uu :=
{
p ∈ Z | α2

p < (ku)2
}
,179

and those that are not. From our choice of the branch of the square root, components180

of u(x, z) corresponding to p ∈ Uu propagate away from the layer interface, while those181

not in this set decay exponentially from z = g(x). The latter are called evanescent182

waves while the former are propagating (defining the set of propagating modes Uu)183

and carry energy away from the grating. With this in mind one defines the efficiencies184

[49]185

eup := (γup /γ
u) |âp|2 , p ∈ Uu,186

and the Reflectivity Map187

(2.7) R :=
∑
p∈Uu

eup .188

Similar quantities can be defined in the lower layer [49], and with these the principle189

of conservation of energy can be stated for structures composed entirely of dielectrics190 ∑
p∈Uu

eup + τ2
∑
p∈Uw

ewp = 1.191

In this situation a useful diagnostic of convergence for a numerical scheme (which we192

will utilize later) is the “energy defect”193

(2.8) D := 1−
∑
p∈Uu

eup − τ2
∑
p∈Uw

ewp ,194

which should be zero for a purely dielectric structure.195

3. A Non–Overlapping Domain Decomposition Method. We now restate196

our governing equations (2.6) in terms of surface quantities via a Non–Overlapping197

Domain Decomposition Method [34, 20, 19]. In particular, if we define198

U(x) := u(x, g(x)), Ũ(x) := −∂Nu(x, g(x)),199

W (x) := w(x, g(x)), W̃ (x) := ∂Nw(x, g(x)),200201
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A STABLE HOPS/AWE METHOD FOR GRATING SCATTERING 7

where u is a d–periodic solution of (2.6a) and (2.6e), and w is a d–periodic solution of202

(2.6b) and (2.6f). In terms of these our full governing equations (2.6) are equivalent203

to the pair of boundary conditions, (2.6c) & (2.6d),204

U −W = ζ, −Ũ − (iα)(∂xg)U − τ2
[
W̃ − (iα)(∂xg)W

]
= ψ.205

This set of two equations for four unknowns can be closed by noting that the pairs206

{U, Ũ} and {W, W̃} are connected, e.g., by Dirichlet–Neumann Operators (DNOs)207

G : U → Ũ , J : W → W̃ .208

These are well–defined operators for sufficiently smooth g (e.g., g ∈ C2 [47]) thus we209

focus on this interfacial reformulation of our governing equations210

(3.1) AV = R,211

where212

(3.2) A =

(
I −I

G+ (∂xg)(iα) τ2J − τ2(∂xg)(iα)

)
, V =

(
U
W

)
, R =

(
ζ
−ψ

)
.213

4. A High–Order Perturbation of Surfaces/Asymptotic Waveform Eval-214

uation (HOPS/AWE). At this point there are many approaches to simulate (3.1)215

numerically. We take up a perturbative approach which makes two smallness assump-216

tions:217

1. Boundary Perturbation: g(x) = εf(x), ε ∈ R, ε� 1,218

2. Frequency Perturbation: ω = (1 + δ)ω = ω + δω, δ ∈ R, δ � 1.219

It is possible that one or both of these smallness demands can be relaxed, provided220

that the parameters are real (c.f., [45, 48]). The second of these assumptions has the221

following important consequences222

kq = ω/cq = (1 + δ)ω/cq =: (1 + δ)kq = kq + δkq, q ∈ {u,w},223

α = ku sin(θ) = (1 + δ)ku sin(θ) =: (1 + δ)α = α+ δα,224

γq = kq cos(θ) = (1 + δ)γq cos(θ) =: (1 + δ)γq = γq + δγq, q ∈ {u,w}.225226

This, in turn, delivers227

αp = α+ p̃ = α+ δα+ p̃ =: αp + δα.228

At this point we now assume the joint analyticity of the operator A and function229

R with respect to ε and δ which will induce a jointly analytic solution, V, of (3.1).230

(All of this will be rigorously established in a forthcoming publication.) In this case231

we can expand232

(4.1) {A,V,R}(ε, δ) =

∞∑
n=0

∞∑
m=0

{An,m,Vn,m,Rn,m}εnδm,233

and a straightforward calculation reveals that, at each perturbation order (n,m), we234

must solve235

A0,0Vn,m = Rn,m −
n−1∑
`=0

An−`,0V`,m −
m−1∑
r=0

A0,m−rVn,r236

−
n−1∑
`=0

m−1∑
r=0

An−`,m−rV`,r.(4.2)237

238
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8 MATTHEW KEHOE AND DAVID P. NICHOLLS

At this point all that remains to be specified are the forms for the An,m and Rn,m,239

and a method to invert A0,0.240

A brief inspection of the formulas for A and R, (3.2), reveals that241

A0,0 =

(
I −I

G0,0 τ2J0,0

)
,(4.3a)242

An,m =

(
0 0

Gn,m τ2Jn,m

)
243

+ δn,1 {1 + δm,1} (∂xf)(iα)

(
0 0
1 −τ2

)
, n 6= 0 or m 6= 0,(4.3b)244

Rn,m =

(
ζn,m
−ψn,m

)
,(4.3c)245

246

where δp,q is the Kronecker delta function. The forms for ζn,m and ψn,m, which depend247

upon the incident radiation (e.g., we will investigate both a non–physical illumination248

to validate our code, see Section 6.5, and plane–wave incidence, see Section 6.6), can249

typically be stated explicitly. By contrast, formulas for the (n,m)–th corrections of250

the Taylor expansions of the DNOs, G and J , must be simulated numerically. For251

this we advocate the Method of Transformed Field Expansions (TFE) [47] which we252

review in the following section.253

5. Simulation of Dirichlet–Neumann Operators. As we mentioned in the254

previous section, the only remaining specification for our algorithm is the computation255

of the (n,m)–th term in the Taylor expansion of the DNOs, G and J . For brevity we256

restrict our attention to the DNO in the upper layer, {g(x) < z < a}, and note that257

the considerations for the lower layer are largely the same.258

We recall the precise definition of the upper layer DNO [41]: Given an integer259

s ≥ 0 and any θ > 0, if g ∈ Cs+3/2+θ the unique d–periodic solution of260

∆u+ 2iα∂xu+ (γu)2u = 0, g(x) < z < a,(5.1a)261

u(x, g(x)) = U(x), z = g(x),(5.1b)262

∂zu(x, a)− Tu[u(x, a)] = 0, z = a,(5.1c)263264

defines the Upper Layer Dirichlet–Neumann Operator265

(5.2) G(g) : U → Ũ := −(∂Nu)(x, g(x)).266

To simulate the DNO numerically we appeal to the Method of Transformed Field267

Expansions (TFE) [43, 47] which begins with a domain–flattening change of variables268

(the σ–coordinates of oceanography [51] and the C–method of the dynamical theory269

of gratings [16, 15])270

x′ = x, z′ = a

(
z − g(x)

a− g(x)

)
.271

With this we can rewrite the DNO problem, (5.1), in terms of the transformed field272

u′(x′, z′) := u

(
x′,

(
a− g(x′)

a

)
z′ + g(x′)

)
,273
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as (upon dropping primes)274

∆u+ 2iα∂xu+ (γu)2u = F (x, z), 0 < z < a,(5.3a)275

u(x, 0) = U(x), z = 0,(5.3b)276

∂zu(x, a)− Tu[u(x, a)] = J(x), z = a,(5.3c)277278

and (5.2) as279

(5.4) G(g)[U ] = −∂zu(x, 0) +H(x).280

The forms for {F, J,H} have been derived and reported in [47] and, for brevity, we281

do not repeat them here.282

Following our HOPS/AWE philosophy we assume the joint boundary/frequency283

perturbation284

g(x) = εf(x), ω = ω + δω,285

and study the effect of this on (5.3) and (5.4). These become286

∆u+ 2iα∂xu+ (γu)2u = F̃ (x, z), 0 < z < a,(5.5a)287

u(x, 0) = U(x), z = 0,(5.5b)288

∂zu(x, a)− Tu[u(x, a)] = J̃(x), z = a,(5.5c)289290

and291

(5.6) G(εf)[U ] = −∂zu(x, 0) + H̃(x).292

In these293

F̃ = −εdiv [A1(f)∇u]− ε2div [A2(f)∇u]− εB1(f)∇u− ε2B2(f)∇u294

− 2iαδ∂xu− δ2(γu)2u− 2δ(γu)2u295

− 2iεS1(f)α∂xu− 2iεS1(f)αδ∂xu− εS1(f)δ2(γu)2u296

− 2εS1(f)δ(γu)2u− εS1(f)(γu)2u297

− 2iε2S2(f)α∂xu− 2iε2S2(f)αδ∂xu− ε2S2(f)δ2(γu)2u298

− 2ε2S2(f)δ(γu)2u− ε2S2(f)(γu)2u,(5.7)299300

and301

(5.8) J̃ = −1

a
(εf(x))Tu [u(x, a)] ,302

and303

(5.9) H̃ = ε(∂xf)∂xu(x, 0) + ε
f

a
G(εf)[U ]− ε2 f(∂xf)

a
∂xu(x, 0)− ε2(∂xf)2∂zu(x, 0).304

It is not difficult to see that the forms for the Aj , Bj , and Sj are305

A0 =

(
1 0
0 1

)
,306

A1(f) =
1

a

(
−2f −(a− z)(∂xf)

−(a− z)(∂xf) 0

)
,307

A2(f) =
1

a2

(
f2 (a− z)f(∂xf)

(a− z)f(∂xf) (a− z)2(∂xf)2

)
,308

309
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and310

B1(f) =
1

a

(
∂xf

0

)
, B2(f) =

1

a2

(
−f(∂xf)

−(a− z)(∂xf)2

)
,311

and312

S0 = 1, S1(f) = −2

a
f, S2(f) =

1

a2
f2.313

At this point we posit the expansions314

u(x, z; ε, δ) =

∞∑
n=0

∞∑
m=0

un,m(x, z)εnδm, G(ε, δ) =

∞∑
n=0

∞∑
m=0

Gn,mε
nδm,315

and, upon insertion into (5.5) and (5.6), we find316

∆un,m + 2iα∂xun,m + (γu)2un,m = F̃n,m(x, z), 0 < z < a,(5.10a)317

un,m(x, 0) = δn,0δm,0U(x), z = 0,(5.10b)318

∂zun,m(x, a)− Tu[un,m(x, a)] = J̃n,m(x), z = a,(5.10c)319320

and321

(5.11) Gn,m(f) = −∂zun,m(x, 0) + H̃n,m(x).322

The formulas for F̃n,m, J̃n,m and H̃n,m can be readily derived from (5.7), (5.8), and323

(5.9) above.324

Remark 5.1. In a forthcoming publication we will use the recursions (5.10) and325

(5.11) to establish the joint analyticity of the DNO with respect to both interfacial326

and frequency deformations.327

5.1. Joint Expansion of Surface Data. In order to specify forms for the328

surface data, {ζn,m, ψn,m}, we require some results from [40]. First we recall the329

Taylor series expansion of the quantity γqp , (2.3), with respect to δ away from a330

Rayleigh singularity (Wood anomaly) γq
p

= 0.331

Lemma 5.2. [40] The quantity γqp has Taylor series expansion332

γqp(δ) =

∞∑
m=0

γqp,mδ
m,333

where,334

γqp,0 = ±γq
p
,335

which we assume to be non–zero, giving rise to336

γqp,1 =
2((kq)2 − α αp)

2γqp,0
, γqp,2 =

(γq)2 − (γqp,1)2

2γqp,0
,337

γqp,m =
−
∑m−1
r=1 γqp,m−rγ

q
p,r

2γqp,0
, m > 2.338

339
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Remark 5.3. As we noted in [40] we must be away from a Rayleigh singularity,340

γq
p

= 0, for all p in order for our expansion to be valid. See the final section of [40] for341

a discussion of the behavior of the function γqp(δ) in the neighborhood of a Rayleigh342

singularity.343

Next we require the expansion of the composition of the exponenetial function344

with the product of a function of ε and a function of δ jointly in ε and δ.345

Lemma 5.4. [40] Let E(g, V ) := exp(g(x)V (δ)) for a function g(x) and an ana-346

lytic function347

V = V (δ) =

∞∑
m=0

Vmδ
m.348

The composite function E(g, V ) = E(εf, V (δ)) is jointly analytic and has the Taylor349

series expansion350

E(ε, δ) =

∞∑
n=0

∞∑
m=0

En,mεnδm,351

where352

En,m =


1, n = m = 0,

0, n = 0,m > 0,

(V0)n f
n

n! , n > 0,m = 0,
f
n+1

∑m
r=0 En,m−rVr, n,m > 0.

353

Remark 5.5. We note that this latter Lemma can be effectively used to compute354

the expansions of the functions355

e±iγ
q
p(δ)εf = Ep(εf,±iγqp(δ)) = Eq,±p (ε, δ) =

∞∑
n=0

∞∑
m=0

Eq,±p,n,mεnδm, q ∈ {u,w},356

which we presently require.357

Using this Lemma we find Taylor expansions for the data generated by plane–wave358

incidence (2.1e) and (2.1f). More specifically, for359

ζ =

∞∑
n=0

∞∑
m=0

ζn,mε
nδm, ψ =

∞∑
n=0

∞∑
m=0

ψn,mε
nδm,360

we have361

ζn,m = −Eu,−0,n,m,362

ψn,m =

m∑
r=0

(iγup,m−r)E
u,−
0,n,r + (∂xf)(iα)Eu,−0,n−1,m + (∂xf)(iα)Eu,−0,n−1,m−1.363

364

6. Numerical Results. We are now in a position to test a numerical implemen-365

tation of our method and demonstrate its advantageous computational complexity.366

Regarding the algorithm, our HOPS/AWE scheme is a High–Order Spectral method367

[25, 6, 56] in the same spirit as our related Transformed Field Expansion (TFE) al-368

gorithm [47], where nonlinearities are approximated with convolutions implemented369
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12 MATTHEW KEHOE AND DAVID P. NICHOLLS

via the fast Fourier transform (FFT) algorithm. To test its validity we compare370

simulations from our implementation of this HOPS/AWE method to exact solutions371

constructed from the Method of Manufactured Solutions.372

6.1. Implementation. As we mentioned above, our formulation of the scatter-373

ing problem is374

A(ε, δ)V(ε, δ) = R(ε, δ),375

c.f. (3.1), and our HOPS/AWE approach asks for the joint expansion of the {A,V,R}376

in Taylor series, c.f. (4.1), where the {Vn,m} satisfy equation (4.2). In our approxi-377

mation we begin by truncating the Taylor series378

{A,V,R}(ε, δ) ≈ {AN,M ,VN,M ,RN,M}(ε, δ)379

:=

N∑
n=0

M∑
m=0

{An,m,Vn,m,Rn,m}εnδm,(6.1)380

381

and all that remains is to specify (i.) how the forms An,m and Rn,m in (4.3) are382

simulated, and (ii.) how the operator A0,0 is to be inverted.383

For the latter we note that A0,0 is diagonalized by the Fourier transform so that384

A0,0Vn,m = Qn,m can be expressed as385

∞∑
p=−∞

Â0,0(p)V̂n,m(p)eip̃x =

∞∑
p=−∞

Q̂n,m(p)eip̃x,386

which implies387

V̂n,m(p) =
[
Â0,0(p)

]−1
Q̂n,m(p).388

It is not difficult to see [39] that389

Â0,0(p) =

(
1 −1

(−iγup ) τ2(−iγwp )

)
,390

c.f. (4.3), implying that391 [
Â0,0(p)

]−1
=

1

∆p

(
τ2(−iγwp ) 1

(iγup ) 1

)
, ∆p := −(iγup + τ2(iγwp )).392

393

Remark 6.1. From these formulas it becomes obvious that the operator A0,0 is394

always invertible and our algorithm is well–defined. Recalling that we assume a395

dielectric in the upper layer (so that the incident radiation propagates) we have that396

γup is either real and positive or purely imaginary (with positive imaginary part). If397

a dielectric fills the lower layer then we have the same state of affairs for γwp so that,398

given that τ2 will be positive and real, ∆p 6= 0. Alternatively, if a metal fills the lower399

layer then γwp will be complex with positive imaginary part. While it is less obvious,400

this ensures that, once again, ∆p 6= 0.401

Regarding the forms An,m and Rn,m, these boil down to the simulation of the402

terms Gn,m and Jn,m in Taylor series approximations of the DNOs, G and J . There403
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is a large literature on the simulation of these operators in the case of a boundary404

perturbation alone (see, e.g., [44]), however, a novelty of our current work is the405

approximation of these DNOs jointly in interface and frequency deformation from the406

recursions found in Section 5. As we presently describe, the method is very similar to407

that presented in [44] save that additional elliptic solves are required.408

6.2. A Fourier/Chebyshev Collocation Discretization. Focusing on the409

upper layer DNO, G, we begin by approximating410

u(x, z; ε, δ) ≈ uN,M (x, z; ε, δ) :=

N∑
n=0

M∑
m=0

un,m(x, z)εnδm.411

Each of these un,m(x, z) are then simulated by a Fourier–Chebyshev approach which412

posits the form413

un,m(x, z) ≈ uNx,Nz
n,m (x, z) :=

Nx/2−1∑
p=−Nx/2

Nz∑
`=0

ûn,m,p,`e
ip̃xT`

(
2z − a
a

)
,414

where T` is the `–th Cheybshev polynomial. The unknowns, ûn,m,p,` are recovered415

from (5.10) by the collocation approach [25, 14, 6, 56, 57]. With this we can simulate416

the upper layer DNO from (5.11), giving417

G(x; ε, δ) ≈ GN,M (x; ε, δ) :=

N∑
n=0

M∑
m=0

Gn,m(x)εnδm,418

where419

(6.2) Gn,m(x) ≈ GNx
n,m(x) :=

Nx/2−1∑
p=−Nx/2

Ĝn,m,pe
ip̃x,420

and the Ĝn,m,p are recovered from the ûn,m,p,`.421

6.3. Padé Approximation. We conclude our discussion of implementation422

with consideration of how the Taylor series in (ε, δ) are summed. For example, re-423

garding the DNO, G, the approximation of Ĝp(ε, δ) by424

ĜN,Mp (ε, δ) :=

N∑
n=0

M∑
m=0

Ĝn,m,pε
nδm,425

c.f. (6.2). The technique of Padé approximation [3] has been used with HOPS methods426

to great advantage in the past [8, 45] and we advocate its use here. Classically, this427

approach seeks to estimate the truncated Taylor series of a single variable428

QN (ρ) :=

N∑
n=0

Qnρ
n ≈ Q(ρ),429

by the rational function430

[L/M ](ρ) :=
aL(ρ)

bM (ρ)
=

∑L
`=0 a`ρ

`

1 +
∑M
m=1 bmρ

m
, L+M = N,431
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14 MATTHEW KEHOE AND DAVID P. NICHOLLS

and432

[L/M ](ρ) = QN (ρ) +O
(
ρL+M+1

)
;433

well–known formulas for the coefficients {a`, bm} can be found in [3]. Padé approx-434

imation enjoys greatly enhanced convergence properties and we refer the interested435

reader to § 2.2 of Baker & Graves–Morris [3] and the insightful calculations of § 8.3436

of Bender & Orszag [4] for a thorough discussion of the capabilities and limitations437

of Padé approximants.438

In the current context of functions analytic with respect to two perturbation439

variables we utilize the polar coordinates440

ε = ρ cos(θ), δ = ρ sin(θ),441

and write the function442

Ĝp(ε, δ) =

∞∑
n=0

∞∑
m=0

Ĝn,m,pε
nδm443

=

∞∑
n=0

∞∑
m=0

(
Ĝn,m,p cosn(θ) sinm(θ)

)
ρn+m.444

445

Setting ` = n+m and s = m we can write this as446

Ĝp(ε, δ) =

∞∑
`=0

{∑̀
s=0

Ĝ`−s,s,p cos`−s(θ) sins(θ)

}
ρ` =:

∞∑
`=0

G̃`,p(θ)ρ
`.447

We then chose particular values of θ = θj between 0 and 2π and used classical Padé448

approximation on the resulting {G̃`,p(θj)} as a function of ρ alone.449

6.4. The Domain of Analyticity. In a forthcoming publication we will rig-450

orously demonstrate the joint analyticity of the fields, {u,w}, DNOs, {G, J}, and451

solutions, {U,W}, with respect to both boundary, ε, and frequency perturbations, δ.452

While this result requires that both ε and δ be sufficiently small, we suspect that the453

smallness requirement on ε can be removed, provided that it be real (see [45] for one454

possible strategy). However, it is clear that no such extension exists for δ as we have455

already seen how the expansion for γqp(δ) fails at a Rayleigh Singularity, γq
p

= 0, c.f.456

Lemma 5.2. Therefore the permissible values of δ must be constrained by this.457

To guide our computations we explore this restriction on δ in more detail. For458

instance, in the upper layer, Rayleigh singularities occur when α2
p = (ku)2 which459

implies460

(6.3) ω = ± c0
nu

{
α+

2πp

d

}
, for any p ∈ Z.461

In the interest of maximizing our choice of δ we select a “mid–point” value of ω which462

is as far away as possible from consecutive Rayleigh singularities463

(6.4) ωq :=
c0
nu

{
α+

2π(q + 1/2)

d

}
.464
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About this value the nearest singularities are465

ω−q :=
c0
nu

{
α+

2πq

d

}
= ωq −

πc0
nud

,466

ω+
q :=

c0
nu

{
α+

2π(q + 1)

d

}
= ωq +

πc0
nud

,467
468

so to maximize our range of ω we choose, for some filling fraction 0 < σ < 1,469

ωq − σ
( πc0
nud

)
< ω < ωq + σ

( πc0
nud

)
.470

To express this in terms of δ we recall that ω = (1 + δ)ωq which gives471

−σ
(

πc0
ωqn

ud

)
< δ < σ

(
πc0
ωqn

ud

)
.472

Simplifying gives473

(6.5) −
(

σ

(αd/π) + 2q + 1

)
< δ <

(
σ

(αd/π) + 2q + 1

)
.474

6.5. Validation by the Method of Manufactured Solutions. To validate475

our scheme we utilized the Method of Manufactured Solutions [13, 53, 54]. To sum-476

marize, consider the general system of partial differential equations subject to generic477

boundary conditions478

Pv = 0, in Ω,479

Bv = 0, at ∂Ω.480481

It is typically easy to implement a numerical algorithm to solve the nonhomogeneous482

version of this set of equations483

Pv = F , in Ω,484

Bv = J , at ∂Ω.485486

To test an implementation we began with the “manufactured solution,” ṽ, and set487

Fv := P ṽ, Jv := J ṽ.488

Thus, given the pair {Fv,Jv} we had an exact solution of the nonhomogeneous prob-489

lem, namely ṽ. While this does not prove an implementation to be correct, if the490

function ṽ is chosen to imitate the behavior of anticipated solutions (e.g., satisfying491

the boundary conditions exactly) then this gives us confidence in our algorithm.492

We considered the periodic, outgoing solutions of the Helmholtz equation (2.6a)493

ur(x, z) := Are
ir̃x+iγu

r z, r ∈ Z, Ar ∈ C,494

and their counterparts for (2.6b)495

wr(x, z) := Bre
ir̃x−iγw

r z, r ∈ Z, Br ∈ C.496

We selected the simple sinusoidal profile497

(6.6) g(x) = εf(x) = ε

(
cos(4x)

4

)
,498
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16 MATTHEW KEHOE AND DAVID P. NICHOLLS

and defined the Dirichlet and Neumann traces499

Ur(x) := ur(x, g(x)), Ũr(x) := −∂Nur(x, g(x)),(6.7a)500

Wr(x) := wr(x, g(x)), W̃r(x) := ∂Nwr(x, g(x)).(6.7b)501502

From these we defined the two–layer data to be provided to our algorithm503

(6.7c) ζr := Ur −Wr, ψr := −Ũr − τ2W̃r.504

We chose the following physical parameters505

(6.8) d = 2π, α = 0, εu = 1, εw = 1.1, r = 4, Ar = 5, Br = 3,506

in TM polarization, and the numerical parameters507

(6.9) Nx = 32, Nz = 32, a = 1, b = −1.508

With a rescaling of the frequency (e.g., via a change of the time variable, t′ = t/c0)509

we arrange for c0 = 1 and considered the base frequency510

ω1 = 3/2,511

and filling fraction σ = 0.99.512

To illuminate the behavior of our scheme we studied four choices of the numerical513

parameter514

N = M = 4, 8, 12, 16,515

and the physical quantities516

ε = 10−2, 10−4, 10−6, 10−8,517

in (6.6). For this we supplied the “exact” input data, {ζr, ψr}, from (6.7) to our518

HOPS/AWE algorithm to simulate solutions of the two–layer problem giving {Uapprox
r ,W approx

r }.519

We compared this with the “exact” solutions {U exact
r ,W exact

r } and computed the rel-520

ative error521

Errorrel :=
|U exact
r − Uapprox

r |∞
|U exact
r |∞

.522

We point out that measuring the defect in the upper–layer Dirichlet data was arbitrary523

and we noticed similar behavior for the lower–layer analogue.524

We report our results of these simulations in Figures 2 and 3. More specifically,525

Figure 2 displays both the rapid and stable decay of the relative error for fixed N and526

M , and how this rate of decay improves as (ε, δ) decrease. Figure 3 shows both how527

the error shrinks as (ε, δ) become smaller, and that this rate is enhanced as both N528

and M are increased.529

6.6. Simulations of the Reflectivity Maps. In Section 2.2 we defined the530

Reflectivity Map R = R(ε, δ), c.f. (2.7). Using our novel HOPS/AWE approach we531

computed532

RN,M,Nx,Nz

HOPS/AWE ≈ R,533
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(a) N = M = 4, ε = 10−2 (b) N = M = 4, ε = 10−4

(c) N = M = 4, ε = 10−6 (d) N = M = 4, ε = 10−8

Fig. 2: Plot of relative error with fixed N = M = 4 and four choices of ε =
10−2, 10−4, 10−6, 10−8 with Taylor summation. Physical parameters were (6.8) and
numerical discretization was (6.9).

for a range of ε and δ. As in our previous work [40], we show the kind of simula-534

tions this HOPS/AWE method can produce with modest computational effort. For535

this we selected ωq, c.f. (6.4), for 1 ≤ q ≤ 6 and simulated R in the following fre-536

quency/wavelength ranges537

q = 1 : ω ∈ [1.005, 1.995] =⇒ λ ∈ [3.14947, 6.25193],538

q = 2 : ω ∈ [2.005, 2.995] =⇒ λ ∈ [2.09789, 3.13376],539

q = 3 : ω ∈ [3.005, 3.995] =⇒ λ ∈ [1.57276, 2.09091],540

q = 4 : ω ∈ [4.005, 4.995] =⇒ λ ∈ [1.25789, 1.56884],541

q = 5 : ω ∈ [5.005, 5.995] =⇒ λ ∈ [1.04807, 1.25538],542

q = 6 : ω ∈ [6.005, 6.995] =⇒ λ ∈ [0.89824, 1.04633],543544

c.f. (6.5). In addition, we selected545

g(x) = εf(x), f(x) = cos(x), εmax = 0.2,546
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(a) N = M = 4, ε = 10−2 (b) N = M = 8, ε = 10−4

(c) N = M = 12, ε = 10−6 (d) N = M = 16, ε = 10−8

Fig. 3: Plot of relative error with four choices of N = M = 4, 8, 12, 16 and four choices
of ε = 10−2, 10−4, 10−6, 10−8 with Taylor summation. Physical parameters were (6.8)
and numerical discretization was (6.9).

with the parameters547

α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = 32, N = M = 16.548

In Figure 4(a) we plot all six of these subsets of the Reflectivity Map on one set of549

coordinate axes, and in Figure 4(b) we plot the energy defect, D, (2.8), to verify the550

accuracy of our expansions.551

We then changed the lower index of refraction nw to match representative values552

of silver and gold as reported by Johnson & Christy [30], in particular553

nAg = 0.05 + 2.275i, nAu = 1.48 + 1.883i.554

Using the same frequency and wavelength ranges, we studied555

f(x) = cos(4x), εmax = 0.2,556
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(a) Reflectivity Map (b) Energy Defect

Fig. 4: The Reflectivity Map, R(ε, δ), and energy defect D computed with our
HOPS/AWE algorithm with Taylor summation. We set N = M = 16 with a gran-
ularity of Nε = Nδ = 100 per invocation. Parameter choices were α = 0, σ = 0.99,
nu = 1, nw = 1.1, and Nx = 32.

with the parameters557

α = 0, σ = 0.99, nu = 1, Nx = 32, N = M = 15.558

In Figure 5(a) we plot six different subsets of the reflectivity map where the lower

(a) Reflectivity Map for Silver (b) Reflectivity Map for Gold

Fig. 5: The Reflectivity Map, R(ε, δ), for silver (left) and gold (right) with Padé
summation. We set N = M = 15 with a granularity of Nε = Nδ = 100 per invocation.
Parameter choices were α = 0, σ = 0.99, nu = 1, nw = nAg (left) and nw = nAu

(right), Nx = 32, and the periodicity of the grating was selected as d = 2π.

559
index of refraction is selected to model the optical constant of silver. In Figure 5(b) we560

plot six different subsets of the Reflectivity Map where the lower index of refraction561

is changed to the optical constant for gold.562
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In the next set of simulations we dropped the assumptions that d = 2π and c0 is563

unity. We calculated the Reflectivity Map for a silver grating with a sinusoidal profile564

g(x) = εf(x), f(x) =
1

4
sin

(
4πx

d

)
, d = 0.28µm, εmax = 0.2,565

with the parameters566

α = 0, σ = 0.99, nu = 1, nw = nAg, Nx = 32,567

and N = M = 4, 8, 12, 16. In Figure 6 we plot a single subset of the Reflectivity Map568

corresponding to our parameter choices for silver. The combined plots show that as569

both N and M become larger, our HOPS/AWE algorithm converges.

(a) N = M = 4 (b) N = M = 8

(c) N = M = 12 (d) N = M = 16

Fig. 6: The Reflectivity Map, R(ε, δ), for silver with Padé summation. We set N =
M = 4, 8, 12, 16 with a granularity of Nε = Nδ = 100 per invocation. Parameter
choices were α = 0, σ = 0.99, nu = 1, nw = nAg, Nx = 32, and the periodicity of the
grating was selected as d = 0.28µm.

570
We conclude with simulations of non–normal incidence (α 6= 0) and we return to571

the case d = 2π and unit c0. Recalling the Rayleigh singularity condition, (6.4), we572

note the dependence on not only nu but also α. With this in mind we revisited the573
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Reflectivity Map simulations from the beginning of the section in neighborhoods of574

ωq, 1 ≤ q ≤ 3, giving rise to frequency/wavelength ranges575

q = 1 : ω ∈ [1.005, 1.995] =⇒ λ ∈ [3.14947, 6.25193],576

q = 2 : ω ∈ [2.005, 2.995] =⇒ λ ∈ [2.09789, 3.13376],577

q = 3 : ω ∈ [3.005, 3.995] =⇒ λ ∈ [1.57276, 2.09091].578579

We selected580

f(x) = sin(3x), εmax = 0.1,581

with the parameters582

α = 0.1, σ = 0.99, nu = 1, nw = 2.3782, Nx = 64, N = M = 13,583

and the value of nw is meant to model carbon [50]. In Figure 7(a) we plot three584

different subsets of the reflectivity map on one set of coordinate axes. In Figure 7(b)585

we plot the energy defect, (2.8), to show the accuracy of our scheme in the case α 6= 0.586

(a) Reflectivity Map (b) Energy Defect

Fig. 7: The Reflectivity Map, R(ε, δ), and energy defect D computed with our
HOPS/AWE algorithm with Taylor summation. We set N = M = 13 with a granu-
larity of Nε = Nδ = 100 per invocation. Parameter choices were α = 0.1, σ = 0.99,
nu = 1, nw = 2.3782 (carbon), and Nx = 64.

587

We conclude with computations of the same configuration but with increased588

granularity, Nε = Nδ = 1000 per invocation. In the next section we discuss the589

advantageous computational complexity our HOPS/AWE algorithm enjoys in this590

situation of large Nε and Nδ. We selected591

f(x) = cos(x), εmax = 0.2,592

with the parameters593

α = 0.01, σ = 0.99, nu = 1, nw = 1.1, Nx = 32, N = M = 16.594
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In Figure 8(a) we plot six different subsets of the Reflectivity Map on a single coor-595

dinate axis, and in Figure 8(b) we plot the energy defect, (2.8), to demonstrate the596

accuracy of our scheme with a nonzero value of α.

(a) Reflectivity Map (b) Energy Defect

Fig. 8: The Reflectivity Map, R(ε, δ), and energy defect D computed with our
HOPS/AWE algorithm with Taylor summation. We set N = M = 16 with a granu-
larity of Nε = Nδ = 1000 per invocation. Parameter choices were α = 0.01, σ = 0.99,
nu = 1, nw = 1.1, and Nx = 32.

597

6.7. Computational Complexity. One of the primary motivations for our598

HOPS/AWE algorithm is its superior computational complexity for problems within599

its domain of applicability. In comparison with classical BIE methods, for instance,600

the HOPS/AWE approach has several advantages for computing QoIs like the Re-601

flectivity Map, R = R(ε, δ). To demonstrate this we begin by fixing the problem of602

computing R for Nε many values of ε and Nδ many values of δ.603

We recall from Section 6.2 that our HOPS/AWE algorithm requires Nx×Nz un-604

knowns at every perturbation order, (n,m), corresponding to the Nx equally–spaced605

gridpoints in the lateral direction and the Nz collocation points in the vertical dimen-606

sion. A careful study of the HOPS/AWE recursions (4.2) reveals that the compu-607

tational complexity of forming the right–hand side at order (n,m) (the most costly608

step) is609

O (nmNx log(Nx)Nz log(Nz)) .610

Inverting the operator A0,0 has complexity O (Nx log(Nx)Nz log(Nz)) so the full cost611

of computing the {Un,m,Wn,m}, {0 ≤ n ≤ N, 0 ≤ m ≤M}, is612

O
(
N2M2Nx log(Nx)Nz log(Nz)

)
.613

Once these coefficients are recovered, the cost of summing the series in (ε, δ) is min-614

imal, provided it is done in an efficient manner (e.g., by Horner’s rule [12, 2]). Our615

algorithm then requires an additional O (NεNδ) steps to sum over every value of (ε, δ),616

therefore the full cost of computing the Reflectivity Map by our HOPS/AWE method617

is618

O
(
N2M2Nx log(Nx)Nz log(Nz) +NεNδ

)
.619
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In contrast, for a single (ε, δ) pair, a BIM solver with Nx lateral gridpoints requires620

time proportional to O
(
N3
x

)
for Gaussian elimination to solve the resulting dense621

system of Nx equations in Nx unknowns [12, 2, 17]. Applying this Nε × Nδ times622

results in a total computational complexity of623

O
(
N3
xNεNδ

)
.624

Thus, once Nε and Nδ become large, e.g.,625

NεNδ >
N2M2Nx log(Nx)Nz log(Nz)

N3
x

,626

our new algorithm becomes far more efficient.627

7. Conclusions. In this paper we have described a novel, High–Order Spectral628

[25, 14] High–Order Perturbation of Surfaces (HOPS)/Asymptotic Waveform Eval-629

uation (AWE) method [40] which employs a perturbation approach to address the630

geometric and frequency deviations from a base configuration. For quantities which631

depend upon both of these variables, such as the Reflectivity Map, this method enjoys632

extremely favorable computational complexity as compared with standard numerical633

methods such as Finite Differences, Finite Elements, and even Integral Equations.634

Our HOPS/AWE algorithm has been shown to be rapid, robust, and highly accurate.635
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[9] O. P. Bruno, M. Lyon, C. Pérez-Arancibia, and C. Turc, Windowed Green function method657
for layered-media scattering, SIAM J. Appl. Math., 76 (2016), pp. 1871–1898.658

[10] O. P. Bruno, S. P. Shipman, C. Turc, and S. Venakides, Superalgebraically convergent659
smoothly windowed lattice sums for doubly periodic Green functions in three-dimensional660
space, Proc. A., 472 (2016), pp. 20160255, 19.661

[11] O. P. Bruno, S. P. Shipman, C. Turc, and S. Venakides, Three-dimensional quasi-periodic662
shifted Green function throughout the spectrum, including Wood anomalies, Proc. A., 473663
(2017), pp. 20170242, 18.664

[12] R. Burden and J. D. Faires, Numerical analysis, Brooks/Cole Publishing Co., Pacific Grove,665
CA, sixth ed., 1997.666

[13] O. R. Burggraf, Analytical and numerical studies of the structure of steady separated flows,667
J. Fluid Mech., 24 (1966), pp. 113–151.668

This manuscript is for review purposes only.



24 MATTHEW KEHOE AND DAVID P. NICHOLLS

[14] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid669
dynamics, Springer-Verlag, New York, 1988.670

[15] J. Chandezon, M. Dupuis, G. Cornet, and D. Maystre, Multicoated gratings: a differential671
formalism applicable in the entire optical region, J. Opt. Soc. Amer., 72 (1982), p. 839.672

[16] J. Chandezon, D. Maystre, and G. Raoult, A new theoretical method for diffraction gratings673
and its numerical application, J. Opt., 11 (1980), pp. 235–241.674

[17] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, vol. 93 of675
Applied Mathematical Sciences, Springer, New York, third ed., 2013.676

[18] COMSOL, COMSOL Multiphysics Reference Manual, COMSOL, Inc., Stockholm, Sweden,677
2019.678

[19] B. Després, Domain decomposition method and the Helmholtz problem, in Mathematical and679
numerical aspects of wave propagation phenomena (Strasbourg, 1991), SIAM, Philadelphia,680
PA, 1991, pp. 44–52.681
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