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My research uses analytical and numerical methods in the subjects of optics, electromagnetics,
and acoustics. I am particularly interested in layered media problems which model the scattering
of electromagnetic waves in a periodic structure. As a graduate student, I have focused on the
numerical implementation of High-Order Perturbation of Surfaces (HOPS) methods including the
Transformed Field Expansion (TFE) method developed by Nicholls [53, 54, 58] and Reitich [32,
34, 39, 49], the Field Expansion (FE) method developed by Bruno [25, 28, 29, 30] and Reitich,
and the Operator Expansion (OE) method developed by Milder [24, 23, 26, 26, 35, 36], Craig
[38], and Sulem [31]. HOPS methods are a High-Order Spectral (HOS) method [11, 91, 44, 48,
55, 72] which are particularly well-suited for PDEs posed on piecewise homogeneous domains. Of
central interest to all of the HOPS methods are Dirichlet-to-Neumann Operators (DNOs) [19]. A
major portion of my thesis work involves applying the TFE method to establish joint analyticity
of DNOs with respect to both interfacial and frequency deformations. There are many interesting
and open problems resulting from the interaction of electromagnetic waves and grating
structures. In this document I discuss six different research goals that I plan to work on in the
future. The second half of the document contains several problems that would make good
projects for undergraduate or graduate students. In these, I focus on the numerical and
theoretical aspects of the Riemann zeta function which is another source of outstanding problems
in computational mathematics.

INTRODUCTION

The scattering of linear electromagnetic waves by a layered structure is a central model in many
problems of scientific and engineering interest. Examples arise in areas such as geophysics [83, 79],
imaging [52], materials science [22], nanoplasmonics [17, 73, 93], and oceanography [21]. In the case
of nanoplasmonics, many topics such as extraordinary optical transmission [41], surface enhanced
spectroscopy [14], and surface plasmon resonance (SPR) biosensing [75, 87] and [97, 99, 103, 106].
In all of the physical problems it is necessary to approximate scattering returns in a fast, robust,
and highly accurate fashion. This proposal will expand upon a novel high-order perturbation of
surfaces algorithm (HOPS) [109, 113, 114] designed for the numerical simulation of the layered
periodic media (diffraction or scattering) problem.

While a variety of classical algorithms have been utilized for the simulation of this problem,
it has recently been shown [104, 109, 113, 114] that such volumetric approaches (such as finite
difference and finite/spectral element methods) are greatly disadvantaged due to the large number
of unknowns for layered media problems. Another natural candidate is interfacial methods based
upon integral equations (IEs) [40]. However, as discussed in [104, 109, 113, 114], these also face
difficulties. Two major problems in our parametrized setting are:

1. For configurations parameterized by a real value ε (in our scheme the height/slope of the
interface), an IE solver will return the scattering returns for only one particular value of ε.
If this is changed, the solver must be run again.

2. IE solvers require inverting a dense, nonsymmetric positive definite system of linear equations
at every stage of simulation.

In contrast, the high-order perturbation of surfaces (HOPS) approach [109, 113, 114] can
effectively address these concerns. More specifically, in [113, 114] an alternative known as the
method of field expansions (FE) is proposed which is based on the low-order calculations of Rayleigh
[2] and Rice [4]. An expansion to high-order incarnation was first introduced by Bruno and Reitich
[28, 29, 30] and then was later enhanced and stabilized by Nicholls and Reitich [63, 64, 78]. The
later expansion is known as the transformed field expansion (TFE) method. The TFE method has
two major advantages:
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1. The method is built upon expanding the boundary parameter ε. Once the Taylor coefficients
are known for the scattering quantities, the TFE method can recover all of the returns by
summing the Taylor coefficients. It is unnecessary to begin a new summation for every value
of ε.

2. The scheme is based on the perturbative nature of the interface which requires the inversion
of a single, sparse operator corresponding to the flat-interface solution.

For a single incident wavelength, the TFE method is among the most efficient available in our
layered media setting. In more recent work, I have investigated configurations parameterized by
two real parameters - ε (the height/slope of the interface) and δ (the frequency). In upcoming
work, I will publish two papers involving a rigorous proof of joint analyticity in expanding both
ε and δ with detailed numerical simulations. The first paper shows that the TFE method can
be extended from a single parameter ε to multiple parameters of interest to the geometry of the
problem. The second paper confirms the theorem by rigorously testing numerical simulations
of large boundary and frequency parameters ε and δ. Further analysis will zone in on adding
new parameters of interest to layered media problems, investigating points (known as Rayleigh
singularities) where the Taylor series fails to converge, analyzing analyticity results in multilayered
configurations, implementing parallel programming techniques, investigating alternative techniques
for boundary/surface data, and improvements to the computational cost of the HOPS algorithm.

RESEARCH GOALS

Research Objectives: My primary objectives are to expand the TFE method through a new
proof of convergence, investigate expanding around singularities, evaluating analyticity theorems
in multilayered configurations, adding new parallel programming functionality, exploring alterna-
tive methods to recover surface data without Dirichlet-to-Neumann Operators, and to reduce the
execution time of the HOPS algorithm. I will investigate both analytical and numerical techniques.
My research is concerned with the following questions:

Goal 1- Choice of Parameters: Does the geometry of the perturbation impact how
large the size of the perturbation can be?

Goal 2- Rayleigh Singularities: Can we build a full HOPS algorithm based on points
where the Taylor expansion is invalid?

Goal 3- Multiple Layers: Can we prove analyticity results when the number of layers
is greater than three? Do the same theorems hold for ten or one hundred layers?

Goal 4- Parallel Programming: Can we implement parallel programming techniques
so that our HOPS code runs on N processors?

Goal 5- Alternatives to DNOs: Do we need to use DNOs to recover surface data
from information stored in the transformed field? Is there an alternative method
which preserves the inversion of a single, sparse operator at the interface?

Goal 6- Computational Costs: Can we reduce the execution time per time step in
our HOPS algorithm?

Research Methods: My existing HOPS code is written in Matlab. Following Fang [108], I
will investigate a parallel implemention in C++ or Fortran. By using classical Sobolev space
theory [43], regular perturbation theory [46], and previous results [123, 119, 88, 82, 118], I will
investigate theoretical enhancements to the TFE method and improve existing functionality of the
HOPS algorithm. In [118], Nicholls describes how to prove analyticity results in three or more
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layers using a τ -allowable layer configuration. I intend to generalize these results to ten or more
layer configurations. I will review the electromagnetics and inverse scattering literature to find
alternatives to DNOs.

Goal 1. Choice of Parameters: Does the geometry of the perturbation impact how
large the size of the perturbation can be?

Our HOPS method is based on two smallness assumptions:

1. Boundary perturbation: g(x) = εf(x), ε ∈ R, ε� 1,

2. Frequency perturbation: ω = (1 + δ)ω = ω + δω, ω ∈ R, δ � 1,

with the additional assumption that f is sufficiently smooth (f ∈ C2 [53, 62] or even Lipschitz
[68]). Numerical simulations show that our HOPS algorithm can handle larger perturbations of ε
(the height/slope) in comparison to δ (the frequency). With modest test parameters and a period
of d = 2π, we are able to perturb the value of ε (to ε = 0.1 or even ε = 0.2) and still get reasonable
convergence results. At a value around ε = 10−4, our HOPS algorithm converges to machine
precision provided that we sum to high enough Taylor orders.

(a) Large ε, Small δ (b) Small ε, Large δ

Figure 1: A contour plot of the relative error computed with our HOPS algorithm by holding ε
and δ fixed. In Figure 1(a) we set ε = 0.1, δ = 10−10 and compute up to N = M = 12 Taylor
orders. In Figure 1(b) we set ε = 10−10, δ = 0.1 and compute up to N = M = 12 Taylor orders.
Supplementary testing confirms that our HOPS algorithm is better suited towards larger ε.

Predictions: The HOPS method relies on creating an artificial boundary condition through
what is known as a Dirichlet-to-Neumann operator. The DNO is responsible for recovering
transformed field solutions by data stored at the interface. I strongly suspect that the DNO
mitigates moderate to large pertubations of the height/slope. By following techniques developed
in [118, 58, 82], I intend to rigorously prove that the TFE method is analytic and convergent
when ε is large. This is an extension of my previous work where I showed that the TFE method
is jointly analytic in a small pertubation of both ε and δ. In order to test new physical
parameters, I will study the engineering literature [121, 120] and analyze which parameters are
best suited towards the domain flattening change of variables [6, 12] central to the TFE method.

Goal 2. Rayleigh Singularities: Can we build a full HOPS algorithm based on points
where the Taylor expansion is invalid?

A fundamental equation in the HOPS algorithm is

α2
p + γ2p(δ) = k2
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where k represents the wavenumber, and α = k sin(θ), γ = k cos(θ), are parameters corresponding
to refraction/reflection of the incidence angle θ. It is well known that a Rayleigh singularity [3,
93] (also known as a Wood’s anomaly) occurs when α2

p = k2 for any integer p 6= 0. That is,
if γp(δ) = 0 for p 6= 0 then the Taylor series expansion of γp(δ) is invalid. In [117], Nicholls
investigated changing the Taylor expansion to a Puiseux expansion [71]:

γp(δ) =

∞∑
m=0

γp,mδ
m+1/2 = δ1/2

∞∑
m=0

γp,mδ
m.

However, he found that this approach ran into external difficulties (§6 of [117]) simplifying explicit
forms of the Dirichlet and Neumann trace operators.

Predictions: Rayleigh singularities are a central obstruction to the convergence of our HOPS
algorithm. In all of our numerical tests, we select custom frequency ranges which maximize the
radius of convergence of our algorithm by expanding away from the singularities. Alternative
methods such as Padé summation also fail to be analytic in a neighborhood of a Rayleigh singu-
larity. By investigating known techniques [69, 115, 122, 5, 13] of pertubation series, I will perform
a series expansion of γp(δ) that doesn’t diverge when γp(δ) = 0.

Goal 3. Multiple Layers: Can we prove analyticity results when the number of layers
is greater than three? Do the same theorems hold for ten or one hundred layers?

In [118], Nicholls discusses how to apply the HOPS methodology in multilayered configurations.
He considers a multilayered material with M interfaces at

z = a(m) + g(m)(x, y), 1 ≤ m ≤M,

which are dx × dy periodic

g(m)(x+ dx, y + dy) = g(m)(x, y), 1 ≤ m ≤M,

separating (M + 1)-many layers.

Figure 2: A five-layer problem configuration with layer interfaces z = a(m) + g(m)(x).

One of the main results proven in this paper is the analyticity of the DNOs with respect to the
interfacial parameter ε. I would like to extend this result to the joint analyticity of both the
interfacial parameter ε and frequency parameter δ. I also want to prove more exotic analyticity
results when the number of layer configurations increases to ten or one hundred.
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Predictions: My existing HOPS code can handle ten or more layer configurations. The
majority of the numerical work was completed in the analysis done in my thesis where I wrote
separate subroutines to calculate DNOs in the upper and lower transformed fields. In order to
implement multilayered configurations, I would need to write no more than five new subroutines.
However, I am concerned about the execution time of the HOPS algorithm with a large number
of layer configurations (to be addressed in the next research goal). I will run into difficulty with
analyticity theorems in more than three dimensions (the majority of our work has been in two
and three dimensions). I intend to build upon the τ -allowable layer configuration techniques
developed by Nicholls and invent new techniques in higher dimensions.

Goal 4. Parallel Programming: Can we implement parallel programming techniques
so that our HOPS code runs on N processors?

A former student of my advisor, Zheng Fang, implemented C++ code [108] to parallelize the com-
putation of the Operator Expansion (OE) method with Navier’s equations [47, 90]. The analysis
done in my dissertation is based on an application of the Transformed Field Expansion (TFE)
method to the Helmholtz equation [10]. However, given the similarities between the numerical
implementation of the OE and TFE methods, I should be able to reuse some of the C++ code
written by Fang.

If I cannot reuse the work done by Fang, then it would be worthwhile to write my own par-
allel implementation of the TFE method. While Matlab does have some parallel programming
functionality, I would prefer to use a language such as C++ or Fortran. My previous experience
in the software industry and in national labs tells me that it is beneficial to invest in parallel
programming techniques. I will investigate the feasibility of a parallel implementation of our three
HOPS methods - the Operator Expansion (OE) method, the Field Expansion (FE) method, and
the Transformed Field Expansion (TFE) method.

Predictions: In two or three dimensions, most of our HOPS code is efficient and has a run-
time less than an hour. On a local library machine (with Matlab installed), I can run almost
all of my numerical simulations in less than thirty minutes. However, with one hundred or more
layer configurations, I suspect that many simulations will take longer than a week to run on one
processor. As a result, I will investigate a parallel implementation of the TFE method and the
Helmholtz equation. I currently have access to supercomputing resources (through workstations at
UIC and Argonne National Laboratory) and would need equivalent resources as a postdoc. After I
complete the parallel implementation of the TFE method, I will work on the OE and FE methods.

Goal 5. Alternatives to DNOs: Do we need to use DNOs to recover surface data
from information stored in the transformed field? Is there an alternative method
which preserves the inversion of a single, sparse operator at the interface?

Suppose we are given a linear system of the form AV = R. Expanding in both interfacial and
frequency perturbations gives

A(ε, δ) =

∞∑
n=0

∞∑
m=0

An,mε
nδm, R(ε, δ) =

∞∑
n=0

∞∑
m=0

Rn,mε
nδm,

where the solution takes the form

V (ε, δ) =

∞∑
n=0

∞∑
m=0

Vn,mε
nδm.
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A straightforward calculation gives at order O(εn, δm)

A0,0Vn,m = Rn,m −
n−1∑
`=0

An−`,0V`,m −
m−1∑
r=0

A0,m−rVn,r −
n−1∑
`=0

m−1∑
r=0

An−`,m−rV`,r,

or

Vn,m = A−10,0

(
Rn,m −

n−1∑
`=0

An−`,0V`,m −
m−1∑
r=0

A0,m−rVn,r −
n−1∑
`=0

m−1∑
r=0

An−`,m−rV`,r

)
.

From which at order O(ε0, δ0) we obtain the flat-interface solution V0,0 = (A0,0)
−1
R0,0. A central

feature in all of our HOPS schemes is that we can invert A0,0 (a sparse operator) through the use of
Dirichlet-to-Neumann operators. However, it would be interesting to find an alternative technique
which preserves the inversion of our sparse operator.

Predictions: Our HOPS methodology (and all of our numerical algorithms) depend on the in-
version of a single, sparse operator (which will always be A0 for the linear system AV = R).
Trace theory tells us that we can define a Dirichlet operator D in order to map the “zero-trace”
value of our Dirichlet data to the ”boundary-trace” value. In this manner, the DNO is responsible
for recovering the flat-interface solution from transformed field data. I intend to search the PDE
literature for alternative techniques. I strongly suspect that there are other techniques (used in
inverse scattering problems) which will provide competitive numerical results.

Goal 6. Computational Costs: Can we reduce the execution time per time step in
our HOPS algorithm?

We are interested in computing the reflectivity map [114, 124], R, for Nε many values of ε and Nδ
many values of δ. By definition, any surface method requires the use of a number of discretization
points which we will denote by Nx. The TFE approach retains N pertubation orders in ε, while
our HOPS algorithm demands the additional consideration of M Taylor orders in δ. In recent
work, I show that the total cost of computing the reflectivity map by our HOPS algorithm is

O(N2M2Nx log(Nx) +NεNδ),

while the cost of more traditional methods such as integral solvers takes

O(NεNδ(Nx)3).

Therefore, the HOPS approach is more competitive when Nε and Nδ are large.

Predictions: By definition, our algorithm requires O(NεNδ) steps to sum over every value of
ε and δ in Matlab. Our focus will be on reducing the cost of O(N2M2Nx log(Nx)) from the
HOPS/TFE methodology. In particular, I will investigate reducing the total cost of our algorithm
to

O(NMNx log(NM) log(Nx) +NεNδ)

by reducing the problem space at every step [59, 84, 116, 107, 66]. In the numerical paper, I show
that the total cost of the computing the TFE recursions at order (N,M) is O(NMNx log(Nx)).
By careful consideration of a joint Taylor expansion in (ε, δ), I will study how to recover the
flat-interface solution with cost

O(log(NM)Nx log(Nx)).
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Remark: All of the research goals described above are focused on the numerical and theoretical
applications of High-Order Perturbation of Surfaces (HOPS) methods. I am also interested in
problems in fluid mechanics [20, 33, 110, 102], finite element theory [100, 74, 70], numerical analysis
[95, 96, 37, 76, 92, 65], and water waves [89, 77, 112, 47]. An interesting problem I was introduced
to as a graduate student was that of undular bores [8] which is connected to the existence and
uniqueness [9, 80, 105] of the Benjamin–Bona–Mahony (BBM) equation. As a postdoc, I would
be happy to study a problem in a related field. I think that a lot of work is being developed in the
applications of finite element theory.

Student Projects

One of my favorite functions in all of mathematics is the Riemann zeta function. Let s = σ + it.
Then the Riemann zeta function is defined by [15, 98]

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
, for σ > 1.

By analytic continuation we can extend the Riemann zeta function to the whole complex plane
with a simple pole at s = 1. The zeta function satisfies the functional equation

ζ(s)πs/2Γ(s/2) = ζ(1− s)π(1−s)/2Γ

(
1− s

2

)
.

From the definition and functional equation, it is easy to compute ζ(s) for σ > 1 or σ < 0. Suppose
s = −2k where k is a positive integer. Then we can use the functional equation to write the zeta
function as

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ (1− s) ζ (1− s) ,

and observe that

ζ(−2k) = 2−2kπ−2k−1 sin (−πk) 2k!ζ(1 + 2k)

= −2−2kπ−2k−1 sin (πk) 2k!ζ(1 + 2k)

= 0.

Therefore ζ(−2k) = 0 when k is a positive integer. These are known as “trivial zeros” and
are uninteresting. We are interested in locating the non-trivial zeros in the critical strip where
0 < σ < 1. One of the most famous conjectures in mathematics is known as the Riemann
hypothesis. It was proposed by Bernhard Riemann [1] in 1859 and states that Re(s) = 1/2
(s = σ + it) for every nontrivial zero of the Riemann zeta function. If the conjecture is true then
every nontrivial zero in the critical strip 0 < σ < 1 lies on the critical line consisting of the complex
numbers scl = 1/2 + it. Starting from around the early 1930s [57, 60], a lot of researchers started
writing computer programs to verify that the Riemann hypothesis is true. The majority of these
computer programs are based on variations of the following three methods:

1. The Euler-Maclaurin Summation Formula [61, 42, 56]

2. The Riemann–Siegel Formula [51, 45, 126, 18]

3. The Odlyzko–Schönhage algorithm [27, 85, 111, 86]

Due to the ease of implementation and the flexibility of modern programming languages, there are
a lot of possibilities for student projects. These are accessible to both undergraduate and graduate
students and could be worked on in teams (where a computer science student could write code
and a pure math student would work on theoretical and analytical derivations).
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Numerical Projects

A (highly motivated) undergraduate or graduate student could work on a variety of different
projects involving calculations of the Riemann zeta function. These projects would involve im-
plementing (preferably C/C++ or Fortran) code to calculate zeros of the Riemann zeta function.
They could also focus on the distribution of spacing between zeros or parallel programming tech-
niques. Some project ideas are:

Project 1- Calculating nontrivial zeros through the Euler-Maclaurin Summation for-
mula.

Project 2- Calculating nontrivial zeros through the Riemann–Siegel formula.

Project 3- Calculating nontrivial zeros through the Odlyzko–Schönhage algorithm.

Project 4- Parallelizing the code for projects (1)-(2).

Project 5- Investigating what is known as Montgomery’s pair correlation conjecture
and the distribution of spaces between zeros.

A student who is interested in pure mathematics could provide several key derivations to assist
with programming.

Project 1. Calculating nontrivial zeros through the Euler-Maclaurin Summation
formula.

The Euler–Maclaurin Summation formula gives a very effective tool for evaluating a sum of values
of a function at integers.

Theorem (Euler-Maclaurin Summation). Let a and b be integers satisfying a ≤ b, and let M be a
natural number. Suppose f(x) is an M times continuously differentiable function over [a, b]. Then,
we have

b∑
n=a

f(n) =

∫ b

a

f(x) dx+
1

2
(f(a) + f(b)) +

M−1∑
k=1

Bk+1

(k + 1)!

(
f (k)(b)− f (k)(a)

)
− (−1)M

M !

∫ b

a

BM (x− [x])f (M)(x) dx.

Here, Bk+1 is the Bernoulli number and BM (x) is the Bernoulli polynomial, [x] is the greatest
integer less than or equal to x, and the sum on the right-hand side is understood to be 0 if M = 1.

If m is a positive integer then the value of ζ(s) at s = 1−m is given by

ζ(1−m) = −Bm
m

.

Following [51], it can be shown that the Euler-Maclaurin Summation formula provides a method
for calculating zeros of the Riemann zeta function. However, as discussed by Bober and Hiary in
[111], it is more practical to choose a number N and write

ζ(s) =

N∑
1

1

ns
+

∫ ∞
N

1

ys
bdyc =

N∑
1

1

ns
+ s

∫ ∞
N

{y}
ys+1

+ c(N)
s

1− s
,

which converges for σ > 0 by analytical continuation. If we choose N properly then ζ(s)−
∑N

1 1/ns

won’t be too large and we can compute the difference by the Euler-Maclaurin summation formula.
It requires O(t). Thankfully, the other methods are faster.
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Project 2. Calculating nontrivial zeros through the Riemann–Siegel formula.

As a starting point, both Pugh [45] and Takusagawa [126] wrote excellent introductions to a com-
puter implementation of the Riemann-Siegel formula. The classical textbook [50] by Edwards also
contains a very readable exposition. The main difficulty lies within computing the coefficients that
arise from the Riemann-Siegel Z function. A paper from Haselgrove [7] in the 1960s provides a
table which can be used to simplify and speedup computer programming.

A mathematician named Carl Siegel went through Riemann’s work and defined the Riemann-
Siegel Z function as

Z(t) := eiθ(t)ζ(1/2 + it),

where

θ(t) := arg

(
Γ

(
1

4
+
it

2

))
− log π

2
t,

is known as the Riemann–Siegel theta function. The Riemann-Siegel formula is an approximation
formula for Z(t). Once Z(t) is known, a straightforward approximation of θ(t) can be used to
compute ζ(s). The Z function is important because Z(t) is real when t is real and it has the same
absolute value as ζ(1/2 + it), i.e. |Z(t)| = |ζ(1/2 + it)|. Z(t) has sign changes at zeros on the
critical line where s = 1/2 + it, so it can be used to locate zeros.

I wrote my own implementation of the Riemann-Siegel formula and am familiar with implemen-
tations in different programming languages. The Riemann Zeta Search Project was created to
locate large values of the Riemann zeta function on the critical line. As of October 2021, they
have obtained the following records (Z(t) is the Riemann-Siegel Z function):

• More than 5.5 million candidates where Z(t) > 1, 000.

• More than 100 candidates where Z(t) > 10, 000.

• The largest value of Z(t) calculated where t = 310678833629083965667540576593682.05.

Figure 3: The largest value of the Riemann-Siegel Z function calculated by the Riemann Zeta
Search Project.
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The same paper [111] written by Bober and Hiary tells us that for a real number t, we can apply
the Riemann-Siegel formula to write

Z(t) = 2Re

eiθ(t)
∑

n≤( t
2π )

1/2

1

n1/2+it

+O(t−1/4),

We then conclude that it is possible to compute ζ(1/2 + it) to sufficient accuracy in O(t1/2) time
which is faster than the Euler–Maclaurin Summation formula .

Project 3. Calculating nontrivial zeros through the Odlyzko–Schönhage algorithm.

An extremely ambitious project would be to apply the Odlyzko–Schönhage algorithm. The Odlyzko
–Schönhage algorithm was created to admit efficient evaluations of the Riemann-Siegel Z(t) func-
tion in a range of the form T ≤ t ≤ T + ∆, where ∆ = O(

√
T ). For t in this range, we write

Z(t) =

k0−1∑
n=1

cos(θ(t)− t log n)√
n

+ Re(e−iθ(t)F (t)) +

m∑
n=k1+1

cos(θ(t)− t log n)√
n

+R(t).

In the above expression, R(t) is a remainder term and F (t) is a complex function defined by

F (t) = F (k0 − 1, k1; t) :=

k1∑
k=k0

1√
k
eit log k,

with k1 =
⌊√

T/2π
⌋

and k0 a fixed, small integer. In practice, given an interval [T, T + ∆] and

t in this range, the values of k0 and k1 are fixed in the computation of Z(t). We choose k0 to be
small compared to the value of T 1/2. The most time consuming part of the evaluation of Z(t) is
the computation of F (k0 − 1, k1; t). To this end, Odlyzko and Schönhage developed a technique
dedicated to a fast evaluation of this sum.

To obtain fast evaluations of F (t) = F (k0−1, k1; t) in the range [T, T+∆], the Odlyzko–Schönhage
algorithm is divided into two steps:

1. Multiple evaluations of F (t) are handled on a well chosen regular grid of abscissa for t.

2. From these values, an interpolation formula obtains efficiently any value of F (t) at a certain
accuracy provided that t stays in our range.

In particular, Odlyzko handles multi-evaluations of F (t) and multi-evaluations of derivatives of
F (t) on the regular grid. His implementation uses an interpolation formula (based on Chebyshev
polynomials) for multi-evaluations of F (t).

An existing implementation of the Odlyzko–Schönhage algorithm is included in the source code
on Jonathan Bober’s website. However, this is difficult to follow. Using a preconditioner of time
O(T 1/2+ε), the Odlyzko–Schönhage algorithm can evaluate a single value of ζ(1/2 + it) for any
T < t < T + T 1/2 to within ±t−c in O(tε) operations on numbers of O(log t) bits for any ε > 0.
Therefore, it is the fastest and most competitive out of the three techniques. Writing (and docu-
menting) a full implementation of the Odlyzko–Schönhage algorithm would be extremely valuable
to practioners in the mathematical sciences and engineering. It would be a good idea to implement
this algorithm in C/C++ or Fortran.
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Project 4. Parallelizing the code for projects (1)-(2).

A computer science student (or someone interested in high performance computing) could write a
parallel implementation of the Euler-Maclaurin Summation formula or the Riemann–Siegel formula
described above. They would need access to supercomputing resources (through the university or
a national lab). This would be a good project for an engineering student who is interested in
learning more about number theory.

Project 5. Investigating Montgomery’s pair correlation conjecture and the distribu-
tion of spaces between zeros.

As people became more interested in finding zeros of the Riemann zeta function, they started to
use statistical tools to find relationships between zeros. In 1973, Hugh Montgomery and Freeman
Dyson discovered that there is an interesting relationship between the spaces of consecutive zeros
of the Riemann zeta function and the spaces of eigenvalues generated from a random matrix. This
is known as Montgomery’s pair correlation conjecture [67, 125]. The conjecture states that the pair
correlation between pairs of zeros of the Riemann zeta function (normalized to have unit average
spacing) is

1−
(

sin(πu)

(πu)

)
+ δ(u).

Here δ(u) represents the normalized spacing between zeros. In the 1980s, Andrew Odlyzko started
investigating statistical properties of the zeros of ζ(s). He used the Cray X-MP supercomputer to
analyze the distribution of the spacings between non-trivial zeros. Part of this work was motivated
by the fact that Odlyzko was interested in creating a faster and more powerful algorithm than the
Riemann-Siegel formula (which was why the Odlyzko-Schönhage algorithm was created). Odlyzko
found that distribution of zeros agrees with the distribution of spacings of GUE random matrix
eigenvalues in random matrix theory.

Writing a nontrivial zero as ρ = 1
2 + iγn, Odlyzko let the normalized spacings be

δn =
γn−1 − γn

2π
log
(γn

2π

)
.

Given that the Odlyzko-Schönhage algorithm can compute ζ(1/2 + it) in an average time of tε

steps, Odlyzko was able to compute millions of zeros around heights of 1020. This provided evi-
dence supporting the relationship between the distribution of zeros of the Riemann zeta function
and the distribution of spacings of GUE random matrix eigenvalues. In particular, Odlyzko noticed
that as more zeros are sampled, the more closely their distribution approximates the shape of the
GUE random matrix. A visualization of this is included in Figure 4 on the next page.

A student interested in statistics and computer programming could review the numerics done
by Odlyzko [16] and write their own code. On the other hand, a student more inclined towards
pure mathematics can study the distribution of spaces between zeros [94, 81] and the relationship
between the Riemann zeta function and prime numbers.

Remark: All of these student projects are centered around numerical aspects of the Riemann
zeta function. It would be interesting to implement an application of the theory developed by
the finite difference or finite element methods. I spent a summer working at the Cold Regions
Research and Engineering Laboratory (CRREL) where I was introduced to the Elmer FEM mul-
tiphysical software [101]. The open source software supports many physical models including the
Heat equation, Navier-Stokes equations, Helmholtz equation, and many more. A student inter-
ested in mechanical engineering or application based mathematics could spend a semester or an
entire year working on a physical model in Elmer.
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Pair Correlation Function

Figure 4: The real line describes the two-point correlation function of the random matrix of type
GUE. Blue dots describe the normalized spacings of the non trivial zeros of Riemann zeta function,
for the first 105 zeros.

Future Work

Through my current research interests are somewhat narrow, I hope to get involved in more projects
and learn more about modern applications of PDE theory. I would like to improve my skills in
high performance computing and implement more ambitious projects in parallel computing. I
would also like to communicate more with other mathematicians as I tend to do most of my work
alone. In the next several years, I hope to continue collaboration with undergraduates, graduate
students, faculty, and professionals at national labs. I am interested in the numerics of the water
wave problem and will investigate computer implementations of the shallow-water equations, the
numerics of turbulent flows, and many others.
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