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1.1.1 Show that if z = u(x, y) is an integral surface of V = 〈a, b, c〉 containing
a point P , then the surface contains the characteristic curve χ passing through
P . (Assume the vector field V is C1.)

Let χ = (x(t), y(t), z(t)) be a characteristic curve through P = (x0, y0, z0). It

must therefore satisfy
d

dt

x(t)
y(t)
z(t)

 =

ab
c

 and

x(t0)
y(t0)
z(t0)

 =

x0

y0

z0

 and thus the

characteristic curve χ is unique.

Define φ(t) = z(t)− u(x(t), y(t)). Then, we know from the chain rule that

d

dt
φ(t) =

dz

dt
− ux

dx

dt
− uy

dy

dt
= c− aux − buy = 0

Therefore, φ(t) = c ∈ R for some constant c.

At t = t0, we have that φ(t0) = z(t0)− u(x(t0), y(t0)) = z0 − u(x0, y0) = 0. So,
as φ(t) is a constant function and φ(t0) = 0, we see that φ(t) ≡ 0. This means
that the integral surface contains the characteristic curve χ. Thus, for any
arbitrary point on χ, we have that z(t) = u(x(t), y(t)).

1.1.2 If S1 and S2 are two integral surface of V = 〈a, b, c〉 and intersect in a
curve χ, show that χ is a characteristic curve.

For a point P ∈ S1 ∩ S2, we know from Exercise 1 that the surface S1 contains
the characteristic curve Γ1 passing through P . Analogously, the surface S2

contains the characteristic curve Γ2 passing through P where Γ1 ∩ Γ2 = P . As
a, b, c ∈ C1, we know that the characteristic equations have a unique solution.
So, the characteristic curve passing through P is unique. Therefore,
Γ1 = Γ2 ∈ S1 ∩ S2 is the characteristic curve.
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1.1.4 Solve the given initial value problem and determine the values of x and
y for which it exists:
(a) xux + uy = y, u(x, 0) = x2

The initial data curve is Γ : 〈s, 0, s2〉. Therefore, the Jacobian evaluated with
the boundary data is

J

∣∣∣∣∣
Γ

=

∣∣∣∣xs xt
ys yt

∣∣∣∣
∣∣∣∣∣
Γ

=

∣∣∣∣1 s
0 1

∣∣∣∣ = 1 6= 0

Hence, there is a unique solution in the neighborhood of Γ. The characteristic
equations are



dx

dt
= x, x(s, 0) = s

dy

dt
= 1, y(s, 0) = 0

dz

dt
= y, z(s, 0) = s2

For the first equation,

dx

dt
= x ⇒ 1

x
dx = dt ⇒ ln |x| = t+ c1(s)

Plugging in the initial condition of x(s, 0) = s ⇒ c1(s) = ln |s|. Hence,

ln |x| = t+ ln |s| ⇒ x = set

For the second equation,

dy

dt
= 1 ⇒ dy = dt ⇒ y = t+ c2(s)

Plugging in the initial condition of y(s, 0) = 0 ⇒ c2(s) = 0. Hence,

y = t
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For the last equation,

dz

dt
= y ⇒ dz = tdt ⇒ z =

t2

2
+ c3(s)

Plugging in the initial condition of z(s, 0) = s2 ⇒ c3(s) = s2. Hence,

z =
t2

2
+ s2

Combining all three equations together, we see that

x = set ⇒ s = xe−t

y = t

z =
t2

2
+ s2

So, the solution is

z = u(x, y) =
t2

2
+ s2 =

y2

2
+ x2e−2y

To see if the solution exists for all (x, y) ∈ R2, we can evaluate the Jacobian
for our parameterized equations. We find that the solution exists for all
(x, y) ∈ R2.

J =

∣∣∣∣xs xt
ys yt

∣∣∣∣ =

∣∣∣∣et set

0 1

∣∣∣∣ = et 6= 0

(b) ux − 2uy = u, u(0, y) = y

The initial data curve is Γ : 〈0, s, s〉. Therefore, the Jacobian evaluated with
the boundary data is

J

∣∣∣∣∣
Γ

=

∣∣∣∣xs xt
ys yt

∣∣∣∣
∣∣∣∣∣
Γ

=

∣∣∣∣0 1
1 −2

∣∣∣∣ = −1 6= 0

3



Hence, there is a unique solution in the neighborhood of Γ. The characteristic
equations are



dx

dt
= 1, x(s, 0) = 0

dy

dt
= −2, y(s, 0) = s

dz

dt
= z, z(s, 0) = s

For the first equation,

dx

dt
= 1 ⇒ dx = dt ⇒ x = t+ c1(s)

Plugging in the initial condition of x(s, 0) = 0 ⇒ c1(s) = 0. Hence,

x = t

For the second equation,

dy

dt
= −2 ⇒ dy = −2dt ⇒ y = −2t+ c2(s)

Plugging in the initial condition of y(s, 0) = s ⇒ c2(s) = s. Hence,

y = −2t+ s

For the last equation,

dz

dt
= z ⇒ 1

z
dz = dt ⇒ ln |z| = t+ c3(s)

Plugging in the initial condition of z(s, 0) = s ⇒ c3(s) = ln |s|. Hence,

ln |z| = t+ ln |s| ⇒ z = set
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Combining all three equations together, we see that

x = t

y = −2t+ s ⇒ s = 2x+ y

z = set

So, the solution is

z = u(x, y) = set = (2x+ y)ex

To see if the solution exists for all (x, y) ∈ R2, we can evaluate the Jacobian
for our parameterized equations. We find that the solution exists for all
(x, y) ∈ R2.

J =

∣∣∣∣xs xt
ys yt

∣∣∣∣ =

∣∣∣∣0 1
1 −2

∣∣∣∣ = −1 6= 0

1.1.5 Solve the given initial value problem and determine the values of x, y,
and z for which it exists:
(a) xux + yuy + uz = u, u(x, y, 0) = h(x, y)

The initial data curve is Γ : 〈s1, s2, 0, h(s1, s2)〉. Therefore, the Jacobian
evaluated with the boundary data is

J

∣∣∣∣∣
Γ

=

∣∣∣∣∣∣
xs1 xs2 xt
ys1 ys2 yt
zs1 zs2 zt

∣∣∣∣∣∣
∣∣∣∣∣
Γ

=

∣∣∣∣∣∣
1 0 s1

0 1 s2

0 0 1

∣∣∣∣∣∣ 6= 0

Hence, there is a unique solution in the neighborhood of Γ. The characteristic
equations are



dx

dt
= x, x(s1, s2, 0) = s1

dy

dt
= y, y(s1, s2, 0) = s2

dz

dt
= 1, z(s1, s2, 0) = 0

dw

dt
= w, w(s1, s2, 0) = h(s1, s2)

5



For the first equation,

dx

dt
= x ⇒ 1

x
dx = dt ⇒ ln |x| = t+ c1(s1, s2)

Plugging in the initial condition of x(s1, s2, 0) = s1 ⇒ c1(s1, s2) = ln |s1|.
Hence,

ln |x| = t+ ln |s1| ⇒ x = s1e
t

For the second equation,

dy

dt
= y ⇒ 1

y
dy = dt ⇒ ln |y| = t+ c2(s1, s2)

Plugging in the initial condition of y(s1, s2, 0) = s2 ⇒ c2(s1, s2) = ln |s2|.
Hence,

ln |y| = t+ ln |s2| ⇒ y = s2e
t

For the third equation,

dz

dt
= 1 ⇒ dz = dt ⇒ z = t+ c3(s1, s2)

Plugging in the initial condition of z(s1, s2, 0) = 0 ⇒ c3(s1, s2) = 0. Hence,

z = t

For the last equation,

dw

dt
= w ⇒ 1

w
dw = dt ⇒ ln |w| = t+ c4(s1, s2)

Plugging in the initial condition of w(s1, s2, 0) = h(s1, s2) ⇒ c4(s1, s2)
= ln |h(s1, s2)|. Hence,
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ln |w| = t+ ln |h(s1, s2)| ⇒ w = h(s1, s2)et

Combining all four equations together, we see that

x = s1e
t ⇒ s1 = xe−t = xe−z

y = s2e
t ⇒ s2 = ye−t = ye−z

z = t

w = h(s1, s2)et

So, the solution is

w = u(x, y, z) = h(s1, s2)et = h(xe−z, ye−z)ez

To see if the solution exists for all (x, y, z) ∈ R3, we can evaluate the Jacobian
for our parameterized equations. We find that the solution exists for all
(x, y, z) ∈ R3.

J =

∣∣∣∣∣∣
xs1 xs2 xt
ys1 ys2 yt
zs1 zs2 zt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
et 0 s1

0 et s2

0 0 1

∣∣∣∣∣∣ 6= 0

1.1.6 Solve the initial value problem and determine the values of x and y for
which it exists:
(b) ux +

√
u uy = 0, u(x, 0) = x2 + 1

The initial data curve is Γ : 〈s, 0, s2 + 1〉. Therefore, the Jacobian evaluated
with the boundary data is

J

∣∣∣∣∣
Γ

=

∣∣∣∣xs xt
ys yt

∣∣∣∣
∣∣∣∣∣
Γ

=

∣∣∣∣1 1

0
√
s2 + 1

∣∣∣∣ =
√
s2 + 1 6= 0

Hence, there is a unique solution in the neighborhood of Γ. The characteristic
equations are
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

dx

dt
= 1, x(s, 0) = s

dy

dt
=
√
z, y(s, 0) = 0

dz

dt
= 0, z(s, 0) = s2 + 1

For the first equation,

dx

dt
= 1 ⇒ dx = dt ⇒ x = t+ c1(s)

Plugging in the initial condition of x(s, 0) = s ⇒ c1(s) = s. Hence,

x = t+ s

For the third equation,

dz

dt
= 0 ⇒ z = c2(s)

Plugging in the initial condition of z(s, 0) = s2 + 1 ⇒ c2(s) = s2 + 1. Hence,

z = s2 + 1

For the last equation,

dy

dt
=
√
z ⇒ dy =

√
z dt ⇒ y =

√
s2 + 1 t+ c3(s)

Plugging in the initial condition of y(s, 0) = 0 ⇒ c3(s) = 0. Hence,

y =
√
s2 + 1 t

Combining all three equations together, we see that
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x = t+ s ⇒ s = x− t
y =

√
s2 + 1 t ⇒ t =

y√
s2 + 1

=
y√
z

z = s2 + 1

So, the solution is

z = u(x, y) = s2 + 1 = (x− t)2 + 1 =

(
x− y√

u

)
+ 1

To see if the solution exists for all (x, y) ∈ R2, we can evaluate the Jacobian
for our parameterized equations.

J =

∣∣∣∣xs xt
ys yt

∣∣∣∣ =

∣∣∣∣ 1 1
st√
s2+1

√
s2 + 1

∣∣∣∣ =
√
s2 + 1− st√

s2 + 1

So, the solution doesn’t exist for all (x, y) ∈ R2 since the Jacobian can
evaluate to zero. We need to enforce that J 6= 0. Thus,

√
s2 + 1− st√

s2 + 1
= 0 ⇒

√
s2 + 1 =

st√
s2 + 1

⇒ s2 + 1

s
= t

Hence, J = 0 ⇐⇒ t = (s2 + 1)/s = s+ 1/s. The solution doesn’t exist when
this condition is satisfied. Looking back at our parametrized equations

x = t+ s

y =
√
s2 + 1 t

We have that the solution doesn’t exist when

x = 2s+
1

s

y =
√
s2 + 1

(
s+

1

s

)

1.1.7 Find a general solution:
(a) (x+ u)ux + (y + u)uy = 0
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Following what is done by the method of Lagrange, we need to find a function
φ(x, y, z) such that φ(x, y, z) = const is an integral surface of V = 〈a, b, c〉.
This means that φ is constant along the characteristics and satisfies

aφx + bφy + cφz = 0

Let's do this by analyzing the characteristic equations

dx

x+ z
,

dy

y + z
,
dz

0

The last equation tells us that z is constant along the characteristics.
Therefore, let

φ(x, y, z) = z = c1

where one can verify that this satisfies aφx + bφy + cφz = 0. We now need to
find another function ψ(x, y, z) such that ψ is independent of φ. So, we once
again review our characteristic equations and rewrite them as

dx

x+ c1
=

dy

y + c1
=
dz

0

Then,

dx

x+ c1
=

dy

y + c1
⇒ ln |x+ c1| = ln |y + c1|+ c2

⇒ ln |x+ c1| = ln |y + c1|+ ln |c2|
⇒ ln |x+ c1| = ln |c2(y + c1)|
⇒ x+ c1 = c2(y + c1)

⇒ x+ c1
y + c1

= c2

where we see that aψx + bψy + cψz = 0. Therefore, we have found a second
function ψ, independent of φ, such that ψ(x, y, z) = const. This function is

ψ(x, y, z) =
x+ c1
y + c1

=
x+ z

y + z
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We have now satisfied F (φ, ψ) = 0 for an arbitrary F ∈ C1(R2). So, using the
implicit function theorem, we can set φ = f(ψ) for an arbitrary function f
where f ∈ C1(R). Then, we can find the general solution as

z = φ = f(ψ) = f

(
x+ z

y + z

)
= f

(
x+ u

y + u

)

1.1.8 Consider the equation ux + uy =
√
u. Derive the general solution

u(x, y) = (x+ f(x− y))2/4. Observe that the trivial solution u(x, y) ≡ 0 is not
covered by the general solution.

We first write the characteristic equations as

dx

1
=
dy

1
=

dz√
z

Then, solving the first equality,

dx = dy ⇒ x = y + c1 ⇒ x− y = c1

So, we have found a function φ(x, y, z) such that φ(x, y, z) = x− y = const.
and can verify that this satisfies aφx + bφy + cφz = 0. We now need to find
some ψ(x, y, z) = const which is independent of φ. By the first and last
equations,

dx =
dz√
z
⇒ dx = z−

1
2 dz ⇒ x+ c2 = 2

√
z ⇒ c2 = 2

√
z − x

Therefore our second function is ψ(x, y, z) = 2
√
z − x = const. We have that

aψx + bψy + cψz = 0. Hence, we have satisfied F (φ, ψ) = 0 for an arbitrary
F ∈ C1(R2). So, we can let ψ = f(φ) where f ∈ C1(R) in an arbitrary
function. Then,

2
√
z − x = f(x− y) ⇒ 2

√
z = x+ f(x− y)

⇒
√
z =

x+ f(x− y)

2

⇒ z = u(x, y) =
(x+ f(x− y))2

4
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To see that u(x, y) ≡ 0 isn't covered by the general solution, we can observe
that for some arbitrary f , where u(x, y) is defined as

u(x, y) =
(x+ f(x− y))2

4

isn't equal to 0 as f is arbitrary. We are not free to choose f so that
u(x, y) ≡ 0. Therefore, the trivial solution u(x, y) ≡ 0 isn't covered by the
general solution.

2.1.1 Consider the initial value problem uzz = u2ux + (uxy)2 ,u(x, y, 0) = x− y
, uz(x, y, 0) = sinx. Find the values of uxz , uyz , uzz , when z = 0.

We have that u(x, y, 0) = x− y, therefore ux(x, y, 0) = 1 and uy(x, y, 0) = −1.
If we take another derivative with respect to x, we see that uxy(x, y, 0) = 0.

We also have that uz(x, y, 0) = sinx. So, uzx(x, y, 0) = uxz(x, y, 0) = cosx and
uzy(x, y, 0) = uyz(x, y, 0) = 0.

Therefore, by the definition of uzz,

uzz(x, y, 0) = u(x, y, 0)
2
ux(x, y, 0)+(uxy(x, y, 0))2 = (x−y)2×1+0 = (x−y)2.

2.1.2 Is the heat equation ut = kuxx in normal form for Cauchy data on the
x-axis? On the t-axis? What form would be Cauchy data (3) take?

The heat equation ut = kuxx can be written as uxx = 1
kut. It is second order

and we can define the initial surface S as

S = {(t, x) ∈ R2 : x = 0}

which is in normal form for Cauchy data on the t-axis (where x = 0). It is not
in normal form for Cauchy data on the x-axis. The Cauchy data (3) form
(when x = 0)

{
u(t, 0) = g1

ux(t, 0) = g2

2.1.3 Find a solution to the initial value problem uyy = uxx + u, u(x, 0) = ex,
uy(x, 0) = 0 in the form of a power series expansion with respect to y [i.e.,∑∞

0 an(x)yn]. (Note: This is not a Taylor series.)
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Let u(x, y) =
∑∞
n=0 an(x)yn. Then, uxx(x, y) =

∑∞
n=0 a

′′
n(x)yn and

uyy(x, y) =
∑∞
n=0(n)(n− 1)an(x)y(n−2). As uyy = uxx + u, we have that

∞∑
n=0

(n)(n− 1)an(x)y(n−2) =

∞∑
n=0

a′′n(x)yn +

∞∑
n=0

an(x)yn

Therefore, we can rewrite the left side of the equation as

∞∑
n=0

(n+ 2)(n+ 1)an+2(x)y(n) =

∞∑
n=0

a′′n(x)yn +

∞∑
n=0

an(x)yn

and move all terms on the left hand side to form

∞∑
n=0

(
(n+ 2)(n+ 1)an+2(x)− a′′n(x) + an(x)

)
yn = 0

where

(
(n+ 2)(n+ 1)an+2 − a′′n(x) + an(x)

)
= 0

Therefore,

an+2(x) =
a′′n(x) + an(x)

(n+ 2)(n+ 1)

If we apply our initial conditions, u(x, 0) = ex and uy(x, 0) = 0, we see that

u(x, 0) =

∞∑
n=0

an(x)yn = a0(x)+a1(x)y+a2(x)y2 +a3(x)y3 +a4(x)y4 + · · · = ex

Therefore, a0(x) = ex. Similarly,

a1(x) + 2a2(x)y + 3a3(x)y2 + 4a4(x)y3 + · · · = 0
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Hence, a1(x) = 0. To find higher coefficients, we review

an+2(x) =
a′′n(x) + an(x)

(n+ 2)(n+ 1)
where n = 0. Then,

a2(x) =
a′′0(x) + a0(x)

(2)(1)
=

2ex

2!

So, for n = 1, 2, 3, 4, 5, . . . we have

a3(x) =
a′′1(x) + a1(x)

(3)(2)
=

0

(3)(2)
= 0

a4(x) =
a′′2(x) + a2(x)

(4)(3)
=

2ex

(4)(3)
=

22ex

4!

a5(x) =
a′′3(x) + a3(x)

(5)(4)
=

0

(5)(4)
= 0

a6(x) =
a′′4(x) + a4(x)

(6)(5)
=

ex/3

(6)(5)
=

23ex

6!

a7(x) =
a′′5(x) + a5(x)

(7)(6)
=

0

(7)(6)
= 0

...an(x) =
1

(n)!
2
n
2 ex,n is even

an(x) = 0,n is odd

Hence,

u(x, y) =

∞∑
n=0

an(x)yn

= a0 + a1y + a2y
2 + a3y

3 + a4y
4 + a5y

5 + a6y
6 + a7y

7 + . . .

= ex +
2ex

2!
y2 +

22ex

4!
y4 +

23ex

6!
y6 + . . .

=

∞∑
k=0

1

(2k)!
2kexy2k

2.1.4 Find the Taylor series solution about x, y = 0 of the initial value
problem uy = sinux, u(x, 0) = πx

4 .
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From (4), we have that

u(x, y) ∼
∞∑

j,k=0

∂jy∂
k
xu(0, 0)

j!k!
yjxk

We are given that u(x, 0) = πx
4 . Therefore,

u(0, 0) = 0

ux(x, 0) =
π

4

uxx(x, 0) = 0

∂u(k)(x, 0)

∂xk
= 0 ∀ k ≥ 2

We also have that uy = sinux. Thus, by the chain rule,

uy(x, 0) = sinux(x, 0) = sin(
π

4
) =

√
2

2

uyx(x, 0) = (sinux(x, 0))x = cosux(x, 0)uxx(x, 0) = 0

uxy(x, 0) = (sinux(x, 0))x = cosux(x, 0)uxx(x, 0) = 0

∂u(k+j)(x, 0)

∂xj∂yk
= 0 ∀ (j + k) ≥ 2

Therefore, letting x→ 0 we see from (4) that

u(x, y) =
π

4
x+

√
2

2
y =

π

4
x+

1√
2
y.

2.1.5 Consider the initial value problem ut = uxx, u(x, 0) = g(x), where
g(x) = anxn + · · ·+ a0 is a polynomial. Find a Talor series solution about
(0, 0). Where does it converge?

As ut = uxx, we have that

utt = (uxx)t = (uxx)xx = uxxxx

uttt = (uxxxx)t = (uxxxx)xx = uxxxxxx

15



utttt = (uxxxxxx)t = (uxxxxxx)xx = uxxxxxxxx

...

Therefore,

∂jt ∂
k
xu(x, 0) = ∂jxx∂

k
xu(x, 0) = g2j+k(x)

By (4), we define the power series of u by

u(x, t) =

∞∑
j,k=0

∂jt ∂
k
xu(0, 0)

j!k!
tjxk

=

∞∑
j,k=0

g2j+k(x)

j!k!
tjxk

=

2j+k=n∑
j,k=0

(2j + k)!

j!k!
a2j+kt

jxk

where the last equality follows from a2j+k =
g2j+k(x)

(2j + k)!
. So, the Taylor series

solution about (0, 0) is

u(x, t) =

2j+k=n∑
j,k=0

(2j + k)!

j!k!
a2j+kt

jxk

As the above representation is a polynomial, it is clear that the solution
converges everywhere.

2.1.6 Consider the same initial problem as in the preceeding exercise, but with
g(x) = (1− ix)−1, which is real analytic for −∞ < x <∞. Derive the formal
Taylor series solution u(x, t), but show that it fails to converge for any x,t with
t 6= 0. Why does this not violate the Cauchy-Kovalevski theorem?

As before, ut = uxx, and we have that

utt = (uxx)t = (uxx)xx = uxxxx

uttt = (uxxxx)t = (uxxxx)xx = uxxxxxx
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...

Therefore,

∂jt ∂
k
xu(x, 0) = ∂jxx∂

k
xu(x, 0) = g2j+k(x)

By (4), we define the power series of u by

u(x, t) =

∞∑
j,k=0

∂jt ∂
k
xu(0, 0)

j!k!
tjxk

=

∞∑
j,k=0

g2j+k(x)

j!k!
tjxk

∼
∞∑

j,k=0

(j + 2k)!

j!k!
(ix)j(−t)k

So, the Taylor series solution is

u(x, t) ∼
∞∑

j,k=0

(j + 2k)!

j!k!
(ix)j(−t)k

If t 6= 0, then we notice that the coefficients of u(x, t) depend on (ix)j which
depends on i. Therefore, there isn’t a unique real analytic solution of u(x, t)
defined in the proper neighborhood. So, we cannot apply the
Cauchy-Kovalevski theorem as there isn’t a unique real analytic solution of u.
Hence, the Cauchy-Kovalevski theorem isn’t violated.

2.1.7 Consider the Cauchy problem for Laplace's equation uxx + uyy = 0,
u(x, 0) = 0, uy(x, 0) = k−1 sin kx, where k > 0. Use seperation of variables to
find the solution explicitly. If we let k →∞, notice that the Cauchy data
tends uniformly to zero, but the solution does not converge to zero for any
y 6= 0. Therefore, a small change from zero Cauchy data [which has the
solution u(x, y) ≡ 0] induces more than a small change in the solution; this
means that the Cauchy problem for the Laplace equation is not well posed.

Assume u(x, y) = X(x)Y (y), then uxx = X ′′(x)Y (y) and uyy = X(x)Y ′′(y), so
substitution in the PDE produces uxx + uyy = X ′′(x)Y (y) +X(x)Y ′′(y) = 0.
We can therefore algebraically separate the variables x and y and set them
equal to a constant −λ2,
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X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= −λ2

Then gives us two equations to solve,

X ′′(x)

X(x)
= −λ2

Y ′′(y)

Y (y)
= λ2

For the first equation,

X ′′(x)

X(x)
= −λ2 ⇒ X ′′(x) + λ2X(x) = 0

Using the characteristic equation of the form X(x) = erx, one finds that

r2 + λ2 = 0

with the roots of r = ±λi. Therefore,

X(x) = c1 cos (λx) + c2 sin (λx)

Next, for the second equation,

Y ′′(y)

Y (y)
= λ2 ⇒ Y ′′(y)− λ2Y (y) = 0

Using the characteristic equation of the form Y (y) = ery, one finds that

r2 − λ2 = 0

with the roots of r = ±λ. Therefore,

Y (y) = c3e
λy + c4e

−λy
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Our initial data states that u(x, 0) = 0. This means that

u(x, 0) = X(x)Y (0) = (c1 cos (λx) + c2 sin (λx))(c3 + c4) = 0

and if we expand and reduce terms we find that c3 = −c4. Our next initial
condition is uy(x, 0) = k−1 sin kx. Therefore,

uy(x, 0) = X(x)Y ′(0) = (c1 cos (λx) + c2 sin (λx))(c3λ− c4λ) = k−1 sin kx

and as c3 = −c4 we have that

uy(x, 0) = (c1 cos (λx) + c2 sin (λx))(−2c4λ) = k−1 sin kx

If we expand and equate terms, we find that

c1 = 0

k = λ

c2c3λ =
1

k
⇒ c2c3 =

1

2
k−2

Hence,

u(x,y) = X(x)Y (y)

= (c1 cos (λx) + c2 sin (λx))(c3e
λy + c4e

−λy)

= (c2 sin (kx))(c3e
ky − c3e−ky)

= c2c3 sin (kx)(eky − e−ky)

=
1

2
k−2 sin (kx)(eky − e−ky)

= k−2 sin(kx) sinh(ky)

where the last equality follows from sinh(ky) =
eky − e−ky

2
.

Next, let k →∞. Then it is clear that the Cauchy data tends uniformly to
zero as
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u(x, 0) = 0

lim
k→∞

uy(x, 0) = lim
k→∞

k−1 sin kx = 0

But, as k →∞, the solution does not converge to zero for any y 6= 0. We
found that

u(x, y) = k−2 sin(kx) sinh(ky)

It is clear that as k →∞, sin (kx) is bounded. However, we have that as
k →∞

sinh(ky)→ 1

2
eky when y > 0

sinh(ky)→ −1

2
e−ky when y < 0

as eky dominates when y > 0 and e−ky dominates when y < 0. Then, as the
exponential grows faster than a power,

lim
k→∞

eky

k2
=∞ when y > 0

lim
k→∞

−e
−ky

k2
= −∞ when y < 0

So, the Cauchy data tends uniformly to zero while the solution does not
converge to zero for any y 6= 0. Hence, a small change from zero Cauchy data
[which has the solution u(x, y) ≡ 0] induces more than a small change in the
solution; this means that the Cauchy problem for the Laplace equation is not
well posed.

2.2.1.b Reduce to canonical form:

x2uxx − y2uyy = 0

Here, b2 − 4ac = 0− 4(x2)(−y2) = 4x2y2 > 0, so we have the hyperbolic case.
Then,
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dy

dx
=

0±
√

4x2y2

2x2
= ±y

x

So, the characteristic curves are

dy

dx
=
y

x
⇒ ln |y|+ ln |c1| = ln |x| ⇒ c1 =

x

y

dy

dx
= −y

x
⇒ ln |y| = − ln |x|+ ln |c2| ⇒ c2 = xy

Let µ = xy−1 and η = xy. Then, µx = y−1, µy = −xy−2, ηx = y, and ηy = x.
Thus,

ux = uµµx + uηηx = y−1uµ + yuη

uy = uµµy + uηηy = −xy−2uµ + xuη

uxx = y−1(uµµµx + uµηηx) + y(uµηµx + uηηηx) = y−2uµµ + 2uµη + y2uηη

uyy = 2xy−3uµ−xy−2(uµµµy+uµηηy)+x(uµηµy+uηηηy) = x2y−4uµµ−2x2y−2uµη+2xy−3uµ+x2uηη

If we substitute these values back into the PDE, x2uxx − y2uyy = 0, we form

x2uxx − y2uyy = (x2y−2uµµ + 2x2uµη + x2y2uηη) + (−x2y2uµµ + 2x2uµη − 2xy−1uµ − x2y2uηη)

= 4x2uµη − 2xy−1uµ

= 0

Therefore,

4x2uµη = 2xy−1uµ ⇒ uµη =
1

2xy
uµ =

1

2η
uµ

So, uµη =
1

2η
uµ is the canonical form where µ = xy−1 and η = xy.

2.2.2.a Find the general solution:

uxx − 2uxy sinx− uyy cos2 x− uy cosx = 0

We have that a = 1, b = −2 sin(x), and c = − cos2(x). Thus,
b2 − 4ac = 4 sin2(x) + 4 cos2(x) = 4 > 0 and the equation is hyperbolic. Then,
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dy

dx
=
−2 sin(x)±

√
4

2
= − sin(x)± 1

So, the characteristic curves are

dy

dx
= − sin(x) + 1 ⇒ y = cos(x) + x+ c1 ⇒ c1 = y − x− cos(x)

dy

dx
= − sin(x)− 1 ⇒ y = cos(x)− x+ c2 ⇒ c2 = y + x− cos(x)

Let µ = y − x− cos(x) and η = y + x− cos(x). Then, µx = sin(x)− 1, µy = 1,
ηx = sin(x) + 1, and ηy = 1. Thus,

ux = uµµx + uηηx = (sin(x)− 1)uµ + (sin(x) + 1)uη

uy = uµµy + uηηy = uµ + uη

uxx = (sin(x)− 1)(uµµµx + uµηηx) + (sin(x) + 1)(uµηµx + uηηηx)

= (sin(x)− 1)2uµµ + 2 cos2(x)uµη + (sin(x) + 1)2uηη + cos(x)uµ + cos(x)uη

uyy = (uµµµy + uµηηy) + (uµηµy + uηηηy) = uµµ + 2uµη + uηη

uxy = (sin(x)− 1)(uµµµy + uµηηy) + (sin(x) + 1)(uµηµy + uηηηy)

= (sin(x)− 1)uµµ + 2 sin(x)uµη + (sin(x) + 1)uηη

If we insert these terms back into

uxx − 2uxy sinx− uyy cos2 x− uy cosx = 0

then a large amount of terms cancel and we end up with

uµη = 0

Then, if we integrate twice we find that

u = f(µ) + g(η)

Substituting µ = y − x− cos(x) and η = y + x− cos(x) we have that the
general solution is
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u(x, y) = f(y − x− cos(x)) + g(y + x− cos(x))

2.2.3 Show that the function

u(x, y) =

{
0 if x ≤ y
(x− y)2 if x > y

satisfies uxx − uyy = 0 for all x, y. Is u ∈ C1(R2)? Where does u fail to be C2?

If x ≤ y, then u(x,y) = 0 and it is clear that uxx − uyy = 0 for all x ≤ y.

On the other hand, if x > y then u(x, y) = (x− y)2. Thus,

ux(x, y) = 2(x− y) = 2x− 2y

uy(x, y) = −2(x− y) = −2x+ 2y

uxx(x, y) = 2

uyy(x, y) = 2

Therefore, uxx−uyy = 2−2 = 0 for all x > y. Hence, uxx−uyy = 0 for all x, y.

We have that u ∈ C1(R2) as the first derivatives are continuous for x and y.
We can also make ux(x, y) = 0 and uy(x, y) = 0 when x > y so that we don’t
have a jump discontinuity between x ≤ y and x > y.

This same strategy doesn’t work for the second derivatives of u. When x ≤ y,
we have that uxx(x, y) = 0 and uyy(x, y) = 0. But, if x > y, then uxx(x, y) = 2
and uyy(x, y) = 2. So, we must have some point of discontinuity when the
derivative changes from 0 to 2.

2.2.4 Show that the minimal surface equation
(1 + u2

y)uxx − 2uxuyuxy + (1 + u2
x)uyy = 0 is everywhere elliptic.

Here, a = (1 + u2
y), b = −2uxuy, and c = (1 + u2

x). Thus,

b2 − 4ac = 4u2
xu

2
y − 4(1 + u2

y)(1 + u2
x)

= 4u2
xu

2
y − 4− 4u2

x − 4u2
y − 4u2

xu
2
y

= −4u2
x − 4u2

y − 4

= −4(u2
x + u2

y + 1)
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Therefore, b2 − 4ac = −4(u2
x + u2

y + 1) < 0 for every ux and uy. Hence, the
minimal surface equation is elliptic everywhere.

2.2.5 Show that the Monge-Ampère equation uxxuyy − u2
xy = f(x) is elliptic

for a solution u exactly when f(x) > 0. [In this case the graph of u(x, y) is
convex.]

As we have a quasilinear or fully nonlinear second order equation, we write
F (x, y, u, ux, uy, uxx, uxy, uyy) = 0. Thus,

a =
∂F

∂uxx
= uyy

b =
∂F

∂uxy
= −2uxy

c =
∂F

∂uyy
= uxx

Hence,

b2 − 4ac = 4u2
xy − 4uyyuxx

= 4(u2
xy − uxxuyy)

= 4(−f(x))

and if f(x) > 0, then it is clear that b2 − 4ac = −4f(x) < 0 is elliptic.

2.3.3 Consider the first-order equation ut + cux = 0.

(a) If f ∈ C(R), show that u(x, t) = f(x− ct) is a weak solution.

A weak solution must satisfy
∫
u(vt+cvx)dx = 0 for all v ∈ C1

0 (Ω). By changing
variables (x, t) to (ξ, η) where ξ = x− ct and η = x+ ct, we have that u(x, t) =
f(x− ct) = f(ξ). Also, vt = −cvξ + cvη and vx = vξ + vη, so we have vt + cvx =
2cvη. Hence,

∫
u(vt + cvx)dx = 2c

∫
Ω

f(ξ)vη(ξ, η)dξdη = 0 for all v ∈ C1
0 (R2)

Therefore, u(x, t) = f(x− ct) is a weak solution.
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(b) Can you find any discontinuous weak solutions?

Take f(µ) = f(x− ct) with discontinuous f(s) as

f(s) =

{
1, s < 0

0, s ≥ 0

Then, this discontinuous function is a weak solution.

(c) Is there a transmission condition for a weak solution with jump disconti-
nuity along the characteristic x = ct?

No. The transmission condition is given by

∫
[u+(0, η)− u−(0, η)]vη(0, η)dη = 0

So, there is not a weak solution with jump discontinuity along ξ = 0.

2.3.4 If f ∈ L1
loc(Ω), define 〈Ff , v〉 ≡

∫
Ω
f(x)v(x) dx. Show that Ff is a

distribution in Ω.

We know that Ff is linear. We need to show that Ff ∈ D′(Ω), the space of
distributions. In order to prove this, we need to show that if

νj → ν in C∞0 (Ω) as j →∞

then

〈Ff , vj〉 → 〈Ff , v〉 as j →∞

Let ε > 0. As νj → ν, there exists a compact set K ⊂ Ω such that the vj ’s and
v are all supported in K. Therefore, we can choose a ε′ > 0 small enough so that

ε′
∫
k

|f(x)| dx ≤ ε
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Then, as νj → ν, we also know that ∃N ∈ N such that

|νj(x)− ν(x)| ≤ ε′ for all j ≥ N and all x ∈ Ω

Therefore, we have that

∣∣∣∣〈Ff , vj〉 − 〈Ff , v〉∣∣∣∣ ≤ ∫
k

|f(x)||νj(x)− ν(x)| dx ≤ ε′
∫
k

|f(x)| dx ≤ ε

for all j ≥ N. Hence, 〈Ff , vj〉 → 〈Ff , v〉.

2.3.8 For all n ∈ N, define a function fn : R→ R by

fn(x) =


n

2
for − 1

n
< x <

1

n

0 for |x| ≥ 1

n

Show that fn(x) → δ(x) as distributions on R. That is, we need to show that
fn → δ in D′(R), the space of distributions, as n→∞.

Therefore, we need to show that for all ν ∈ C∞0 (R),

〈δ, v〉 = lim
n→∞

∫
R
fn(x)ν(x) dx = ν(0)

But, from the definition of fn, we see that

∫
R
fn(x)ν(x) dx =

n

2

∫ 1
n

− 1
n

ν(x) dx

The mean value theorem for integrals states that if g(x) is a continuous function
on [a, b], then there exists a point c ∈ [a, b] such that

∫ b

a

g(x)dx = g(c)(b− a)

Therefore, we see that there exists a xn ∈ [− 1
n ,

1
n ] such that
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∫ 1
n

− 1
n

ν(x) dx = ν(xn)
2

n

Hence, we have that

∫
R
fn(x)ν(x) dx =

n

2

∫ 1
n

− 1
n

ν(x) dx = ν(xn)

where ν(xn)→ ν(0) as n→∞. Hence, 〈δ, v〉 = ν(0).

2.3.9 If fn(x) and f(x) are integrable functions such that for any compact
set K ⊂ Ω we have

∫
K
|fn(x) − f(x)|dx → 0 as n → ∞, then fn → f as

distributions.

We need to show that 〈fn, v〉 → 〈f, v〉 for all v ∈ C∞0 (Ω). So, we need to prove
that

lim
n→∞

∣∣〈fn, v〉 − 〈f, v〉∣∣ = lim
n→∞

∣∣〈fn − f, v〉∣∣ = lim
n→∞

∣∣∣∣ ∫
K

(fn − f)v dx

∣∣∣∣ = 0

As v ∈ C∞0 (Ω), we know that v must be bounded. Set supx∈K |v(x)| = M .
Then,

lim
n→∞

∣∣∣∣ ∫
K

(fn − f)v dx

∣∣∣∣ ≤ lim
n→∞

∫
K

∣∣fn − f ∣∣ ∣∣v∣∣ dx ≤ lim
n→∞

M

∫
K

∣∣fn − f ∣∣ dx
and as

∫
K
|fn(x)− f(x)|dx→ 0 as n→∞, it follows that

lim
n→∞

∣∣∣∣ ∫
K

(fn − f)v dx

∣∣∣∣ → 0

Hence, 〈fn, v〉 → 〈f, v〉 for all v ∈ C∞0 (Ω).

2.3.10 Let a ∈ R, a 6= 0.

(a) Find a fundamental solution for L = d/dx − a on R (i.e., solve dF/dx −
aF = δ).

27



We are given that

dF

dx
− aF = δ

This is a linear first-order ODE. The integration factor is e−
∫
adx = e−ax, so we

can multiply both sides of the ODE to form

d

dx
(e−axF ) = e−axδ

But, e−axδ = δ, so we only need to solve

d

dx
(e−axF ) = δ

As H ′ = δ, where H is the Heaviside function, we have

d

dx
(e−axF ) = H ′

thus we can integrate both sides to form

F (x) = H(x)eax

This is one solution to the ODE in the form F = Heax. We can verify that
this is a fundamental solution. A method of checking our answer is by using the
definition

LF = δ ⇐⇒ 〈F,L′ν〉 = ν(0) for all v ∈ C∞0 (R)

Here, L = d/dx− a and so its adjoint L′ is defined by L′ = −d/dx− a. So, by
our definition of F above,
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〈F,L′ν〉 =

∫
R
eaxH(x)(−ν′(x)− av(x))dx

=

∫ ∞
0

eax(−ν′(x)− av(x))dx

= −
∫ ∞

0

d

dx
(eaxν(x))dx

= −eaxν(x)
∣∣∣x=∞

x=0

= ν(0)

where the last equality follows since ν has compact support.

(b) Show that a fundamental solution for L = d2/dx2−a2 = (d/dx+a)(d/dx−
a) on R is given by

F (x) =

{
a−1 sinh ax if x > 0

0 if x < 0

We have that LF = δ is equivalent to (by (55))

〈F,L′ν〉 =

∫
R
F (x)L′ν(x)dx = ν(0) for all v ∈ C∞0 (Ω)

Here, L′ = L, so we have that

〈F,L′ν〉 =

∫
R
F (x)(ν′′(x)− a2v(x))dx

=

∫ ∞
0

a−1 sinh ax(ν′′(x)− a2v(x))dx

=

∫ ∞
0

a−1 sinh ax(ν′′(x))dx−
∫ ∞

0

a sinh ax(ν(x))dx

= L+R

where
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L =

∫ ∞
0

a−1 sinh ax(ν′′(x))dx

R = −
∫ ∞

0

a sinh ax(ν(x))dx

we need to show that L + R = ν(0). So, we can use integration by parts on L
to produce

L =
[
a−1 sinh ax(ν′(x))

]x=∞

x=0
−
∫ ∞

0

cosh ax(ν′(x))dx

The boundary terms vanish as sinh(0) = 0 and ν′(x) = 0 when x→∞. There-
fore,

L = −
∫ ∞

0

cosh ax(ν′(x))dx

If we integrate by parts again, we form

L = ν(0) +

∫ ∞
0

a sinh ax(ν(x))dx

Hence, L+R = ν(0) and we have shown that 〈F,L′ν〉 = ν(0). Thus, F (x) is a
fundamental solution.

2.3.13.a Using δ(µ, η) = δ(µ)δ(η), show that each of the following functions is
a fundamental solution of L = ∂2/∂µ∂η:

F1(µ, η) = H(µ)H(η), F2(µ, η) = −H(µ)H(−η)

F3(µ, η) = −H(−µ)H(η), F4(µ, η) = H(−µ)H(−η)

We have that LF = δ is equivalent to (by (55))

〈F,L′ν〉 =

∫
Rn
F (x)L′ν(x)dx = ν(0) for all v ∈ C∞0 (Ω)

So, we need to analyze the four different cases.
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Case 1: F1(µ, η) = H(µ)H(η). We know that H ′(x) = δ(x). So, we have that

LF1 =
∂2

∂µ∂η

(
H(µ)H(η)

)
=

∂

∂η

(
H ′(µ)H(η)

)
= H ′(µ)H ′(η)

= δ(µ)δ(η)

= δ(µ, η)

Therefore, F1(µ, η) is a fundamental solution.

Case 2: F2(µ, η) = −H(µ)H(−η). As H ′(−x) = H ′(x) and δ(x) = δ(−x) we
have by the chain rule that

LF2 =
∂2

∂µ∂η

(
−H(µ)H(−η)

)
=

∂

∂µ

(
H(µ)H ′(−η)

)
=

∂

∂µ

(
H(µ)H ′(η)

)
= H ′(µ)H ′(η)

= δ(µ)δ(η)

= δ(µ, η)

Therefore, F2(µ, η) is a fundamental solution.

Case 3: F3(µ, η) = −H(−µ)H(η). We have that

LF3 =
∂2

∂µ∂η

(
−H(−µ)H(η)

)
=

∂

∂η

(
H ′(−µ)H(η)

)
= H ′(µ)H ′(η)

= δ(µ)δ(η)

= δ(µ, η)
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Therefore, F3(µ, η) is a fundamental solution.

Case 4: F4(µ, η) = H(−µ)H(−η). As δ(x) = δ(−x), we have that

LF4 =
∂2

∂µ∂η

(
H(−µ)H(−η)

)
=

∂

∂η

(
−H ′(−µ)H(−η)

)
= H ′(−µ)H ′(−η)

= δ(−µ)δ(−η)

= δ(µ)δ(η)

= δ(µ, η)

Therefore, F4(µ, η) is a fundamental solution.

3.1.1 Solve the initial value problems:

(a) utt − c2uxx = 0, with u(x, 0) = x3 and ut(x, 0) = sin(x).

We know that d'Alembert's formula is

u(x, t) =
1

2
(g(x+ ct) + g(x− ct)) +

1

2c

∫ x+ct

x−ct
h(ξ)dξ

We are given that g(x) = x3 and h(x) = sin(x). Therefore,

u(x, t) =
1

2
((x+ ct)3 + (x− ct)3) +

1

2c

∫ x+ct

x−ct
sin(ξ)dξ

=
1

2
(x+ ct)3 +

1

2
(x− ct)3 − 1

2c
(cos(x+ ct)− cos(x− ct))

= x3 + 3c2t2x− 1

2c
(−2 sin(x) sin(ct))

= x3 + 3c2t2x+ c−1 sin(x) sin(ct)

(b) utt − c2uxx = 2t, with u(x, 0) = x2 and ut(x, 0) = 1.
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By d'Alembert's formula and (19) for the non homogeneous wave equation,

u(x, t) =
1

2
(g(x+ct)+g(x−ct))+ 1

2c

∫ x+ct

x−ct
h(ξ)dξ+

1

2c

∫ t

0

(∫ x+c(t−s)

x−c(t−s)
f(ξ, s)dξ

)
ds

We are given that g(x) = x2 and h(x) = 1. Therefore,

u(x, t) =
1

2
((x+ ct)2 + (x− ct)2) +

1

2c

∫ x+ct

x−ct
dξ +

1

2c

∫ t

0

(∫ x+c(t−s)

x−c(t−s)
2sdξ

)
ds

=
1

2
(x+ ct)2 +

1

2
(x− ct)2 +

1

2c
((x+ ct)− (x− ct)) +

1

2c

∫ t

0

2s
(∫ x+c(t−s)

x−c(t−s)
dξ
)
ds

= x2 + c2t2 + t+

∫ t

0

2s(t− s)ds

= x2 + c2t2 + t+
t3

3

3.1.2 Solve the initial/boundary value problem:


utt − uxx = 0 for 0 < x < π and t > 0

u(x, 0) = 0, ut(x, 0) = 1 for 0 < x < π

u(0, t) = 0, u(π, t) = 0 for t ≥ 0

using a Fourier series. Using the parallelogram rule, find the values of the
solution in various regions. Is the resulting solution continuous? Is it in C1?

We first want to find a Fourier series solution. We need to find u(x, t) in the
form

u(x, t) =

∞∑
n=1

an(t) sin(nx) +

∞∑
n=1

bn(t) cos(nx)

As the boundary conditions are given as

u(0, t) = u(π, t) = 0 for all t ≥ 0
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we know that bn(t) = 0 for every n. Therefore, we can rewrite u(x, t) as

u(x, t) =

∞∑
n=1

an(t) sin(nx)

The partial differential equation is given as utt−uxx = 0. If we substitute u(x, t)
and solve through separation of variables we find that the functions an(t) must
satisfy the ordinary differential equations a′′n(t) + n2an(t) = 0. The general
solution to this equation is

an(t) = cn sin(nt) + dn cos(nt)

Where the constants cn and dn are determined by the initial conditions. We
have that

u(x, 0) =

∞∑
n=1

dn sin(nx) = 0

ut(x, 0) =

∞∑
n=1

ncn sin(nx) = 1

We can integrate both of these equations to find

dn =
2

π

∫ π

0

0 sin(nx)dx = 0 for every n

cn =
2

nπ

∫ π

0

1 sin(nx)dx =
2

πn2
(1− (−1)n) for every n

Thus, we can rewrite cn as

c(n) =


4

πn2
if n is odd

0 if n is even

which is equivalent to

cn =
2(1− cos(nπ))

n2π
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Hence, the Fourier series solution is

u(x, t) =

∞∑
n=0

4

π(2n+ 1)2
sin((2n+ 1)t) sin((2n+ 1)x)

or

u(x, t) =
2

π

∞∑
n=1

1− cos(nπ)

n2
sin(nx) sin(nt)

To find the values of solutions in various regions, we use d'Alembert's formula
and the parallelogram rule to piece together the solution and the domain de-
composition. We apply the same strategy shown in Figure 4.
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In region C1, the solution u is defined by d'Alembert's formula and the solution
is

u(x, t) =
1

2
(0 + 0) +

1

2

∫ x+t

x−t
1 · dξ = t

In region L1, let A = (x, t) in L1 and thus B = (0, t − x), C = (
t− x

2
,
t− x

2
),

and D = (
x+ t

2
,
x+ t

2
). Using the parallelogram rule, we find that u(x, t) =

u(DC1)− u(CC1) =
x+ t

2
− t− x

2
= x.

In region R1, let A = (x, t) in R1 and thus B = (
π + x− t

2
,
π − x+ t

2
), C =

(
3π − x− t

2
,
x+ t− π

2
), and D = (π,

x+ t− π
2

). Using the parallelogram rule,

we find that u(x, t) = u(BC1)− u(CC1) =
π − x+ t

2
− x+ t− π

2
= π − x.

In region C2, let A = (x, t) in C2 and thus B = (
π + x− t

2
,
π − x+ t

2
), C =

(
π

2
,
π

2
), and D = (

x+ t

2
,
x+ t

2
). Using the parallelogram rule, we find that

u(x, t) = u(BL1) + u(DR1)− u(CC1) =
π + x− t

2
+ π − x+ t

2
− π

2
= π − t.

3.1.3 Consider the initial/boundary value problem:


utt − uxx = 0 for 0 < x < π and t > 0

u(x, 0) = x, ut(x, 0) = 0 for 0 < x < π

ux(0, t) = 0, ux(π, t) = 0 for t ≥ 0

(a) Find a Fourier series solution, and sum the series in regions bounded by
characteristics. Do you think that the solution is unique?

We first want to find a Fourier series solution. We need to find u(x, t) in the
form

u(x, t) =
a0(t)

2
+

∞∑
n=1

an(t) cos(nx) +

∞∑
n=1

bn(t) sin(nx)

Where an(t) and bn(t) are determined by the boundary conditions. Hence,
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ux(x, t) =

∞∑
n=1

−nan(t) sin(nx) + nbn(t) cos(nx)

ux(x, 0) =

∞∑
n=1

nbn(t) = 0

Therefore, bn(t) = 0 for every n. So, we can rewrite u(x, t) as

u(x, t) =
a0(t)

2
+

∞∑
n=1

an(t) cos(nx)

The partial differential equation is given as utt − uxx = 0. If we substitute
u(x, t) and solve through separation of variables we find that the functions
a0(t) and an(t) must satisfy the ordinary differential equations a′′0(t) = 0 and
a′′n(t) + n2an(t) = 0. The general solution to these equations are

a0(t) = c0(t) + d0

an(t) = cn sin(nt) + dn cos(nt)

If we differentiate both of these equations we will find that

a′0(t) = c0

a′n(t) = ncn cos(nt)− ndn sin(nt)

We can now use our remaining initial conditions to solve for cn and dn. As
u(x, 0) = x we have that

u(x, 0) =
a0(0)

2
+

∞∑
n=1

an(0) cos(nx) =
d0

2
+

∞∑
n=1

dn cos(nx) = x

and as ut(x, 0) = 0 we have that

ut(x, t) =
a′0(t)

2
+

∞∑
n=1

a′n(t) cos(nx)
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ut(x, 0) =
a′0(0)

2
+

∞∑
n=1

a′n(0) cos(nx) =
c0
2

+

∞∑
n=1

ncn cos(nx) = 0

Integrating and multiplying by cos(mx) produces

d0 = π, dn =
2

πn2
(cos(nπ)− 1), cn = 0

Therefore, a0(t) = d0 = π and an(t) = dn cos(nt) =
2

πn2
(cos(nπ) − 1) cos(nt).

Hence,

u(x, t) =
a0(t)

2
+

∞∑
n=1

an(t) cos(nx) =
π

2
+

2

π

∞∑
k=1

(cos(kπ)− 1)

k2
cos(kt) cos(kx)

3.1.4 Consider the initial boundary value problem:


utt − c2uxx = 0 for x, t > 0

u(x, 0) = g(x), ut(x, 0) = h(x) for x > 0

u(0, t) = 0 for t ≥ 0

where g(0) = 0 = h(0). If we extend g and h as odd functions on −∞ < x <∞,
show that d'Alembert's formula (6) gives the solution.

We know that d'Alembert's formula is

u(x, t) =
1

2
(g(x+ ct) + g(x− ct)) +

1

2c

∫ x+ct

x−ct
h(ξ)dξ

We are given that

u(x, 0) =
1

2
(g(x) + g(x)) +

1

2c

∫ x

x

h(ξ)dξ = g(x)

We can calculate ut(x, t) by the FTC to form

ut(x, t) =
1

2
(cg′(x+ ct)− cg′(x− ct)) +

1

2c
(ch(x+ ct) + ch(x− ct))
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ut(x, 0) =
1

2
(cg′(x)− cg′(x)) +

1

2c
(ch(x) + ch(x)) = h(x)

where

u(0, t) =
1

2
(g(ct) + g(−ct)) +

1

2c

∫ ct

−ct
h(ξ)dξ

As g(x) and h(x) are odd functions we have that g(−ct) = −g(ct). Hence,

u(0, t) =
1

2
(g(ct) + g(−ct)) +

1

2c

∫ ct

−ct
h(ξ)dξ = 0

Where we can calculate further derivatives by

utt(x, t) =
1

2
(c2g′′(x+ ct) + c2g′′(x− ct)) +

1

2
(ch′(x+ ct)− ch′(x− ct))

ux(x, t) =
1

2
(g′(x+ ct) + g′(x− ct)) +

1

2c
(h(x+ ct)− h(x− ct))

uxx(x, t) =
1

2
(g′′(x+ ct) + g′′(x− ct)) +

1

2c
(h′(x+ ct)− h′(x− ct))

Thus, utt − c2uxx = 0 and d'Alembert's formula (6) gives the solution.

3.1.6 Solve the initial/boundary value problem:


utt − uxx = 1 for 0 < x < π and t > 0

u(x, 0) = 0, ut(x, 0) = 0 for 0 < x < π

u(0, t) = 0, u(π, t) = −π2/2 for t ≥ 0

Describe the singularities (i.e., is u C2? If not, where does it fail? Is u C1?
etc.).

We should first find a particular solution of the nonhomogeneous equation. This
particular solution will reduce the problem to a boundary value problem for the
homogeneous equation (as in 3.1.2 and 3.1.3).

Let's find a particular solution. We will use a method similar to separation of
variables. Assume that
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up(x, t) = X(x)

Then, substituting into the PDE forms

−X ′′(x) = 1 ⇒ X ′′(x) = −1

We can integrate twice to find the solution of the PDE. The solution is

X(x) = −x
2

2
+ ax+ b

The boundary conditions form

up(0, t) = b = 0

up(π, t) = − (−π)2

2
+ aπ + b =

−π2

2
⇒ a = 0

Hence, a = b = 0 and the particular solution is

up(x, t) = −x
2

2

The particular solution solves


uptt − upxx = 1 for 0 < x < π and t > 0

up(x, 0) = −x2/2, upt(x, 0) = 0 for 0 < x < π

up(0, t) = 0, up(π, t) = −π2/2 for t ≥ 0

Next, we need to find a solution to the boundary value problem of the homoge-
neous equation


utt − uxx = 0 for 0 < x < π and t > 0

u(x, 0) = x2/2, ut(x, 0) = 0 for 0 < x < π

u(0, t) = 0, u(π, t) = 0 for t ≥ 0
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We can solve this through separation of variables. In fact, it is identical to 3.1.2
with u(x, 0) = 1 replaced by u(x, 0) = x2/2.

Looking back to our solution of 3.1.2, we see that we need to change the initial
condition for cn to

ut(x, 0) =

∞∑
n=1

ncn sin(nx) =
x2

2

which produces

cn =
2

nπ

∫ π

0

x2

2
sin(nx)dx =

(2− π2n2) cos(nπ) + 2nπ sin(nπ)− 2

πn4
for every n

Hence, we can solve the homogeneous equation uh(x, t). The solution is

uh(x, t) =

∞∑
n=1

cn sin(nt) sin(nx)

=

∞∑
n=1

(2− π2n2) cos(nπ) + 2nπ sin(nπ)− 2

πn4
sin(nt) sin(nx)

We can then find u(x, t). We have that u(x, t) = uh(x, t)+up(x, t) and therefore

u(x, t) =

∞∑
n=1

(2− π2n2) cos(nπ) + 2nπ sin(nπ)− 2

πn4
sin(nt) sin(nx)− x2

2

3.2.2 Find the solution of the initial value problem

{
utt = uxx + uyy + uzz

u(x, y, z, 0) = x2 + y2, ut(x, y, z, 0) = 0

(a) by using (37) and (b) by using (39).
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First, we will apply Kirchoff's formula to find the solution. Letting (ξ, η, ζ)
denote a point on the unit sphere S2 ⊂ R3 and dS be the surface area element
on S2, we see that (as h(x) = 0))

u(x, y, z, t) =
∂

∂t

(
t

4π

∫
S2

[
(x+ tξ)2 + (y + tη)2

]
dS

)

=
∂

∂t

(
t

4π

∫
S2

[
x2 + 2xtξ + t2ξ2 + y2 + 2ytη + t2η2]dS

)

=
∂

∂t

(
t

4π

[
4π(x2 + y2) + 2xt

∫
S2

ξdS + 2yt

∫
S2

ηdS + t2
∫
S2

ξ2dS + t2
∫
S2

η2dS
])

Although,

∫
S2

ξdS = 0

which can be verified through explicit calculation using spherical coordinates,
or by symmetry (just split S2 into the hemispheres ξ ≥ 0 and ξ ≤ 0. You will
find that the two integrals cancel out). By the same reasoning,

∫
S2 ηdS = 0.

Therefore, by the rotational symmetry of the sphere we have that

∫
S2

ξ2dS =

∫
S2

η2dS =

∫
S2

ζ2dS ⇒
∫
S2

ξ2dS =
1

3

∫
S2

(ξ2+η2+ζ2)dS =
1

3

∫
S2

dS =
4π

3

Hence, we can conclude that

u(x, y, z, t) =
∂

∂t

(
t

4π

[
4π(x2 + y2) + t2

8π

3

])
= x2 + y2 + 2t2

For (b), we need to use the 2d formula given in (39). This is possible since
the data are independent of z. Let's denote (ξ, η) as a point on the unit disk
D = {(ξ, η) : ξ2 + η2 < 1} in the plane. Then (once again, h(x) = 0),
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u(x, y, z, t) =
∂

∂t

(
t

2π

∫
D

(x+ tξ)2 + (y + tη)2√
1− ξ2 − η2

dξdη

)

=
∂

∂t

(
t

2π

∫
D

x2 + y2 + 2xtξ + 2ytη + t2(ξ2 + η2)√
1− ξ2 − η2

dξdη

)

=
∂

∂t

(
t

2π

[
(x2 + y2)

∫
D

dξdη√
1− ξ2 − η2

+ 2xt

∫
D

ξdξdη√
1− ξ2 − η2

+ 2yt

∫
D

ηdξdη√
1− ξ2 − η2

+ t2
∫
D

(ξ2 + η2)dξdη√
1− ξ2 − η2

])

So, by symmetry

∫
D

ξdξdη√
1− ξ2 − η2

=

∫
D

ηdξdη√
1− ξ2 − η2

= 0

Thus, if we switch to polar coordinates (r, θ) in the plane, we see that

∫
D

dξdη√
1− ξ2 − η2

=

∫ 1

0

∫ 2π

0

rdrdθ√
1− r2

= 2π

∫ 1

0

rdr√
1− r2

= π

∫ 1

0

ds√
s

= 2π

and

∫
D

(ξ2 + η2)dξdη√
1− ξ2 − η2

=

∫ 1

0

∫ 2π

0

r2(rdrdθ)√
1− r2

= 2π

∫ 1

0

r3dr√
1− r2

= π

∫ 1

0

(1− s)ds√
s

=
4π

3

Hence, we can conclude that

u(x, y, z, t) =
∂

∂t

(
t

2π

[
2π(x2 + y2) + t2

4π

3

])
= x2 + y2 + 2t2

3.2.3 Use Duhamel's principle to find the solution of the nonhomogenuous wave
equation for three space dimensions utt− c2∆u = f(x, t) with initial conditions
u(x, 0) = 0 = ut(x, 0). What regularity in f(x, t) is required for the solution u
to be C2.
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We are given the nonhomogeneous wave equation with the following initial con-
ditions

{
utt − c2∆u = f(x, t)

u(x, 0) = 0 = ut(x, 0)

By Duhamel's principle, we reduce the problem to the special homogeneous
equations with nonhomogeneous initial conditions


Utt − c2∆U = 0 for x ∈ R, t > 0, s ≥ 0

U(x, 0, s) = 0 for x ∈ R, s ≥ 0

Ut(x, 0, s) = f(x, s) for x ∈ R, s ≥ 0

Then, we have that

u(x, t) =

∫ t

0

U(x, t− s, s)ds

solves the nonhomogeneous wave equation. In the three space dimensions, we
can apply Kirchhoff's formula (with g(x) = 0 and h(x) = f(x)) to see that

U(x, t, s) =
1

4π

∂

∂t

(
t

∫
|ξ|=1

0dSξ

)
+
t

4π

∫
|ξ|=1

f(x+ctξ, s)dSξ =
t

4π

∫
|ξ|=1

f(x+ctξ, s)dSξ

Therefore,

u(x, t) =

∫ t

0

U(x, t− s, s)ds =

∫ t

0

(
t− s
4π

∫
|ξ|=1

f(x+ c(t− s)ξ, s)dSξ

)
ds

=
1

4π

∫ t

0

∫
|ξ|=1

(t− s)f(x+ c(t− s)ξ, s)dSξds

Hence, we see that f(x, t) needs to be C2 in x and C0 in t for the solution u to
be C2.

3.2.4 Let Ω = {(x, y) ∈ R2 : 0 < x < a and 0 < y < b}, and use separation of
variables to solve the initial/boundary value problem
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
utt = uxx + uyy for (x, y) ∈ Ω and t > 0

u(x, y, t) = 0 for (x, y) ∈ ∂Ω and t > 0

u(x, y, 0) = sin
πx

a
sin

2πy

b
, and ut(x, y, 0) = 0 for (x, y) ∈ Ω

Letting u(x, y, t) = X(x)Y (y)T (t), we form

XY T ′′ = X ′′Y T +XY ′′T

If we divide every term by XY T , we form

T ′′

T
=
X ′′

X
+
Y ′′

Y

which must be equal to some constant λ. Therefore,

T ′′

T
=
X ′′

X
+
Y ′′

Y
= −λ

Then, acknowledging that X′′

X = −µ2, Y
′′

Y = −ν2, and T ′′

T = −ω2 are constants,
we see that

λ = µ2 + ν2 + ω2

Our initial condition tells us that

u(x, y, 0) = sin
πx

a
sin

2πy

b

So, we know that

u(x, y, 0) = X(x)Y (y)T (0) = sin
πx

a
sin

2πy

b

Hence, we need to find T (t). Our initial conditions are
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T
′′ + ω2T = 0

T (0) = sin
πx

a
sin

2πy

b
, T ′(0) = 0

Using these alongside the initial condition, u(x, y, t) = 0, we find that

T (t) = cos

(
π(4a2 + b2)

1
2 t

ab

)

Therefore, our solution is

u(x, y, z) = X(x)Y (y)T (t) = sin
πx

a
sin

2πy

b
cos

(
π(4a2 + b2)

1
2 t

ab

)

3.2.5 Find a formula for the solution v(x, t) = v(x1, x2, t) of the Cauchy problem
for the two-dimensional Klein-Gordon equation:

{
vtt = c2∆v −m2v for x ∈ R2 and t > 0

v(x, 0) = g(x), vt(x, 0) = h(x)

Using the hint in the back of the book, we define

u(x, y, z, t) = cos(
m

c
z)v(x, y, t)

Where we can perform a calculation to see that u satisfies the wave equation in
3d, so it is represented by Kirchhoff's formula. Let’s assume that g = 0. Then,
letting (ξ, η, ζ) denote a point on the unit sphere S2 ⊂ R3, we see that

u(x, y, z, t) =
t

4π

∫
S2

cos
(m
c

(z + ctζ)
)
h(x+ ctξ, y + ctη)dS(ξ, η, ζ)

If we let z = 0, then

v(x, y, t) = u(x, y, 0, t) =
t

4π

∫
S2

cos(mtζ)h(x+ ctξ, y + ctη)dS(ξ, η, ζ)
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So, we now follow the derivation of the solution formula for the wave equation
in 2d. We will parametrize the hemispheres ζ ≥ 0 and ζ ≤ 0 of S2 as graphs

ζ = ±
√

1− ξ2 − η2

over the unit disk D = {(ξ, η) : ξ2 + η2 ≤ 1}. This will transform the integral
to (observing that the cosine function is even, so there is no difference between
the integrals in the two hemispheres)

v(x, y, t) =
t

2π

∫
D

cos
(
mt
√

1− ξ2 − η2
)
h(x+ ctξ, y + ctη)√

1− ξ2 − η2
dξdη

If we now remove the restriction that g = 0, we can calculate the general form
as

v(x, y, t) =
∂

∂t

(
t

2π

∫
D

cos
(
mt
√

1− ξ2 − η2
)
g(x+ ctξ, y + ctη)√

1− ξ2 − η2
dξdη

)
+

t

2π

∫
D

cos
(
mt
√

1− ξ2 − η2
)
h(x+ ctξ, y + ctη)√

1− ξ2 − η2
dξdη

3.3.1 Let Ω be a smooth, bounded domain in Rn. For a C2 solution u(x, t)
of the wave equation utt = c2∆u for x ∈ Ω, t > 0, define the energy to be
EΩ(t) = 1

2

∫
Ω

(u2
t + c2|∇u|2) dx. If u satisfies either the boundary condition

u(x, t) = 0 or ∂u/∂ν(x, t) = 0 for x ∈ ∂Ω, where ν is the exterior unit normal,
then show that EΩ(t) is constant.

We consider solutions to the wave equation

utt = c2∆u, u = u(x, t), x ∈ Ω, t > 0

which have a Dirichlet boundary condition

u(x, t) = 0 for all x ∈ ∂Ω, t ≥ 0

or a Neumann boundary condition

∇u · ν =
∂u

∂ν
(x, t) = 0 for all x ∈ ∂Ω, t ≥ 0
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We should assume that u belongs to the space

u ∈ C2(Ω× (0,∞)) ∩ C1(Ω× [0,∞))

We need to show that energy

EΩ(t) =
1

2

∫
Ω

(u2
t + c2|∇u|2) dx

is conserved. If we take the first derivative with respect to t, we find that

d

dt
EΩ(t) =

d

dt

(
1

2

∫
Ω

(u2
t + c2|∇u|2) dx

)
=

∫
Ω

(ututt + c2∇u · ∇ut) dx

But, we know from Green’s first identity that

∫
∂Ω

v
∂u

∂ν
dS =

∫
Ω

(v∆u+∇v · ∇u) dx

Letting v = ut, we see that

∫
Ω

∇u · ∇ut dx =

∫
∂Ω

ut
∂u

∂ν
dS −

∫
Ω

ut∆u dx

and the middle term vanishes because of the Dirichlet or Neumann boundary
conditions. For the Neumann boundary condition, we have that ∂u

∂ν = 0 on ∂Ω.
For the Dirichlet boundary condition, we have that u = 0 on ∂Ω ⇒ ut = 0 on
∂Ω. Hence,

∫
Ω

∇u · ∇ut dx = −
∫

Ω

ut∆u dx

and therefore

d

dt
EΩ(t) =

∫
Ω

(ututt − c2ut∆u) dx =

∫
Ω

ut(utt − c2∆u) dx = 0
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Thus, energy is conserved.

3.3.2 Use the previous exercise to show uniqueness of the solution for the (non-
homogenuous) wave equation utt = ∆u+ f(x, t) in a smooth, bounded domain
Ω ⊂ Rn with either (a) Dirichlet condition u = g on ∂Ω, or (b) Neumann
condition ∂u/∂ν = h on ∂Ω.

We need to prove uniqueness of solutions to the initial boundary value problem


utt − c2∆u = f(x, t) for x ∈ Ω, t > 0

u(x, t) = γ(x, t) for x ∈ ∂Ω, t > 0

u(x, 0) = g(x), ut(x, 0) = h(x) for x ∈ Ω

where f, γ, g, h are given functions, and u is assumed to belong to the space

u ∈ C2(Ω× (0,∞)) ∩ C1(Ω× [0,∞))

Let's assume that u, v both belong this space and solve the initial boundary
value problem defined above. Then, w = u− v also solves the initial boundary
value problem with f = 0, γ = 0, g = 0, and h = 0. So, by the previous exercise,
we see that the energy in Ω must be zero for all t ≥ 0 as all of the functions are
zero. Hence,

EΩ(t) = EΩ(0) = 0

Although, as EΩ(t) is defined by EΩ(t) = 1
2

∫
Ω

(w2
t + c2|∇w|2) dx=0, it must

be that wt = 0 and ∇w = 0 in Ω × [0,∞). Therefore, w = constant and this
constant must be zero as w = 0 at time t = 0. So, w = 0 ⇒ u = v.

An analogous argument holds if we replace the Dirichlect boundary condition
with the Neumann boundary condition.

3.3.4 The partial differential equation utt = c2∆u − q(x)u arises in the study
of wave propogation in a nonhomogenuous elastic medium: q(x) is nonnegative
and proportional to the coefficient of elasticity at x.

(a) Define an appropriate notion of energy for solutions.

(b) Verify the corresponding energy inequality.

(c) Use the energy method to prove that solutions are uniquely determined
by their Cauchy data.
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(a) The energy integral is

E(t) =
1

2

∫
Ω

(|ut|2 + c2|∇u|2 + q(x)u2)dx

We can verify this by differentiating with respect to t to obtain

d

dt
E(t) =

1

2

∫
Ω

(ututt + c2
n∑
i=1

uxiuxit+ q(x)uut)dx

Integrating by parts then produces

d

dt
E(t) =

∫
Ω

ut
(
utt − c2∆u+ q(x)

)
dx = 0

which shows that E(t) must be a constant.

(b) For any time τ ∈ [0, t0], let Bτ = {x ∈ Rn : |x− x0| ≤ c(t0 − τ)}. Consider
the local energy function

Ex0,t0(τ) =
1

2

∫
Bτ

(u2
t + c2|∇u|2 + q(x)u2)

∣∣
t=τ

dx for 0 ≤ τ ≤ t0 (1)

We claim that (1) is a nonincreasing function of τ; that is, the following energy
inequality holds:

Ex0,t0(τ) ≤ Ex0,t0(0) for 0 ≤ τ ≤ t0 (2)

To prove (2), we introduce the following notations

Ωτ = {(x, t) : |x− x0| < c(t0 − t), 0 < t < τ}

Cτ = {(x, t) : |x− x0| = c(t0 − t), 0 < t < τ}

Notice that ∂Ωτ = Cτ ∪ (B0 × {0}) ∪ (Bτ × {τ}), where the unions are dis-
joint. Moreover, the exterior unit normal ν on ∂Ωτ is given on Bτ × {τ}
by ν = 〈0, . . . , 0, 1〉, and on B0 by ν = 〈0, . . . , 0,−1〉. On Cτ, the normal
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ν = 〈ν1, . . . , νn, νn+1〉 satisfies c2(ν2
1 + · · ·+ ν2

n) = ν2
n+1; together with the unit

length condition ν2
1 + · · ·+ ν2

n + ν2
n+1 = 1, this implies

ν2
1 + · · ·+ ν2

n =
ν2
n+1

c2
=

1

1 + c2

Given a solution u, we define the vector field

~V = 〈2c2utux1 , . . . , 2c
2utuxn ,−(c2|∇u|2 + u2

t + q(x)u2)〉

If we calculate the divergence in (x, t), we find

div ~V = 2c2(utx1ux1 + utux1x1 + · · ·+ utxnuxn + utuxnxn)

− 2c2(utx1
ux1

+ · · ·+ utxnuxn)− 2ututt − 2q(x)uut = 0

The divergence theorem therefore implies

∫
∂Ωτ

~V · νdS = 0

Now, on Cτ, the following inequality holds

2ut(ux1
ν1 + · · ·+ uxnνn) ≤ c√

1 + c2
|∇u|2 +

1

c
√

1 + c2
(u2
t + q(x)u2)

Therefore, we may compute on Cτ

~V · ν = 2c2ut(ux1ν1 + · · ·+ uxnνn)− (c2|∇u|2 + ut
2 + q(x)u2)νn+1 ≤ 0

so in particular

∫
Cτ

~V · νdS ≤ 0

Then, we have
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0 ≤
∫
B0

~V · νdS +

∫
Bτ×{τ}

~V · νdS

=

∫
B0

(c2|∇u|2 + ut
2 + q(x)u2)

∣∣
t=0

dx−
∫
Bτ

(c2|∇u|2 + ut
2 + q(x)u2)

∣∣
t=τ

dx

which proves (2),

Ex0,t0(τ) ≤ Ex0,t0(0) for 0 ≤ τ ≤ t0

(c) Let both u and v be solutions to utt = c2∆u− q(x)u on C2(Ω× (0,∞)) with
initial conditions u(x, 0) = g(x), ut(x, 0) = h(x) for x ∈ Ω. Let w ≡ u− v, then

{
wtt = c2∆w − q(x)w for x ∈ Ω, t > 0

w(x, 0) = wt(x, 0) = 0 for x ∈ Ω

Hence, we know that E(t) = E(0) = 0. It follows that

E(t) =
1

2

∫
Ω

(|wt|2 + c2|∇w|2 + q(x)w2)dx = 0

since q(x) is nonnegative and the third term implies that w(x, t) ≡ 0. Therefore,
u(x, t) ≡ v(x, t).

4.1.1 Let Ω = {(x, y) ∈ R2 : x2 + y2 < 1} = {(r, θ) : 0 ≤ r < 1, 0 ≤ θ < 2π},
and use separation of the variables (r, θ) to solve the Dirichlet problem

{
∆u = 0 in Ω

u(1, θ) = g(θ) for 0 ≤ θ < 2π

It is natural to use polar coordinates (r, θ) in which the problem becomes


∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0 for 0 ≤ r < 1, 0 ≤ θ < 2π

u(1, θ) = g(θ) for 0 ≤ θ < 2π

If we write r = e−t ad u(r, θ) = X(t)Y (θ), then
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r2∂2
ru+ r∂ru+ ∂2

θu = ∂2
t u+ ∂2

θu = X ′′(t)Y (θ) +X(t)Y ′′(θ) = 0

Separating the variables, we obtain

X ′′(t)

X(t)
= −Y

′′(θ)

Y (θ)
= λ

But Y ′′(θ)+λY (θ) = 0 has solutions λn = n2 and Yn(θ) = an cosnθ +bn sinnθ;
notice Y0(θ) = a0 =const. The equation X ′′(t) + n2X(t) = 0 has solutions
X0(t) = c0t + d0 and Xn(t) = cne

nt + dne
−nt for n = 1, 2, 3, . . . . This means

that u0(r, θ) = −c0 log r+d0 and un(r, θ) = (an cosnθ+bn sinnθ) (cnr
−n+dnr

n)
for n = 1, 2, 3, . . . . But u must be finite at r = 0, so cn = 0. By superposition
we may write (after relabeling coefficients)

u(r, θ) = a0 +

∞∑
n=1

rn(an cosnθ + bn sinnθ)

But then

u(1, θ) = a0 +

∞∑
n=1

(an cosnθ + bn sinnθ) = g(θ)

which shows that the coefficients an,bn for n ≥ 1 are determined from the
Fourier series for g(θ). Therefore,

an =
1

π

∫ 2π

0

g(θ) cos(nθ)dθ for n = 1, 2, 3 . . .

bn =
1

π

∫ 2π

0

g(θ) sin(nθ)dθ for n = 1, 2, 3 . . .

Notice, however that a0 is not determined by g(θ) and therefore may take any
arbitrary value. Moreover, the constant term in the Fourier series for g(θ) must
be zero. So, we can write

a0 =
1

2π

∫ 2π

0

g(θ)dθ
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4.1.2 Let Ω = (0, π)× (0, π), and use separation of variables to solve the mixed
boundary value problem


∆u = 0 in Ω

ux(0, y) = 0 = ux(π, y) for 0 < y < π

u(x, 0) = 0, u(x, π) = g(x) for 0 < x < π

Assume u(x, y) = X(x)Y (y). Substitution into the PDE produces

X ′′(x)Y (y) +X(x)Y ′′(y) = 0

Separating the variables, we obtain

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= −λ

For the first equation, consider X ′′(x) + λX(x) = 0. If λ = 0, then X ′′(x) = 0
and we can simplify this to find X0(x) = a0x+ b0.

Else, if λ 6= 0 then we need to solve X ′′(x) + λX(x) = 0. By standard ODE
techniques, we find that the roots of the characteristic polynomial are r = ±iλ.
Therefore, we see that Xn(x) = an cosnx+ bn sinnx.

The boundary conditions are ux(0, y) = 0 = ux(π, y). So,

ux(0, y) = X ′(0)Y (y) = 0 ⇒ X ′(0) = 0

ux(π, y) = X ′(π)Y (y) = 0 ⇒ X ′(π) = 0

Hence, X ′0(0) = a0 = 0 and X ′n(0) = nbn = 0 ⇒ bn = 0. Thus, X0(x) = b0
and Xn(x) = an cosnx.

If we return back to our original equation X ′′(x)+λX(x) = 0, we can substitute
in the above form to find that −n2an cosnx+λan cosnx = 0. This implies that

λ = n2 for n = 1, 2, 3, . . .

So, we now consider Y ′′(y)− λY (y) = 0 or Y ′′(y)− n2Y (y) = 0. If n = 0, then
we have Y ′′(y) = 0 and we can simplify this to find Y0(y) = c0y + d0.
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Else, if n 6= 0 then we need to solve Y ′′(y) − n2Y (y) = 0. By standard ODE
techniques, we find that the roots of the characteristic polynomial are r = ±n.
Therefore, we see that Yn(y) = cne

ny + dne
−ny.

The boundary condition is u(x, 0) = 0. So,

u(x, 0) = 0 = X(x)Y (0) = 0 ⇒ Y (0) = 0

Hence, Y0(0) = d0 = 0 and Yn(0) = cn + dn = 0 ⇒ cn = −dn. Thus,
Y0(y) = c0y and Yn(y) = cn(eny − e−ny) = c̃n sinhny.

If we put everything together, we form

u0(x, y) = X0(x)Y0(y) = b0c0y = ã0y

un(x, y) = Xn(x)Yn(y) = (an cosnx)(c̃n sinhny) = ãn cosnx sinhny

So, by superposition, we can write

u(x, y) = ã0y +

∞∑
n=1

ãn cosnx sinhny

The above equation satisfies the three homogeneous boundary conditions. For
the non-homogeneous boundary condition, we have that u(x, π) = g(x). So,

u(x, π) = ã0π +

∞∑
n=1

ãn cosnx sinhnπ = g(x)

By the orthogonality conditions of coefficients, we have that

∫ π

0

g(x)dx =

∫ π

0

(ã0π+

∞∑
n=1

ãn cosnx sinhnπ)dx = ã0π
2 ⇒ ã0 =

1

π2

∫ π

0

g(x)dx

∫ π

0

g(x) cosmx dx =

∞∑
n=1

ãn sinhnπ

∫ π

0

cosnx cosmx dx =
π

2
ãm sinhmπ
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which implies that

ãn sinhnπ =
2

π

∫ π

0

g(x) cosnx dx

4.1.3 Prove that the solution of the Robin or third boundary value problem (5)
for the Laplace equation is unique when α > 0 is a constant.

We have that

{
∆u = 0 in Ω
∂u
∂ν + αu = β on ∂Ω

where α, β are constants with α > 0. We need to prove uniqueness. Assume
that

u, v ∈ C2(Ω) ∩ C1(Ω)

are both solutions to the Laplace equation. Let w = u− v. Then, w satisfies

{
∆w = 0 in Ω
∂w
∂ν + αw = 0 on ∂Ω

If we apply Green’s first identity with u, v = w, we find that

∫
∂Ω

w
∂w

∂ν
dS =

∫
Ω

∇w · ∇w dx =

∫
Ω

|∇w|2dx

If we now insert the boundary conditions,
∂w

∂ν
= −αw on ∂Ω, we find that

−a
∫
∂Ω

w2dS =

∫
Ω

|∇w|2dx

Therefore, in the formula above the LHS is always ≤ 0 while the RHS is always
≥ 0. So, both sides must equal zero. Hence, w = 0 in Ω. As we assumed that
w is continuous on the boundary, we also have that w = 0 in Ω. Thus, u=v.

4.1.4 Let Ω be the unit disk as in Exercise 1.

56



(a) Solve the Robin problem (5) for the Laplace equation when α > 0 is
constant.

We are given that the solution by separation of variables on the unit disk is

u(r, θ) = a0 +

∞∑
n=1

rn(an cosnθ + bn sinnθ)

where the normal derivative on the boundary can be represented as

ur(1, θ) =

∞∑
n=1

n(an cosnθ + bn sinnθ)

So, we need to consider the new boundary condition of

∂u

∂ν
+ αu = β on ∂Ω

Through this new boundary condition, we can write the equation above as

β(θ) = αa0 +

∞∑
n=1

(α+ n)(an cosnθ + bn sinnθ)

Therefore, through the above representation we can find the Fourier coefficients
as

αa0 =
1

π

∫ π

−π
β(θ)dθ ⇒ a0 =

1

απ

∫ π

−π
β(θ)dθ

(α+ n)an =
1

2π

∫ π

−π
β(θ) cos(nθ)dθ ⇒ an =

1

2π(α+ n)

∫ π

−π
β(θ) cos(nθ)dθ

(α+ n)bn =
1

2π

∫ π

−π
β(θ) sin(nθ)dθ ⇒ bn =

1

2π(α+ n)

∫ π

−π
β(θ) sin(nθ)dθ
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As α > 0, it is clear that all of the Fourier coefficients for a0, an, and bn are
well defined. They are all determined uniquely and produce a unique solution.

(b) When α = −1, show that uniqueness fails.

Consider

u(r, θ) = r(a sin(θ) + b cos(θ))

with the boundary condition

∂u

∂ν
+ αu = β on ∂Ω

The normal derivative on the boundary is

ur(1, θ) = (a sin(θ) + b cos(θ))

So, the boundary condition becomes
∂u

∂ν
− u = 0. For u(r, θ) = r(a sin(θ)

+b cos(θ)), we have that

{
∆u = 0 in Ω
∂u
∂ν − u = 0 on ∂Ω

Therefore, we can no longer apply the same strategy used in (a). As a and
b are arbitrary, there are many different values of a and b which satisfy both
conditions. Hence, uniqueness fails.

4.1.5 Suppose q(x) ≥ 0 for x ∈ Ω and consider solutions u ∈ C2(Ω) ∩ C1(Ω)
of ∆u − q(x)u = 0 in Ω. Establish uniqueness theorems for (a) the Dirichlet
problem, and (b) the Neumann problem.

Let’s consider

∆u− q(x)u = 0 in Ω
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where q(x) ≥ 0 is assumed to be bounded and continuous in Ω. If we also
assume that q(x) is not everywhere 0, then there exists a point x0 ∈ Ω such
that

q(x0) > 0

We need to prove uniqueness of solutions in the space

C2(Ω) ∩ C1(Ω)

subject to the two boundary conditions

u = g on ∂Ω

∂u

∂ν
= h on ∂Ω

where the Neumann boundary condition isn’t unique if q = 0. So, we assume
that q(x) is not everywhere zero.

Next, assume that u, v are two solutions such that u, v ∈ C2(Ω) ∩ C1(Ω). Let
w = u−v. Then, w = u−v satisfies the original equation with the new boundary
conditions

w = 0 on ∂Ω

∂w

∂ν
= 0 on ∂Ω

In either case, we have that

∫
∂Ω

w
∂w

∂ν
dS = 0

So, if we apply Green’s first identity with u, v = w and ∆w = wq(x) we form

0 =

∫
∂Ω

w
∂w

∂ν
dS =

∫
Ω

w2q(x) + |∇w|2 dx
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But, the integrand on the RHS is continuous and ≥ 0, so we must have that
w2q(x) + |∇w|2 = 0 in Ω. This means that

|∇w|2 = 0 ⇒ ∇w = 0 ⇒ w = constant = c in Ω

w2q(x) = 0 ⇒ at x = x0, q(x0) > 0 ⇒ w = 0 in Ω

Therefore, as w = 0 and w = constant = c in Ω ⇒ c = 0 ⇒ w = 0
in Ω. By continuity, we can also extend this to Ω. Hence, u = v and we have
established uniqueness for the Dirichlet and Neumann problem.

4.1.6 By direct calculation, show that v(x) = |x−x0|2−n is harmonic in Rn\{x0}
for n ≥ 3. Do the same for v(x) = log |x− x0| if n = 2.

Assume n ≥ 3, fix a ∈ Rn, and set v(x) = |x− a|2−n for x 6= a.

Then, v(x) = r2−n where

r = |x− a| =
√

(x1 − aa)2 + (x2 − a2)2 + · · ·+ (xn − an)2

Therefore,

rxi =
2(xi − ai)

2
√

(x1 − aa)2 + (x2 − a2)2 + · · ·+ (xn − an)2
=
xi − ai
r

Hence, by the chain rule,

vxi = (2− n)r1−nrxi = (2− n)r1−nxi − ai
r

= (2− n)r−n(xi − ai)

and

vxixi = (−n)(2− n)r−n−1(xi − ai)rxi + (2− n)r−n

= (−n)(2− n)r−n−1(xi − ai)
xi − ai
r

+ (2− n)r−n

= (−n)(2− n)r−n−2(xi − ai)2 + (2− n)r−n

Thus,
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∆v =

n∑
i=1

vxixi = (−n)(2− n)r−n−2r2 + n(2− n)r−n

= (n2 − 2n)r−n + (−n2 + 2n)r−n

= 0

Next, consider n = 2, fix a ∈ R2, and set v(x) = log |x − a| for x 6= a. Then,
v(x) = log(r) where

r = |x− a| =
√

(x1 − a1)2 + (x2 − a2)2

Therefore,

rxi =
2(xi − ai)

2
√

(x1 − a1)2 + (x2 − a2)2
=
xi − ai
r

So, by the chain rule,

vxi =
1

r
rxi =

xi − ai
r2

= (xi − ai)r−2

and

vxixi = r−2 − 2(xi − ai)r−3rxi

=
1

r2
− 2(xi − ai)

r3

(xi − ai)
r

=
1

r2
− 2(xi − ai)2

r4

Thus,

∆v =

2∑
i=1

vxixi = 2
1

r2
− 2r2

r4

=
2

r2
− 2

r2

= 0
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4.1.7

(a) If Ω is a bounded domain and u ∈ C2(Ω) ∩ C(Ω) satisfies (1), then
maxΩ |u| = max∂Ω |u|.

Assume that u ∈ C2(Ω) ∩ C(Ω) and that ∆u = 0 in Ω. We need to show that

max
Ω
|u| = max

∂Ω
|u|

Observe that this is the same as the standard weak maximum principle where
u is replaced by |u|. Assume that Ω is bounded. We first need to show that

max
Ω
|u| ≥ max

∂Ω
|u|

But, this is obvious since Ω contains ∂Ω. So, we need to show that

max
Ω
|u| ≤ max

∂Ω
|u|

As |u| is continuous and Ω is a compact set, we know that |u| must obtain a
maximum. Therefore, ∃ x1 ∈ Ω such that

|u(x1)| = max
Ω
|u|

WLOG, we may assume that u(x1) ≥ 0 (otherwise, if u(x1) ≤ 0, then we could
replace u by -u). Thus,

u(x1) = max
Ω
|u|

As u(x1) ≥ 0, this implies that maxΩ u = maxΩ |u|. We know from the standard
weak maximum principle that

max
Ω

u = max
∂Ω

u
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Therefore, we see that

max
Ω
|u| = u(x1) = max

Ω
u = max

∂Ω
u ≤ max

∂Ω
|u|

Thus, max
Ω
|u| ≤ max

∂Ω
|u| and we have that maxΩ |u| = max∂Ω |u|.

(b) If Ω = {x ∈ Rn : |x| > 1} and u ∈ C2(Ω) ∩ C(Ω) satisfies (1) and
lim|x|→∞ u(x) = 0, then maxΩ |u| = max∂Ω |u|.

Assume that u ∈ C2(Ω) ∩ C(Ω), ∆u = 0 in Ω, and lim|x|→∞ u(x) = 0. Also
assume that

Ω = {x ∈ Rn : |x| > 1}

which is an unbounded set. We need to show that

max
Ω
|u| = max

∂Ω
|u|

Similar to (a), it is obvious that maxΩ |u| ≥ max∂Ω |u|. So, we need to prove
that

max
Ω
|u| ≤ max

∂Ω
|u|

To do this, let’s split up the set into ∂Ω = {x ∈ Rn : |x| = 1} and Ω = {x ∈
Rn : |x| ≥ 1}.

For ∂Ω = {x ∈ Rn : |x| = 1}, it is clear that the maximum is obtained.
This set is compact, so we can repeat the argument used in part (a). For
Ω = {x ∈ Rn : |x| ≥ 1}, we need to do something different. This set is
unbounded, so we will need a different approach of attack.

On Ω = {x ∈ Rn : |x| ≥ 1}, assume that u is not everywhere zero. If u was
everywhere zero, then we would have nothing to prove. Let

M := sup
Ω

|u| > 0
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As lim|x|→∞ u(x) = 0, there must exist a R > 0 such that

|x| ≥ R ⇒ |u(x)| ≤ M

2

Define

BR := {x : 1 ≤ |x| ≤ R}

Then, BR is compact. So, the maximum of |u| is obtained. Therefore, ∃ x1 ∈ BR
such that |u(x1)| = maxBR |u|. But, as |x| ≥ R ⇒ |u(x)| ≤ M

2 , we see that

M = max
ΩR

|u|

Thus, the sup of |u| over Ω is the maximum. Hence,

|u(x1)| = max
BR
|u| = max

Ω
|u|

Analogous to part (a), we may assume that WLOG u(x1) ≥ 0. Then,

u(x1) = max
BR
|u| = max

Ω
|u|

So, from from the standard weak maximum principle in BR, we know that

max
BR

u = max
∂Ω

u

which allows to conclude that

max
Ω
|u| = u(x1) = max

BR
u = max

∂Ω
u ≤ max

∂Ω
|u|

Thus, max
Ω
|u| ≤ max

∂Ω
|u| and we have that maxΩ |u| = max∂Ω |u|.

4.2.1
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(a) If n = 2 and a = 1, show that (44) is equivalent to

u(r, θ) =
1− r2

2π

∫ 2π

0

g(φ)dφ

1 + r2 − 2r cos(θ − φ)

The Poisson integral formula is given by

u(ξ) =
a− |ξ|2

aωn

∫
|x|=a

g(x)

|x− ξ|n
dSx

Replacing n = 2 and a = 1, we have that ωn = 2π and thus

u(ξ) =
1− |ξ|2

2π

∫
|x|=1

g(x)

|x− ξ|2
dSx

But, this is the same as integrating over a circle of radius 1. Therefore,

u(ξ) =
1− r2

2π

∫ 2π

0

g(φ)

|x− ξ|2
dφ

where we set ξ = (r cos θ, r sin θ) and x = (cosφ, sinφ) to form

|x− ξ|2 = |(r cos θ − cosφ, r sin θ − sinφ)|2

= r2 cos2 θ − 2r cos θ cosφ+ cos2 φ+ r2 sin2 θ − 2r sin θ sinφ+ sin2 φ

= r2(cos2 θ + sin2 θ) + (cos2 φ+ sin2 φ)− 2r(cos θ cosφ+ sin θ sinφ)

= r2 + 1− 2r(cos(θ − φ))

Therefore,

u(ξ) =
1− r2

2π

∫ 2π

0

g(φ)dφ

1 + r2 − 2r cos(θ − φ)

(b) Use (a) and Exercise 1 in Section 4.1 to verify the formula

65



rk cos kθ =
1− r2

2π

∫ 2π

0

cos(kφ)dφ

1 + r2 − 2r cos(θ − φ)

where k is an integer and 0 ≤ r < 1.

We have that g(θ) is the boundary condition of the PDE. So, we want to find a
function u(r, θ) solving

{
∆u = 0 in Ω

u(1, θ) = g(θ) for 0 ≤ θ < 2π
(*)

The function u given by the Poisson formula is the unique solution to the prob-
lem, so if we have any function solving (∗), then that function must be equal to
the Poisson integral.

In particular, from Exercise 1 in Section 4.1 we have that


∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0 for 0 ≤ r < 1, 0 ≤ θ < 2π

u(1, θ) = g(θ) = cos(kθ) for 0 ≤ θ < 2π

Substituting u(r, θ) = rk cos(kθ), we see that it satisfies both of the hypothesis
as

urr+
1

r
ur+

1

r2
uθθ = (k2−k)rk−2 cos(kθ)+(k)rk−2 cos(kθ)−(k2)rk−2 cos(kθ) = 0

and

u(1, θ) = 1k cos(kθ) = cos(kθ) = g(θ)

So the function u(r, θ) = rk cos(kθ) solves (∗) with g(θ) = cos(kθ). But, since
the solution is unique, this means that

rk cos(kθ) =
1− r2

2π

∫ 2π

0

cos(kφ)

1 + r2 − 2r cos(θ − φ)
dφ
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4.2.2 Let Ω be a bounded domain and f ∈ Ck(Ω). Show that in fact the
domain potential (29a) satisfies u ∈ Ck+1(Ω). Conclude that f ∈ C∞(Ω) implies
u ∈ C∞(Ω).

Assume that Ω is a bounded domain and f ∈ Ck(Ω). The domain potential is
given by

u(x) =

∫
Ω

K(x− y)f(y)dy

where u defines a solution to Poisson's equation ∆u = f . As f is an integrable
function on the bounded domain Ω, we know from (56) in Section 2.3 that u is
at least a distributed solution of ∆u = f in Rn (extend f by zero outside Ω).

Therefore, we have satisfied the conditions of the proposition on page 114 as
Ω is bounded and f ∈ L1(Ω). This shows that the domain potential (29a)
satisfies u ∈ Ck+1(Ω) as part (i) of the proposition guarantees that u is C∞ and
harmonic in Rn \ Ω.

Next, assume that f ∈ C∞(Ω). We will need to generalize the proof of part (iii)
of the proposition to show that u ∈ C∞(Ω).

Observe that if f ∈ C∞(Ω), then the same proof will hold (all that will need
to be changed is the number of derivatives taken). We can assume that f ∈
Ck(Ω). Then, we can argue analogously through the divergence theorem to get
an equivalent form of (29d) for k derivatives. This shows that u ∈ Ck+1(Ω).

Stronger results follow from the notion of Hölder continuity which allows one
to weaken substantially the hypothesis f ∈ C1(Ω) (cf. Section 6.5), and the
conclusion u ∈ C2(Ω) may be obtained for sufficiently smooth domains (cf.
Section 8.2).

4.2.3 The symmetry of Green's function [i.e., G(x, ξ) = G(ξ, x) for all x, ξ ∈ Ω]
is an important fact connected with the self-adjointness of ∆.

(a) Verify the symmetry of G(x, ξ) by direct calculation when Ω = Rn+ and
Ω = Ba(0).

First, we know that |x− ξ| = |ξ−x| and |x− ξ∗| = |ξ∗−x|. In Ω = Rn+, we can
directly calculate

G(x, ξ) = K(x− ξ)−K(x− ξ∗) = K(ξ − x)−K(ξ∗ − x) = G(ξ, x)
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For Ω = Ba(0), we have that

G(x, ξ) =

{
K(x− ξ)− 1

2π log
( |ξ|
a |x− ξ

∗|
)

if n = 2

K(x− ξ)− ( a|ξ| )
n−2K(x− ξ∗) if n > 2

and

G(ξ, x) =

{
K(ξ − x)− 1

2π log
( |ξ|
a |ξ
∗ − x|

)
if n = 2

K(ξ − x)− ( a|ξ| )
n−2K(ξ∗ − x) if n > 2

which are equivalent as K(x) is radially symmetric as discussed in the beginning
of section 4.2.

(b) Prove the symmetry of G(x, ξ) when Ω is any smooth, bounded domain.

We need to show that G(x, ξ) = G(ξ, x) for all x, ξ ∈ Ω where x 6= ξ. Pick ε > 0
such that Bε(x), Bε(ξ) ⊂ Ω and Bε(x) ∩Bε(ξ) = ∅.

Then, apply the second green formula (7) to the domain Ωε = Ω\(Bε(x)∪Bε(ξ))
where u(z) = G(z, x) and v(z) = G(z, ξ). This forms

0 =

∫
Ωε

(
G(z, ξ)∆G(z, x)−G(z, x)∆G(z, ξ)

)
dx

where

G(z, ξ)∆G(z, x)−G(z, x)∆G(z, ξ) = 0

which reduces to

G(x, ξ) = G(ξ, x)

by observing thatG(z, ξ)∆G(z, x) = G(z, ξ)δ(z−x) = G(x, ξ) andG(z, x)∆G(z, ξ) =
G(z, x)δ(z − ξ) = G(ξ, x).

4.2.4
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(a) Use the weak maximum principle (16) to prove that G(x, ξ) ≤ 0 for x, ξ ∈
Ω with x 6= ξ.

We need to prove that G(x, ξ) ≤ 0 for x, ξ ∈ Ω with x 6= ξ. Fix x ∈ Ω. We have
that

G(x, ξ) = K(x− ξ) + ωx(ξ)

where ωx(ξ) must satisfy

{
∆ξωx = 0 in Ω

ωx(ξ) = −K(x− ξ) for ξ ∈ ∂Ω

So, ξ 7→ G(x, ξ) is harmonic for ξ ∈ Ω, x 6= ξ with

G(x, ξ) = 0 for ξ ∈ ∂Ω

As ωx is a bounded function and K(x− ξ)→ −∞ as ξ → x, we see that there
must exist some r > 0 such that Br(x) ⊂ Ω and

G(x, ξ) < 0 for ξ ∈ Br(x) where ξ 6= x

Therefore, in the set Ω' ≡ Ω \Br(x), the function ξ 7→ G(x, ξ) is harmonic with
boundary values ≤ 0 since

G(x, ξ) = 0 for ξ ∈ ∂Ω

G(x, ξ) < 0 for ξ ∈ Br(x) where ξ 6= x

Thus, by the weak maximum principle, G(x, ξ) ≤ 0 for ξ ∈ Ω' which includes
all ξ ∈ Ω where ξ 6= x.

(b) Use the strong maximum principle (15) to prove that G(x, ξ) < 0 for
x, ξ ∈ Ω with x 6= ξ.
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We have already shown that

G(x, ξ) = 0 for ξ ∈ ∂Ω

G(x, ξ) < 0 for ξ ∈ Br(x) where ξ 6= x

So, ξ 7→ G(x, ξ) is not constant in Ω'. Thus, the strong maximum principle
assures that we have no interior maximum point. That is, G(x, ξ) < 0 for all
ξ ∈ Ω' which includes all ξ ∈ Ω where ξ 6= x.

4.2.7 If u ∈ C(Ω) satisfies the mean property of Section 4.1.d, then u is harmonic
in Ω.

Assume u ∈ C(Ω) and satisfies the mean value property:

u(ξ) =
1

ωn

∫
|x|=1

u(ξ + rx)dSx if Br(ξ) ∈ Ω

We need to show that u ∈ C2(Ω) and ∆u = 0.

Fix a ball Br(ξ) such that Br(ξ) ⊂ Ω. Using Poisson's formula on this ball,
with boundary values u|∂Br(ξ), we can apply Theorem 4 on page 122 to find

a harmonic function v ∈ C2(Br(ξ)) ∩ C(Br(ξ)) such that v(z) = u(z) for z ∈
∂Br(ξ).

We will now show that u = v in Br(ξ). To see this, note that u− v satisfies the
mean value property (as both u and v do). Therefore, the maximum principle
holds (as the proof of Theorem 3 on page 109 works for any continuous function
satisfying the mean value property) for u− v on Br(ξ), so we get u− v ≤ 0 in
Br(ξ). Applying the maximum principle again to v − u produces v − u ≤ 0 in
Br(ξ), and we conclude that u− v = 0 in Br(ξ). Hence, u = v in Br(ξ).

Theorem 4 guarantees that v is harmonic. As we have shown that u = v in
Br(ξ), we see that u is harmonic in Ω.

4.2.10 Suppose u ∈ C2(Ω) is harmonic, u ≥ 0, and Ba(0) ⊂ Ω.

(a) Use (44) to show

an−2(a− |ξ|)
(a+ |ξ|)n−1

u(0) ≤ u(ξ) ≤ an−2(a+ |ξ|)
(a− |ξ|)n−1

u(0) for |ξ| < a
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The Poisson integral formula is given by

u(ξ) =
a− |ξ|2

aωn

∫
|x|=a

g(x)

|x− ξ|n
dSx

where g denotes the the value at the boundary of the sphere. As u is harmonic
and Ba(0) ⊂ Ω, we see by Theorem 4 that the function g is the same as the
function u on the boundary.

By the triangle inequality, we have that

|x− ξ| ≥ |x| − |ξ|

So, we know that

|x− ξ|n ≥ |x|n − |ξ|n ≥ (|x| − |ξ|)n = (a− |ξ|)n

Therefore, substituting u = g at the boundary,

∫
|x|=a

u(x)

|x− ξ|n
dSx ≤

∫
|x|=a

u(x)

(a− |ξ|)n
dSx =

1

(a− |ξ|)n

∫
|x|=a

u(x)dSx

In class we showed that

∫
|x|=a

dSx = an−1ωn

So, recalling that the Gauss Mean Value Theorem states that the value at the
center of the sphere is equal to the average of the sphere, we see that

∫
|x|=a

u(x)dSx = an−1ωnu(0)

which implies that

u(ξ) ≤ a− |ξ|2

aωn

an−1ωn
(a− |ξ|)n

u(0) =
an−2(a+ |ξ|)
(a− |ξ|)n−1

u(0)
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To get the second inequality, we apply the second form of the triangle inequality

|x− ξ| ≤ |x|+ |ξ|

to form

|x− ξ|n ≤ |x|n + |ξ|n ≤ (|x|+ |ξ|)n = (a+ |ξ|)n

Proceeding in the same manner as before with u = g at the boundary,

∫
|x|=a

u(x)

|x− ξ|n
dSx ≥

∫
|x|=a

u(x)

(a+ |ξ|)n
dSx =

1

(a− |ξ|)n

∫
|x|=a

u(x)dSx

where

∫
|x|=a

u(x)dSx = an−1ωnu(0)

implies that

u(ξ) ≥ a− |ξ|2

aωn

an−1ωn
(a+ |ξ|)n

u(0) =
an−2(a− |ξ|)
(a+ |ξ|)n−1

u(0)

(b) Prove (45)

I will prove an equivalent form of Harnack's Inequality.

Theorem 1. Suppose that B2r(0) is an open ball in Rn. There is a constant C
depending only on the dimension n such that

supu
Br(0)

≤ C inf
Br(0)

u

for all functions u that are non-negative and harmonic on B2r(0).

Proof. Choose x, y ∈ Br(0). We need to show that u(x) ≤ Cu(y). Let d ≤ 2r
be the distance between x and y, and pick w and z one and two thirds of the
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way from x to y. We are given that u is positive and harmonic on Br(x) and
that Br/3(w) ⊂ Br(x). So, we can use the mean value property to see that

u(w) =
1

vol Br/3(w)

∫
Br/3(w)

u

=
3n

vol Br(x)

∫
Br/3(w)

u

≤ 3n

vol Br(x)

∫
Br(x)

u

≤ 3nu(x)

Analogously, if we compare w, z and z, y, we get

u(w) ≤ 3nu(z)

u(z) ≤ 3nu(y)

Combining all of these distances we have

u(x) ≤ 33nu(y)

where C = 33n as needed.

4.2.11 Use (46) to prove Liouville's theorem.

We need to prove Liouville's theorem which states that if u ∈ C2(Rn) is har-
monic and bounded, then u is constant.

Equation (46) on page 122 states that

|∇u(x0)| ≤ n

a
max

x∈∂Ba(x0)
|u(x)|

But, since we know that u is bounded, we can let C = n

(
max

x∈∂Ba(x0)
|u(x)|

)
to

form

|∇u(x0)| ≤ C

a
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for every x0 ∈ Rn and all a > 0. As C is independent of x0 and a, we let a→∞.
Then, ∇u = 0 for every x0 ∈ Rn. So, u must be a constant.

4.3.1 Show that if u ∈ C2(Ω) is subharmonic then ∆u ≥ 0 in Ω.

First, let’s define u ∈ C2(Ω) as subharmonic if it satisfies

u(x0) ≤ 1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y)

for all x0 ∈ Ω where r ≥ 0 and Br(x0) ⊂ Ω.

We will argue by contradiction. Assume that there is an x0 ∈ Ω such that
∆u(x0) < 0. For concreteness, assume that ∆u(x0) = −δ < 0.

As u ∈ C2(Ω), there exists a rδ < dist(x0, ∂Ω) such that

|∆u(x0)−∆u(y)| < δ

2

for all y where |x0 − y| < rδ. In particular, ∆u(y) < −δ/2 in Brδ(x0).

So, let’s define Ψ(r) according to

Ψ(r) =
1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y)

Then, for r < rδ, we have that

Ψ′(r) =
1

ωn

∫
B1(0)

∆u(rz + x0)dz < − 1

ωn

∫
B1(0)

r2 δ

2
dz < 0

As u ∈ C2(Ω), we have that limr→0+ Ψ(r) = u(x0). Thus, by the above equa-
tion, we see that Ψ(r) < u(x0) for r ∈ (0, rδ). This is a direct contradiction to
the subharmonic property

u(x0) ≤ 1

ωnrn−1

∫
∂Br(x0)

u(y)dA∂Br(x0)(y)

for all x0 ∈ Ω where r ≥ 0 and Br(x0) ⊂ Ω.

74



4.4.2 Let Ω = (0, a) × (0, b) × (0, c) ⊂ R3. Find the Dirichlet eigenvalues and
eigenfunctions for ∆ in Ω.

Following (62) we first write


uxx + uyy + uzz + λu = 0 in Ω

u(x, 0) = 0 = u(x, b) for 0 ≤ x ≤ a
u(0, y) = 0 = u(a, y) for 0 ≤ y ≤ b
u(0, z) = 0 = u(c, z) for 0 ≤ z ≤ c

Then, letting u(x, y, z) = X(x)Y (y)Z(z), we form

X ′′Y Z +XY ′′Z +XY Z ′′ + λXY Z = 0

If we divide every term by XY Z and move λ to the RHS, we form

X ′′

X
+
Y ′′

Y
+
Z ′′

Z
= −λ

Then, acknowledging that X′′

X = −µ2, Y
′′

Y = −ν2, and Z′′

Z = −ω2 are constants,
we see that

λ = µ2 + ν2 + ω2

So, we first need to solve

{
X ′′ + µ2X = 0

X(0) = 0 = X(a)

which produces µm =
mπ

a
and Xm(x) = sin

mπx

a
for m = 1, 2, . . . . Similarly,

{
Y ′′ + ν2Y = 0

Y (0) = 0 = Y (b)

produces νn =
nπ

b
and Yn(y) = sin

nπy

b
for n = 1, 2, . . . . Lastly,
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{
Z ′′ + ω2Z = 0

Z(0) = 0 = Z(c)

produces ωk =
kπ

c
and Zk(z) = sin

kπz

c
for k = 1, 2, . . . .. Therefore,

λmnk = π2(
m2

a2
+
n2

b2
+
k2

c2
)

and

u(x, y, z) = X(x)Y (y)Z(z) = sin
mπx

a
sin

nπy

b
sin

kπz

c

4.4.3 Consider the initial/boundary value problem with forcing term


utt = ∆u+ f(x, t) for x ∈ Ω and t > 0

u(x, 0) = 0, ut(x, 0) = 0 for x ∈ Ω

u(x, t) = 0 for x ∈ ∂Ω and t > 0

Use Duhamel's principle and an expansion of f in eigenfunctions to obtain a
(formal) solution.

Method 1: First, by Duhamel's principle, we can rewrite the system of equa-
tions above as


Utt −∆U = 0 for x ∈ Ω and t > 0

U(x, 0, s) = 0 for x ∈ Ω

U(x, t, s) = 0 for x ∈ ∂Ω and t > 0

Ut(x, 0, s) = f(x, s) for x ∈ Ω

We will solve the problem through eigenfunctions of the ∆ operator. By review-
ing (74), we see that

g(x) = 0

h(x) = f(x, s) =

∞∑
n=1

bn(s)φn(x)
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Let

U(x, t) =

∞∑
n=1

Un(t)φn(x)

Then,

U ′′n (t)φn(x) + λnUn(t)φn(x) = 0 ⇒ U ′′n (t) + λnUn(t) = 0 for every n

By (77), we know that the solution to (74) is given by

U(x, t) =

∞∑
n=1

(
An cos

√
λnt+Bn sin

√
λnt
)
φn(x)

where

Un(t) =
(
An cos

√
λnt+Bn sin

√
λnt
)

At t = 0 we obtain Un(0) = An and U ′n(0) = Bn
√
λn. Therefore,

g(x) = 0 ⇒ An = 0

U ′n(0) = Bn
√
λn = bn ⇒ Bn =

bn√
λn

So, our solution is

U(x, t, s) =

∞∑
n=1

(
Bn sin

√
λnt
)
φn(x) =

∞∑
n=1

bn(s)√
λn

sin(
√
λnt)φn(x)

and we can therefore solve u(x, t) through Duhamel's principle

u(x, t) =

∫ t

0

U(x, t− s, s)ds =

∞∑
n=1

φn(x)√
λn

∫ t

0

bn(s) sin
(√

λn(t− s)
)
ds
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Method 2: We expand u in terms of the Dirichlet eigenfunctions of Laplacian
in Ω.

∆φn + λnφn = 0 in Ω, φn = 0 on ∂Ω

Assume

u(x, t) =

∞∑
n=1

an(t)φn(x), an(t) =

∫
Ω

φn(x)u(x, t) dx

f(x, t) =

∞∑
n=1

fn(t)φn(x), fn(t) =

∫
Ω

φn(x)f(x, t) dx

Then,

a′′n(t) =

∫
Ω

φn(x)utt dx

=

∫
Ω

φn(∆u+ f) dx

=

∫
Ω

φn∆u dx+

∫
Ω

φnf dx

=

∫
Ω

∆φnu dx+

∫
Ω

φnf dx

= −λn
∫

Ω

φnu dx+

∫
Ω

φnf dx

= −λnan(t) + fn(t)

We also have that

an(0) =

∫
Ω

φn(x)u(x, 0) dx = 0

a′n(0) =

∫
Ω

φn(x)ut(x, 0) dx = 0

where we used Green's formula. Thus, we have an ODE which is converted and
solved by Duhamel's principle:
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
a′′n + λnan = fn(t)

an(0) = 0

a′n(0) = 0

which implies that


ã′′n + λnãn = 0

ãn(0, s) = 0

ã′n(0, s) = fn(s)

or

an(t) =

∫ t

0

ãn(t− s, s) ds

With the anzats ãn(t, s) = c1 cos
√
λnt + c2 sin

√
λnt, we get c1 = 0, c2 =

fn(s)/
√
λn, or

ãn(t, s) = fn(s)
sin
√
λnt√
λn

Duhamel's principle gives

an(t) =

∫ t

0

ãn(t− s, s) ds =

∫ t

0

fn(s)
sin(
√
λn(t− s))√
λn

ds

where

u(x, t) =

∞∑
n=1

an(t)φn(x) =

∞∑
n=1

φn(x)√
λn

∫ t

0

fn(s) sin(
√
λn(t− s))ds

4.4.4 Suppose the forcing term in the previous exercise is f(x, t) = A(x) sinωt.
Find the (formal) solution when (a) ω2 6= λn for any of the eigenvalues λn, and
(b) ω2 = λk for some k (resonance).

From the previous problem, we found that
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u(x, t) =

∫ t

0

U(x, t− s, s)ds =

∞∑
n=1

φn(x)√
λn

∫ t

0

fn(s) sin
(√

λn(t− s)
)
ds

If we let f(x, t) = A(x) sinωt, then we have

u(x, t) =

∫ t

0

U(x, t− s, s)ds =

∞∑
n=1

anφn(x)√
λn

∫ t

0

sin(ωs) sin
(√

λn(t− s)
)
ds

where by reducing a trigonometric identity we find that

∫ t

0

sin(ωs) sin
(√

λn(t− s)
)
ds =

ω sin(
√
λnt)−

√
λn sin(ωt)

ω2 − λn

Therefore,

u(x, t) =

∞∑
n=1

an√
λn

ω sin(
√
λnt)−

√
λn sin(ωt)

ω2 − λn
φn(x)

with

an =

∫
Ω

A(x)φn(x)dx

For (a), if ω2 6= λn for any of the eigenvalues λn, then the solution is defined
for all eigenvalues as the denominator isn’t zero. For (b), if ω2 = λk for some
k, then the solution is undefined at all the eigenvalues where ω2 = λk.

4.4.5 Let Ω = (0, a)× (0, b) and consider the initial/boundary value problem


utt = ∆u for x ∈ Ω and t > 0

u(x, 0) = g(x), ut(x, 0) = h(x) for x ∈ Ω
∂u
∂ν (x, t) = 0 for x ∈ ∂Ω and t > 0

(a) Find the eigenvalues and eigenfunctions for the associated Neumann prob-
lem on Ω.
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Letting u(x, y) = X(x)Y (y), we form

X ′′Y +XY ′′ + λXY = 0

If we divide every term by XY and move λ to the RHS, we form

X ′′

X
+
Y ′′

Y
= −λ

Then, acknowledging that X′′

X = −µ2 and Y ′′

Y = −ν2 are constants, we see that

λ = µ2 + ν2

So, we first need to solve

{
X ′′ + µ2X = 0

X ′(0) = 0 = X ′(a)

which produces µm =
mπ

a
and Xm(x) = cos

mπx

a
for m = 1, 2, . . . . Similarly,

{
Y ′′ + ν2Y = 0

Y ′(0) = 0 = Y ′(b)

produces νn =
nπ

b
and Yn(y) = cos

nπy

b
for n = 1, 2, . . . . Therefore,

λmn = π2(
m2

a2
+
n2

b2
)

and

u(x, y) = X(x)Y (y) = cos
mπx

a
cos

nπy

b

(b) Find the solution as an expansion similar to (77).
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The only difference between the Neumann problem and (74) is that the eigen-
functions are now represented with cos instead of sin. So, we can argue analo-
gously as in the application of the wave equation to derive (77) as

u(x, t) =

∞∑
n=1

(
An cos

√
λnt+Bn sin

√
λnt
)
φn(x)

5.1.1 A square two-dimensional plate of side length a is heated to a uniform
temperature U0 > 0. Then at t = 0 all sides are reduced to zero temperature.
Describe the heat diffusion u(x, y, t).

We are given Dirichlet boundary conditions. Therefore, the eigenfunctions of
the Laplacian are

φkl(x, y) = sin
(kπx

a

)
sin
( lπy
a

)
λkl =

π2

a2
(k2 + l2)

Therefore, by (5), the solution to the heat equation is

u(x, y, t) =
∑
k,l

Ak,le
−λkltφkl(x, y)

Where we need to find Ak,l by our initial conditions. At t = 0, we have that

U0 =
∑
k,l

Ak,lφkl(x, y)

Thus, we can therefore analyze the eigenfunctions. We are given that the eigen-

functions are φkl(x, y) = sin
(
kπx
a

)
sin
(
lπy
a

)
. As these are separate, it is natural

to assume that the coefficients are separate. Hence, let’s assume Ak,l = BkCl.
Then,

U0 =
∑
k,l

Ak,lφkl(x, y) =
∑
k

Bk sin
(kπx

a

)∑
l

Cl sin
( lπy
a

)

By applying Fourier series, we see that
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Bk =
√
U0

4a

kπ
k is odd

Cl =
√
U0

4a

lπ
l is odd

Hence,

Ak,l = BkCl =
16a2U0

klπ2
k,l is odd

5.1.4 More generally than in Exercise 2, describe how you would solve the initial
boundary value problem (3) with the homogenuous Dirichlet condition replaced
by u(x, t) = h(x, t) for x ∈ ∂Ω and t > 0.

We have that (3) is defined as


ut = ∆u for x ∈ Ω and t > 0

u(x, 0) = g(x) for x ∈ Ω

u(x, t) = h(x, t) for x ∈ ∂Ω and t > 0

As this equation is linear, we can solve this problem by solving the following
two problems


vt = ∆v for x ∈ Ω and t > 0

v(x, 0) = g(x)− w(x) for x ∈ Ω

v(x, t) = 0 for x ∈ ∂Ω and t > 0{
∆w = 0 for x ∈ Ω

w(x, t) = h(x, t) for x ∈ ∂Ω and t > 0

Then, the solution to the original problem is given by

u(x, t) = v(x, t) + w(x, t)

Where we can proof this by

∆u(x, t)− ut(x) = ∆v(x, t) + ∆w(x)− vt(x)− 0 = 0 x ∈ Ω, t > 0
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The initial conditions are

u(x, 0) = v(x, 0) + w(x, 0) = g(x)− w(x) + w(x) = g(x)

and the boundary condition is also satisfied as

u(x, t) = v(x, t) + w(x, t) = 0 + w(x, t) = h(x, t) x ∈ ∂Ω, t > 0

As t→∞, we have that v(x, t) goes to 0. Therefore,

lim
t→∞

u(x, t) = w(x, t)

which is physically consistent. If we maintain a nonzero temperature at bound-
ary, then temperature distribution will be governed by it after long enough
time.

5.1.5 Suppose the square plate of Exercise 1 is given an initial temperature
distribution u(x, y, 0) = g(x, y) and then insulated so that heat cannot flow
across ∂Ω (i.e., ∂u/∂ν = 0). Use an expansion in appropriate eigenfunctions to
describe the heat diffusion u(x, y, t).

We are given Neumann boundary conditions. Therefore, the eigenfunctions of
the Laplacian are

φkl(x, y) = cos
(kπx

a

)
cos
( lπy
a

)
λkl =

π2

a2
(k2 + l2)

Therefore, by (5), the solution to the heat equation is

u(x, y, t) =
∑
k,l

Ak,le
−λkltφkl(x, y)

Where we need to find Ak,l by our initial conditions. We are given that
u(x, y, 0) = g(x, y). Hence,
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U0 = u(x, y, 0) =
∑
k,l

Ak,lφkl(x, y) = g(x, y)

Thus, we can therefore analyze the eigenfunctions. We are given that the eigen-

functions are φkl(x, y) = cos
(
kπx
a

)
cos
(
lπy
a

)
. As these are separate, it is natu-

ral to assume that the coefficients are separate. Hence, let’s assume Ak,l = BkCl.
Then,

U0 =
∑
k,l

Ak,lφkl(x, y) =
∑
k

Bk cos
(kπx

a

)∑
l

Cl cos
( lπy
a

)
= g(x, y)

By applying Fourier series, we can find exact values for the coefficients Bk and
Cl.

5.1.7 If u satisfies (1), define its heat energy by E(t) =
∫

Ω
u2(x, t)dx.

(a) If U = Ω × (0,∞) and u ∈ C2;1(U) satisfies (1) and either (i) u = 0 on
∂Ω, or (ii) ∂u/∂ν = 0 on ∂Ω, then E(t) is nonincreasing in t.

(b) Use (a) to conclude the uniqueness of a solution u ∈ C2;1(U) for either
the nonhomogenuous Dirichlet problem (9) or the corresponding nonho-
mogenuous Neumann problem.

We can compute the evolution of E by

d

dt
E(t) = ∂t

∫
Ω

u2(x, t)dx =

∫
Ω

uutdx =

∫
Ω

u∆udx

If we integrate by parts, we find that

d

dt
E(t) = −

∫
Ω

|∇u|2dx+

∫
∂Ω

u
∂u

∂v
dSx

Therefore, if we apply either Dirichlet or Neumann boundary conditions, the
second term is zero.

Because of the negative sign, the first term is either negative or zero. We can
also observe that E = 0 implies u = 0 almost everywhere.
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Next, we will analyze uniqueness. Suppose that u, v satisfy the heat equation on
Ω and on ∂Ω with the same boundary conditions (either Dirichlet or Neumann).
Then, it must be that w = u − v also satisfies the heat equation with zero
boundary conditions. This means that Ew(0) = 0, which implies that Ew(t) = 0
for all t > 0. Hence, we see that w ≡ 0 except on a set of measure zero.

5.2.2 Let g(x) be bounded and continuous for x ∈ Rn and define u by (19).

(a) Show |u(x, t)| ≤ sup{|g(y)| : y ∈ Rn}.

We have that

u(x, t) =

∫
Rn
K(x, y, t)g(y)dy

where g is bounded and continuous. Hence,

|u(x, t)| ≤
∫
Rn
|K(x, y, t)g(y)|dy ≤ sup

y∈Rn
|g(y)|

∫
Rn
|K(x, y, t)|dy = sup

y∈Rn
|g(y)|

where the last equality follows from
∫
Rn |K(x, y, t)|dy = 1 as K > 0.

(b) If, in addition,
∫
Rn |g(y)| <∞, show that limt→∞ u(x, t) = 0 uniformly in

x ∈ Rn.

Given

u(x, t) =

∫
Rn
K(x, y, t)g(y)dy =

1

(4πt)n/2

∫
Rn
e−
|x−y|2

4t g(y)dy

where
∫
Rn |g(y)| <∞, we have that

|u(x, t)| ≤ 1

(4πt)n/2

∫
Rn
e−
|x−y|2

4t |g(y)| ≤ 1

(4πt)n/2

∫
Rn
|g(y)|dy

since e−
|x−y|2

4t ≤ 1. The last term in the above inequality goes to zero as t→∞.

5.2.5
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(a) Prove the following weak maximum principle for the heat equation in
U = Rn × (0, T ): Let u be bounded and continuous on U = Rn × [0, T ]
with ut, uxixj ∈ C(U) and ut −∆u ≤ 0 in U . Then

M ≡ sup
(x,t)∈U

u(x, t) = sup
x∈Rn

u(x, 0) ≡ m.

(b) Use the maximum principle of (a) to show that the solution (19) is the
unique solution that is bounded in Rn × [0, T ].

We can rewrite the above problem as

Theorem: Assume u ∈ C(UT ∪ ΓT ) ∩C2,1(UT ) ∩ L∞(UT ) and ut −∆u ≤ 0 in
UT := Ω× (0, T ) where ΓT = Ω× {0} ∪ ∂Ω× (0, T ). Then,

sup
UT

u = sup
Rn

u(x, 0)

Proof.

(1) Let τ < T, ε > 0, k > 0 :

w(x, t) = u(x, t)− ε|x|2 − kt

Observe that
wt −∆w ≤ 2nε− k < 0

when k > 2nε.

(2) Observe that
lim
|x|→∞

w(x, t) = −∞

So, we should take R > 0 such that

|x| > R ⇒ εR2 > 2 sup
x∈Rn

u+ kT + 1 ⇒ w(x, t) < − sup
x∈Rn

u− 1

On the other hand, at (x, t) = (0, 0) we have that

w(0, 0) = u(0, 0) ≥ − sup
x∈Rn

u

Therefore, we can conclude that

sup
Uτ

w = sup
BR(0)×[0,τ)

u = max
BR(0)×[0,τ]

u

(3) Let (x, t) ∈ Uτ such that

w(x, t) = max
UT

w
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If 0 < t < τ, then wt = 0 and ∆w ≤ 0. If t = τ, then wt ≥ 0 and ∆w ≤ 0. Both
of these cases are in contradiction with the observation made at (1). Hence,

max
UT

w = max
Rn

w(x, 0)

(4) Let (x, t) ∈ UT : Then (x, t) ∈ Uτ for some τ < T and

u(x, t) = w(x, t)+ε|x|2 +kt ≤ max
Rn

w(x, 0)+ε|x|2 +kT ≤ sup
Rn

u(x, 0)+ε|x|2 +kT

where the last inequality is true because w ≤ u. Let ε→ 0, then k → 0:

u(x, t) ≤ sup
Rn

u(x, 0)

and therefore
sup
UT

u ≤ sup
Rn

u(x, 0)

The other direction is clear. Hence, we have shown that

sup
UT

u = sup
Rn

u(x, 0)

5.2.7 Heat conduction in a semi-infinite rod with initial temperature g(x) leads
to the equations

{
utt = uxx for x > 0, t > 0

u(x, 0) = g(x) for x > 0

Assume that g is continuous and bounded for x ≥ 0.

(a) If g(0)=0 and the rod has its end maintained at zero temperature, then
we must include the boundary condition u(0, t) = 0 for t > 0. Find a
formula for the solution u(x, t).

We can rewrite the problem as


utt = uxx for x > 0, t > 0

u(x, 0) = g(x) for x > 0

u(0, t) = 0 for t > 0

where g is continuous and bounded for x ≥ 0 and g(0) = 0. To find a formal
solution of u(x, t), we can extend g to be an odd function on all of R. Then,

88



g̃(x) =

{
g(x) if x ≥ 0

−g(−x) if x < 0

Thus, we need to solve

{
ũtt = ũxx for x ∈ R, t > 0

ũ(x, 0) = g̃(x) for x ∈ R

Therefore,

ũ(x, t) =

∫
R
K(x, y, t)g(y)dy

=
1√
4πt

∫ ∞
−∞

e−
(x−y)2

4t g̃(y)dy

=
1√
4πt

[∫ ∞
0

e−
(x−y)2

4t g̃(y)dy +

∫ 0

−∞
e−

(x−y)2
4t g̃(y)dy

]

=
1√
4πt

[∫ ∞
0

e−
(x−y)2

4t g(y)dy −
∫ ∞

0

e−
(x+y)2

4t g(y)dy

]
since

∫ 0

−∞
eydy =

∫ ∞
0

e−ydy

=
1√
4πt

∫ ∞
0

(
e
−x2+2xy−y2

4t − e
−x2−2xy−y2

4t

)
g(y)dy

=
1√
4πt

∫ ∞
0

e−
(x2+y2)

4t

(
e
xy
2t − e

−xy
2t

)
g(y)dy

Hence,

u(x, t) =
1√
4πt

∫ ∞
0

e−
(x2+y2)

4t 2 sinh
(xy

2t

)
g(y)dy since sinh(x) =

ex − e−x

2

Thus, as sinh(0) = 0, we see that u(0, t) = 0.

(b) If the rod has its end insulated so that there is no heat flow at x = 0, then
we must include the boundary condition ux(0, t) = 0 for t > 0. Find a
formula for the solution u(x, t). Do you need to require g′(0) = 0?
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We can rewrite the problem as


utt = uxx for x > 0, t > 0

u(x, 0) = g(x) for x > 0

ux(0, t) = 0 for t > 0

where g is continuous and bounded for x ≥ 0. To find a formal solution of
u(x, t), we can extend g to be an even function on all of R. Then,

g̃(x) =

{
g(x) if x ≥ 0

g(−x) if x < 0

Thus, we need to solve

{
ũtt = ũxx for x ∈ R, t > 0

ũ(x, 0) = g̃(x) for x ∈ R

Therefore,

ũ(x, t) =

∫
R
K(x, y, t)g(y)dy

=
1√
4πt

∫ ∞
−∞

e−
(x−y)2

4t g̃(y)dy

=
1√
4πt

[∫ ∞
0

e−
(x−y)2

4t g̃(y)dy +

∫ 0

−∞
e−

(x−y)2
4t g̃(y)dy

]

=
1√
4πt

[∫ ∞
0

e−
(x−y)2

4t g(y)dy +

∫ ∞
0

e−
(x+y)2

4t g(y)dy

]
since

∫ 0

−∞
eydy =

∫ ∞
0

e−ydy

=
1√
4πt

∫ ∞
0

(
e
−x2+2xy−y2

4t + e
−x2−2xy−y2

4t

)
g(y)dy

=
1√
4πt

∫ ∞
0

e−
(x2+y2)

4t

(
e
xy
2t + e

−xy
2t

)
g(y)dy

Hence,
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u(x, t) =
1√
4πt

∫ ∞
0

e−
(x2+y2)

4t 2 cosh
(xy

2t

)
g(y)dy since cosh(x) =

ex + e−x

2

To find out if g′(0) = 0, we need to check the boundary condition.

ux(x, t) =
1√
4πt

∫ ∞
0

d

dx

[
e−

(x2+y2)
4t 2 cosh

(xy
2t

)]
g(y)dy

=
1√
4πt

∫ ∞
0

[
−2x

4t
e−

(x2+y2)
4t 2 cosh

(xy
2t

)
+ e−

(x2+y2)
4t 2

y

2t
sinh

(xy
2t

)]
g(y)dy

Hence,

ux(0, t) =
1√
4πt

∫ ∞
0

[
0 · e−

y2

4t 2 cosh(0) + e−
y2

4t 2
y

2t
sinh(0)

]
g(y)dy = 0

5.2.9

(b) Verify the following elementary fact: If 0 < α < 1 and β ≥ 0, then there
exists a constant M = M(α, β) > 0 so that zβe−z ≤Me−αz for all z ≥ 0.

We are given that zβe−z ≤Me−αz. Thus,

zβe−z ≤Me−αz ⇒ M ≥ zβe(α−1)z

which is clearly true since for a fixed z ≥ 0, we have that the product of a scalar
with another scalar will be less than or equal to a constant. Observe that zβ is
bounded and that e(α−1)z will also be bounded since 0 < α < 1.

(c) Use (b) to verify the following estimates:

∂tK̃(x, t) ≤ M1

t
K̃(x, 2t), ∂xiK̃(x, t) ≤ M2√

t
K̃(x, 2t),

∂xixj K̃(x, t) ≤ M3

t
K̃(x, 2t).

We have that
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K̃(x, t) ≡ 1

(4πt)n/2
e−
|x|2
4t

Therefore,

∂tK̃(x, t) =
∂

∂t

(
1

(4πt)n/2
e−
|x|2
4t

)
=
(
− n

2

)(
4πt
)−n2−1(

e−
|x|2
4t

)
+
(

4πt
)−n2 ( x2

4t2

)(
e−
|x|2
4t

)
=
(
− n

2

1

4πt
+
x2

4t2

)(
4πt
)−n2 (

e−
|x|2
4t

)
which can be rewritten as

∂tK̃(x, t) ≤ M1

t
K̃(x, 2t)

for some constant M1. For the second inequality, we have that

∂xiK̃(x, t) =
∂

∂xi

(
1

(4πt)n/2
e−
|x|2
4t

)
=
( x2

i

4t2

)(
4πt
)−n2 (

e−
|x|2
4t

)

which can be rewritten as

∂xiK̃(x, t) ≤ M2√
t
K̃(x, 2t)

for some constant M2. Performing a similar calculation will show that

∂xixj K̃(x, t) ≤ M3

t
K̃(x, 2t)

for some constant M3.

5.2.11 Find a formula for the solution of the initial value problem

{
ut = ∆u− u for t > 0, x ∈ Rn

u(x, 0) = g(x) for x ∈ Rn
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where g is continuous and bounded. Is the solution bounded? It it the only
bounded solution?

Let v(x, t) = etu(x, t). If we substitute v into the initial value problem above,
we find that

{
vt = ∆v for t > 0, x ∈ Rn

v(x, 0) = g(x) for x ∈ Rn

Then, as g is continuous and bounded in Rn, we know from Theorem 1 that

v(x, t) =

∫
Rn
K(x, y, t)g(y)dy =

1

(4πt)n/2

∫
Rn
e−
|x−y|2

4t g(y)dy

and as v(x, t) = etu(x, t), we have that

u(x, t) = e−tv(x, t) =
1

(4πt)n/2

∫
Rn
e−
|x−y|2

4t −tg(y)dy

Therefore, u(x, t) must be bounded since v(x, t) is bounded. To show unique-
ness, assume that we have another solution ṽ such that

{
ṽt = ∆ṽ for t > 0, x ∈ Rn

ṽ(x, 0) = g(x) for x ∈ Rn

Then, w = v − ṽ must be solved by

{
wt = ∆w for t > 0, x ∈ Rn

w(x, 0) = 0 for x ∈ Rn

But, we know that bounded solutions of the above initial value problem are
unique. As w is a nontrivial solution, we have that w is unbounded. Hence,
as w = v − ṽ, it must be that ṽ is unbounded and it follows that the bounded
solution v is unique.
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