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JOINT GEOMETRY/FREQUENCY ANALYTICITY OF FIELDS
SCATTERED BY PERIODIC LAYERED MEDIA*

MATTHEW KEHOE AND DAVID P. NICHOLLS f

Abstract. The scattering of linear waves by periodic structures is a crucial phenomena in many
branches of applied physics and engineering. In this paper we establish rigorous analytic results neces-
sary for the proper numerical analysis of a class of High—Order Perturbation of Surfaces/Asymptotic
Waveform Evaluation (HOPS/AWE) methods for numerically simulating scattering returns from
periodic diffraction gratings. More specifically, we prove a theorem on existence and uniqueness of
solutions to a system of partial differential equations which model the interaction of linear waves with
a periodic two-layer structure. Furthermore, we establish joint analyticity of these solutions with
respect to both geometry and frequency perturbations. This result provides hypotheses under which
a rigorous numerical analysis could be conducted on our recently developed HOPS/AWE algorithm.

Key words. High—Order Perturbation of Surfaces Methods; Layered media; Linear wave scat-
tering; Helmholtz equation; Diffraction gratings.

AMS subject classifications. 65N35, 7T8A45, 78B22

1. Introduction. The scattering of linear waves by periodic structures is a cen-
tral model in many problems of scientific and engineering interest. Examples arise in
areas such as geophysics [64, 8], imaging [48], materials science [28], nanoplasmonics
[61, 44, 24], and oceanography [10]. In the case of nanoplasmonics there are many
such topics, for instance, extraordinary optical transmission [23], surface enhanced
spectroscopy [47], and surface plasmon resonance (SPR) biosensing [31, 33, 42, 35].
In all of these physical problems it is necessary to approximate scattering returns in
a fast, robust, and highly accurate fashion.

The most popular approaches to solving these problems numerically in the en-
gineering literature are volumetric methods. These include formulations based on
the Finite Difference [40], Finite Element [34], Discontinuous Galerkin [30], Spectral
Element [20], and Spectral Methods [29, 9, 63]. However, these methods suffer from
the requirement that they discretize the full volume of the problem domain which
results in an unnecessarily large number of degrees of freedom for a periodic layered
structure. There is also the additional difficulty of approximating far—field boundary
conditions explicitly [7].

For these reasons, surface methods are an appealing alternative, and we advocate
the use of Boundary Integral Methods (BIM) [17, 37, 62] or High—Order Perturbation
of Surfaces (HOPS) Methods [45, 46, 11, 12, 13, 54, 56]. Regarding the latter, we
mention the classical Methods of Operator Expansions [45, 46] and Field Expansions
[11, 12, 13], as well as the stabilized Method of Transformed Field Expansions [54, 56].
All of these surface methods are greatly advantaged over the volumetric algorithms
discussed above primarily due to the greatly reduced number of degrees of freedom
that they require. Additionally the ezact enforcement of the far—field boundary condi-
tions is assured for both BIM and HOPS approaches. Consequently, these approaches
are a favorable alternative and are becoming more widely used by practitioners.

There has been a large amount of not only rigorous analysis of systems of partial
differential equations which model these scattering phenomena, but also careful design
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2 MATTHEW KEHOE AND DAVID P. NICHOLLS

of numerical schemes to simulate solutions of these. Most of these results utilize either
Integral Equation techniques or weak formulations of the volumetric problem, each
of which lead to a variety of natural numerical implementations. We recommend
the Habilitationsschrift of T. Arens [3] as a definitive reference for periodic layered
media problems in two and three dimensions. In particular, we refer the interested
reader to Chapter 1 which discusses in great detail the state-of-the-art in uniqueness
and existence results for scattering problems on biperiodic structures. For the two
dimensional problem we further refer the reader to the work of Petit [59]; Bao, Cowsar,
and Masters [5]; and Wilcox [65]. In three dimensions, results on the Helmholtz
equation can be found in Abboud and Nedelec [1]; Bao [4]; Bao, Dobson, and Cox
[6]; and Dobson [22]. In the context of Maxwell’s equations, we point out the work
of Chen and Friedman [16], and Dobson and Friedman [21]. Of course the field has
progressed from these classical contributions in a number of directions, and survey
volumes like [5] give further details.

Oftentimes in applications it is important to consider families of gratings interro-
gated over a range of illumination frequencies. An example of this is the computation
of the Reflectivity Map, R, which records the energy scattered by a layered structure
with interface shaped by z = g(z) and illuminated by radiation of frequency w (see,
e.g., [39]). Taking the point of view that this configuration is simply one in a family
with interface

z=¢ef(z), e€eR, e<1,

illuminated by radiation of frequency

w=w+dw, 6€R, IKI1,

where w is a distinguished frequency of interest, our novel High—Order Perturbation
of Surfaces/Asymptotic Waveform Evaluation (HOPS/AWE) method [50, 36] is a
compelling numerical algorithm. In short, this scheme studies a joint Taylor expansion
of the solutions of the scattering problem in both € and §. Upon insertion of this
expansion into relevant governing equations, the resulting recursions can be solved
up to a prescribed number of Taylor orders once and then simply summed for (e, J)
many times. Clearly, this is a most efficient and accurate method for approximating
R = R(g,0), as we have demonstrated in our previous work [50, 36], provided that this
joint expansion can be justified. The point of the current contribution is to provide
this justification in the language of rigorous analysis (see Theorem 4.6). Not only is
this of intrinsic interest, but it also provides hypotheses and estimates as the starting
point for a rigorous numerical analysis of our HOPS/AWE scheme (see, e.g., [57] for
a possible path) for this problem.

The paper is organized as follows: In Section 2 we summarize the equations which
govern the propagation of linear waves in a two—dimensional periodic structure, and
in Section 2.1 we discuss how the outgoing wave conditions can be exactly enforced
through the use of Transparent Boundary Conditions. Then in Section 3 we restate
our governing equations in terms of interfacial quantities via a Non—Overlapping Do-
main Decomposition phrased in terms of Dirichlet—Neumann Operators (DNOs). In
Section 4 we discuss our analyticity result with a general theory in Section 4.1 and
our specific result in Section 4.2. This requires a study of analyticity of the data in
Section 4.3 and an investigation of the flat—interface situation in Section 4.4. We con-
clude with the final piece required for the general theory: The analyticity of Dirichlet—
Neumann Operators (Section 6). We accomplish this by first establishing analyticity
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JOINT GEOMETRY/FREQUENCY ANALYTICITY OF FIELDS 3

of the underlying fields (Section 5) requiring a special change of variables specified
in Section 5.1. With this we demonstrate the analyticity of the scattered field in
Sections 5.2 and 5.3. Given these theorems, we prove the analyticity of the DNOs in
Section 6.

2. The Governing Equations. An example of the geometry we consider is
displayed in Figure 1: a y—invariant, doubly layered structure with a periodic interface

x

Fig. 1: A two-layer structure with a periodic interface, z = g(z), separating two
material layers, S and S illuminated by plane-wave incidence.

separating the two materials. The interface is specified by the graph of the function
z = g(x) which is d—periodic so that g(z+d) = g(z). Dielectrics occupy both domains
where an insulator (with refractive index n*) fills the region above the graph z = g(z)

SW = {z > g(x)},

and a second material (with index of refraction n*) occupies

SW) = {z < g(a)}.

The superscripts are chosen to conform to the notation of the authors in previous
work [49, 52]. The structure is illuminated from above by monochromatic plane-wave
incident radiation of frequency w and wavenumber k% = n"w/cy = w/c* (co is the
speed of light) aligned with the grooves

. ) ) u . . ) o
EZ(III, Z,t) _ Ae—zwt+w¢z—z’y z’ ﬂ’(az,z,t) _ Be—zwt+zaz—z’y z,

a = k"sin(f), ~":=k"cos(0).

‘We consider the reduced incident fields

E'(z,2) = “'E'(z,2,1), H'(z,2) = “'H'(z,2,1),

This manuscript is for review purposes only.
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4 MATTHEW KEHOE AND DAVID P. NICHOLLS

where the time dependence exp(—iwt) has been factored out. As shown in [59],
the reduced electric and magnetic fields, like the reduced scattered fields, are a—
quasiperiodic due to the incident radiation. To close the problem, we specify that
the scattered radiation is “outgoing,” upward propagating in S*) and downward
propagating in S().

It is well known (see, e.g., Petit [59]) that in this two—dimensional setting, the
time—harmonic Maxwell equations decouple into two scalar Helmholtz problems which
govern the Transverse Electric (TE) and Transverse Magnetic (TM) polarizations.
We define the invariant (y) direction of the scattered (electric or magnetic) field by
@ = (r,2) and @ = w(z,z) in S and S, respectively. The incident radiation in
the upper field is denoted by @‘(z, ).

Following our previous work [50] we further factor out the phase exp(iczx) from
the fields @ and @

u(z,2) = e u(x, 2), w(zr,z)=e T, z),
which, we note, are d—periodic. In light of all of this, we are led to seek outgoing,
d—periodic solutions of

(2.1a) Au + 2iad,u + (v*)*u = 0, z > g(x),
(2.1b) Aw + 2iad,w + (v)?w = 0, z < g(x),
(2.1¢) u—w=_C¢, z = g(x),
(2.1d) Onu — ia(0p9)u — 7 [Onw — ia(Dpg)w] = 1P, z = g(x),
where N := (—8,g,1)T. The Dirichlet and Neumann data are

(2.1e) ((z) = —e~1"9@),

(2.1f) () = (in" + ia(Dpg))e” I,

and

. [1, TE,
7_ =
(ku/kw)Q — (nu/nw)27 TM,
where k¥ = n"w/cy = w/c?” and " = k™ cos(6).

2.1. Transparent Boundary Conditions. The Rayleigh expansions, which
are derived through separation of variables [59], are the periodic, upward/downward
propagating solutions of (2.1a) and (2.1b). In order to truncate the bi-infinite problem
domain to one of finite size we use these to define Transparent Boundary Conditions.
For this we choose values a and b such that

a’>|g‘oo7 _b<_|g‘oo7

and define the artificial boundaries {z = a} and {z = —b}. In {z > a} the Rayleigh
expansions tell us that upward propagating solutions of (2.1a) are

o0
(2.2) u(z,z) = Z G,ePTTIE

p=—00

This manuscript is for review purposes only.
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JOINT GEOMETRY/FREQUENCY ANALYTICITY OF FIELDS 5

while downward propagating solutions of (2.1b) in {z < —b} can be expressed as

oo
w(z,z) = Z dpe’p’“'_”;uz,

p=—00
where, for p € Z and ¢q € {u,w},
2 (kq)2 - 0[2, p € uqa
(2.3) pi= %p, api=a+p, =9 P
¢ 0412) - (kq)Q’ p guqa
and

Ut:={peZ| ai < (k9)?},

which are the propagating modes in the upper and lower layers. With these we can
define the Transparent Boundary Conditions in the following way: we first rewrite
(2.2) as

u(e,) = 3 (apee) et Con = 57§ i),

p=—00 p=—00

and observe that,
u(w,a) = Y e =i ¢(a),
p=—00

and

O.u(w,a) = > (i))Epe’™ =: T[¢(x))],

p=—00

which defines the order—one Fourier multiplier T%. From this we state that upward—
propagating solutions of (2.1a) satisfy the Transparent Boundary Condition at z = a

(2.4) d.u(z,a) — T [u(z,a)] =0, z=a.
A similar calculation leads to the Transparent Boundary Condition at z = —b
(2.5) O,w(x,—b) — T*w(x,—b)] =0, =z=-b,
where
TU[(@)] = ) (—ivy e’
p=—00

We note that these conditions enforce the Upward and Downward Propagating Con-
ditions described by Arens [3].

This manuscript is for review purposes only.



6 MATTHEW KEHOE AND DAVID P. NICHOLLS

With these we now state the full set of governing equations as

(2.6a) Au + 2iad,u + (v*)*u = 0, z > g(x),
(2.6b) Aw + 2iad,w + (v)?w = 0, z < g(x),
(2.6¢) u—w=_¢, z = g(z),
(2.6d) Inu — i (9p9)u — 12 [Oyw — ia(0,9)w] = ¥, z = g(x),
(2.6¢) ou(z,a) — T"u(z,a)] =0, z=a,
(2.6f) d,w(x,—b) — T [w(x,—b)] = 0, z=—b,
(2.6g) u(z +d, z) = u(z, 2),

(2.6h) w(z+d, z) = w(z, 2).

3. A Non—Overlapping Domain Decomposition Method. We now rewrite
our governing equations (2.6) in terms of surface quantities via a Non—Overlapping
Domain Decomposition Method [43, 19, 18]. For this we define

U(x) = u(z,g(x)), U(z):=-dyu(z,g(x)),
W(z) := w(z,g(x)), W(z):=dyw(z,g(z)),

where u is a d—periodic solution of (2.6a) and (2.6e), and w is a d—periodic solution of
(2.6b) and (2.6f). In terms of these, our full governing equations (2.6) are equivalent
to the pair of boundary conditions, (2.6¢) and (2.6d),

(3.1a) U—Ww=c,
(3.1b) — U — (ia)(9eg)U — 72 W — (ia)(arg)W] _s

This set of two equations and four unknowns can be closed by noting that the pairs
{U,U} and {W,W} are connected, e.g., by Dirichlet-Neumann Operators (DNOs),
which [56] showed are well-defined under the hypotheses presently listed.

DEFINITION 3.1. Given an integer s > 0, if g € C*T2 then the unique solution of

(3.2a) Au + 2iad,u + (v*)*u = 0, z > g(z),
(3.2b) u="U, z = g(x),
(3.2¢) O.u(z,a) — T"[u(z,a)] =0, z = a,
(3.2d) u(z +d, z) = u(x, 2),

defines the upper layer DNO
(3.3) G:U—TU.

DEFINITION 3.2. Given an integer s > 0, if g € C°T2 then the unique solution of

(3.4a) Aw + 2iad,w + (v*)?w = 0, z < g(x),
(3.4b) w=W, z = g(x),
(3.4c) d,w(x,—b) — T [w(x,—b)] =0, z = —b,
(3.4d) w(z +d, z) = w(x, 2).

defines the lower layer DNO

(3.5) JW =W

This manuscript is for review purposes only.
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JOINT GEOMETRY/FREQUENCY ANALYTICITY OF FIELDS 7

The interfacial reformulation of our governing equations (3.1) now becomes
(3.6) AV =R,

where

B A= (G + Gug)lia) 727 rgéxg)(m)) V= (v@ » R= (gw) '

4. Joint Analyticity of Solutions. There are many possible ways to analyze
(3.6) rigorously. Following our recent work [36], we select a jointly perturbative ap-
proach based on two smallness assumptions:

1. Boundary Perturbation: g(x) =ef(z), e € R, e < 1,

2. Frequency Perturbation: w = (14 d)w =w+dw, € R, § < 1.
We point out that possibly one or both of these smallness requirements can be relaxed,
provided that the parameters (¢ and/or 0) are real (c.f., [55, 58]). The frequency
perturbation has the following important consequences

kl=w/c?= (14 )w/c? =: (14 §)k? = kT + 0kY, q € {u,w},
a=k"sin(f) = (14 )k"sin(f) =: (1 +0)a = a + da,
71 =k%cos(f) = (1 +0)y7cos(0) =: (14 d)7? =1+ 077, q € {u,w}.

This, in turn, delivers

ap:a+ﬁ:g+6g+ﬁ::gp+5g.

We now pursue this perturbative approach to establish the existence, uniqueness,
and analyticity of solutions to (3.6). To accomplish this we will presently show the
joint analytic dependence of A = A(e,d) and R = R(g,4) upon € and 4, and then
appeal to the regular perturbation theory for linear systems of equations outlined in
[51] to discover the analyticity of the unique solution V.= V(e,§). More precisely,
we view (3.6) as

A(e,0)V(e,0) = R(e,9),
establish the analyticity of A and R so that
(4.1) {A,R}(g,0) = i i {Apm, Ry m ™™,
n=0m=0
and seek a solution of the form
(4.2) V(e 0) = i i V,me™d™,
n=0m=0

which we will show converges in a function space. To pursue this we insert (4.2) and
(4.1) into (3.6) and find, at each perturbation order (n,m), that we must solve

n—1 m—1
AO,OVn,m = Rn,m - Z Anff,OVE,m - Z AO,WZ7T‘VTL,T
n—1 mflzo =
(43) - Z Z An—[,m—rvé,r-
=0 r=0

This manuscript is for review purposes only.
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8 MATTHEW KEHOE AND DAVID P. NICHOLLS

A brief inspection of the formulas for A and R, (3.7), reveals that

I —I
(443‘) AO,O - (GO,O T2JO,O> )

0 0
An7m B (Gn,m TQJ’I’L,m)
0 0

(4.40) o dn @i ()

(4.4c) Rym = (iZ;&) ;

where ¢, , is the Kronecker delta function. Formulas for the terms {(,, m, ¥n,m} can
be found in [36] or by using the recursions described in Section 4.3. The terms Gy,
and Jy, n, are the (n, m)-th corrections of the DNOs G and J, respectively, in a Taylor
series expansion of each jointly in € and §. This is explained in Section 6, together
with precise estimates of the coefficients, G,, ,,, and J, ,,,, in the appropriate Sobolev
spaces. Finally, in Section 4.4 we utilize expressions for the flat-interface DNOs, Gy o
and Jy o, to investigate the mapping properties of the linearized operator, Ag o, and
its inverse.

2), n#0or m#0,

4.1. A General Analyticity Theory. Given these estimates, existence, unique-i
ness, and analyticity of solutions can be deduced in a rather straightforward fashion
using the following result from one of the authors’ previous papers [51] (Theorem 3.2).
This result uses multi-index notation [25], in particular

€1 n1
&= , no= ,
EM npyr
and the convention
oo oo oo
ZAﬁ - Z Z Anyomg €01 €M
n=0 n1=0 nar=0

THEOREM 4.1. Given two Banach spaces, X and 37, suppose that:
1. Ry € Y for all n > 0, and there exist multi—indezed constants C'r > 0,
Bpr > 0 such that
HRFLHY/ S CRBga

2. Aj; XY for all n > 0, and there exist multi—indexed constants Cy > 0,
B > 0 such that

1Azl x5 < CaBi,
3. Ayt Y — X, and there exists a constant C, > 0 such that

A" ly 5 < Ce.

1||)7—>X

This manuscript is for review purposes only.
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JOINT GEOMETRY/FREQUENCY ANALYTICITY OF FIELDS 9

Then the equation (3.6) has a unique solution,
(4.5) V(E) =) Vi,
=0

and there exist multi—indexed constants Cy > 0 and By > 0 such that
[Vallx < CvBy,
for alln >0 and any
Cyv >2C.Cr, By >max{Bg,2B4,4C.CsBa},

enforced componentwise. This implies that, for any multi—indexed constant 0 < p < 1,
(4.5), converges for all € such that BE < p, i.e., € < p/B.

Remark 4.2. In the current context we will use this result in the case M = 2 and

() () )

4.2. Analyticity of Solutions to the Two—Layer Problem. To state our
theorem precisely we briefly define and recall classical properties of the L?-based
Sobolev spaces, H®, of laterally periodic functions [37]. We know that any d—periodic
L? function can be expressed in a Fourier series as

) 1 d
p(x) = Z fpe™*, iy = E/ p(x)e” T,
0

p=—00

[37]. We define the symbol (5)? := 1 +|p|* so that laterally periodic norms for surface
and volumetric functions are defined by

2 ~\28 |~ |2
Il == > Y 1wl
p=—00
and
2 ~\2(s—4 “ ~ 2 ° = ~\2(s—4 ~ 112
lulfe =" > 3)*Y / lip(2)] dz=>" > B aplla g »
{=0 p=—00 £=0 p=—00

respectively. With these we define the laterally d—periodic Sobolev spaces H® as the
L? functions for which ||-|| . is finite. For our present use we define the vector-valued
spaces for s > 0

X® .= {V = (%) ’ UW e HS+3/2([o,d])} ;

and

Y® = {R = (_ﬂb) ‘ ¢ e H3/2([0,d]), € HS“/?([o,d])} .

This manuscript is for review purposes only.
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10 MATTHEW KEHOE AND DAVID P. NICHOLLS

These have the norms

2
2 U 2 2
VI = |(39)] = 10w+ I
2 ¢ ? 2 2
iz = [( )] = 0o+ 190
YS

In addition to these function spaces we also require the following three results from
the classical theory of Sobolev spaces [2, 41] and elliptic partial differential equations
[38, 26, 27, 25]. (See also [53, 32] in the context of HOPS methods.)

LEMMA 4.3. Given an integer s > 0 and any n > 0, there exists a constant
M = M(s) such that if f € C*([0,d]) and v € H*([0,d] x [0,a]) then

(4.6) ||fu||H5 <M |f|cs ||u||Hb )

and if f € C*tY/21([0,d)) and @ € H¥1/2((0,d)) then

(4.7) | 73| <Mm|f

Hs+1/2

C's+1/2+n ”,LNLHHSJrl/Z .

THEOREM 4.4. Given an integer s > 0, if F € H*([0,d])x[0,a]), U € H*+3/2([0,d]) }
P € HTY2([0,d]), then the unique solution of

Au(z, 2) + 2iad,u(z, 2) + (v*)u(z, 2) = F(z, 2), 0<z<a,
u(z,0) = U(x,0), z=0,
azu(x, (Z) - Tu[u(xa a)] = P(ZL’), z=a,
u(z +d, 2) = u(z, 2),

satisfies

(4.8) ull ove < Ce{llF Nl e + NUN grossre + 1Pl gasrsa}

for some constant C, > 0.

LEMMA 4.5. Given an integer s > 0, if F € H*([0,d]) x [0,al]), then (a — 2)F €
H*([0,d]) x [0,a]) and there exists a positive constant Z, = Z,(s) such that

@ =2)Fllge < Za|[Fllge -

We now state our main result.

THEOREM 4.6. Given an integer s > 0, if f € C*+2([0,d]) then the equation (3.6)
has a unique solution, (4.2), and there exist constants B,C, D > 0 such that

[Vimllx. <CB"D™,

for allm,m > 0. This implies that for any 0 < p,o < 1, (4.2) converges for all € such
that Be < p, i.e., € < p/B and all § such that D6 < o, i.e., § < o/D.

Proof. As mentioned above, our strategy is to invoke Theorem 4.1 and thus we
must verify its hypotheses. To begin, we consider the spaces

X=X Y=VY"

This manuscript is for review purposes only.
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In Section 4.3 we will show that the vector R,, ,,,, consisting of (, , and ¥y, o, is
bounded in Y* for any s > 0 provided that f € C**2([0,d]). (This implies that the
R, ., satisfies the estimates of Item 1 in Theorem 4.1.)

Then in Section 6 we show that the operators Gy, ,,, and J,, ,,, in the Taylor series
expansions of the DNOs satisfy appropriate bounds provided that f € C*72([0,d]).
With this, it is clear that the A,, ,, satisfy the estimates of Item 2 in Theorem 4.1.

Finally, in Section 4.4 we show that the estimates and mapping properties of Ay (1)
for Item 3 in Theorem 4.1 hold. a

4.3. Analyticity of the Surface Data. To establish the analyticity of the
Dirichlet and Neumann data we begin by defining

E(x;e,8) i= eI ef @)
and note that we can write (2.1e) and (2.1f) as
C(I) = C(Zl?, &, 6) = 75(937 & 5)5
V() =p(x;e,8) = {i(L+8)y" +i(1 + 6)a(ed f) } E(x; €, ).

We will now demonstrate that the function £ is jointly analytic in € and §, which
clearly demonstrates the joint analytic dependence of the data, {(z;¢,d) and ¥ (z;e, d).

LEMMA 4.7. Given any integer s > 0, if f € C72([0,d]) then the function
E(x;e,0) is jointly analytic in € and 6. Therefore

(4.9) E(x;e,0) = i i Enm ()™,

n=0m=0

and, for constants Cg, Bg, De > 0,
(4.10) ||5n,m||Hs+3/2 < CeBg D¢,
for all n,m > 0.
Proof. By evaluating at € = 0 we find that
E(x;0,0) =1,
so that

1, m=0,
0, m>0.

Eom(z) = {
For € > 0 we use the straightforward computation

9.6 = {—i(1+ )7 [} &,

and the expansion (4.9) to learn that, for m = 0,

-n"f
4.11 = =
(4.11) Ent1,0 ( I ) En,0s

and, for m > 0,
—iy"f
n+1

(412) gn-‘rl,m = < > {6n,m + gn,m—l} .

This manuscript is for review purposes only.
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We work by induction in n and begin by establishing (4.10) at n = 0 for all m > 0.
This is immediate as

||50,0||H5+3/2 =1, ||50,mHHs+3/2 =0.

We now assume (4.10) for all n < 7 and all m > 0, and seek this estimate in the case
n =n and all m > 0. For this we conduct another induction on m, and for m = 0 we
use (4.11) (together with Lemma 4.3 with § = s 4+ 1) to discover

1€ 0llges0/2 < M (W;‘/) €10
<M (WJ' /
n

C) CeBE~' < CeBE,

‘H5+3/2

provided that

Be > M ‘l“’ |f‘Ce+2 > M (W) .

Finally, we assume the estimate (4.10) for n = 7 and m < m, and use (4.12) to learn
that

ol |f s+3/2+
||5ﬁ,ﬁzHHs+3/2 <M (HgW {||gﬁ*1,m||Hs+3/2 + \|5ﬁ71,m71||Hs+3/2}

<M ('7 | 'j_:'c”z) Ce {BF "D + B 'DE '}
S OSB?D?a
provided that

M <h“} Iflcm») SBe oy <|V“\ Jj

n - 2 n

Cs+2> < B£2D£7

which can be accomplished, e.g., with

Bg > 2M |1u| |f|Cs+2 > 2M (MW) ) D€ > la

n

and we are done. 0

With Lemma 4.7 it is straightforward to prove the following analyticity result for
the Dirichlet and Neumann data.

LEMMA 4.8. Given any integer s > 0, if f € C*T2([0,d]) then the functions
C(z;e,0) and Y(x;e,9d) are jointly analytic in e and 6. Therefore

(4'13) {Ca w}(% g, 6) = Z Z {Cn,ma wn,m}($)5n5m

n=0m=0
and, for constants C¢, B¢, D¢ > 0, and Cy, By, Dy > 0,
(4.14) 1Cn,mll grevare < CeBEDE S Mnmll gevsre < CypByD,

for alln,m > 0.

This manuscript is for review purposes only.
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4.4. Invertibility of the Flat—Interface Operator. The final hypothesis to
be verified in order to invoke Theorem 4.1 is the existence and mapping properties
of the linearized (flat—interface) operator Ag . In our previous work [36] we showed
that

I —1I
4.15 Apo = )
(4.15) 0.0 (Go,o 7'2Jo,0>
where
(4.16) Goo = —i7p,  Joo = —iVD,

are order—one Fourier multipliers defined by

oo oo

(4.17) GoolU] = Z (—ivg)Upeim, Jo,o[W] = Z (_w}‘f)ﬁ/peiﬁm_

p=—00 p=—00

LEMMA 4.9. The linear operator Ao o maps X° toY®, is invertible, and its inverse
maps Y?° to X°.

Proof. We begin by defining the operator
A= Goo+7Joo = (—ivh) + 72 (—ivh),
which has Fourier symbol
Ay = (=ing) + (=),
and noting that there exist positive constants Cg, C'y, and Ca such that
[~ < Ca @) =il <Co @), |Ay < Ca ).

Importantly, provided that n* # n™, it is not difficult to establish that Ap # 0.
Finally, one can also find a positive constant Ca-1 such that

1 o
<Car ()"

P

With this it is a simple matter to realize that A~! exists and that

A Hs+3/2 %Hs+1/2’ Afl . Hs+1/2 s HS+3/2'

Next, we write generic elements of X and Y* as

_ (U s (¢ s
Vo (B)exs me($)er

Using the definitions of the norms of X*® and Y*® we find that
2
|A00 VI3 = U = Wliesasz + [[GoolU + 72 Jo.oW [/
<NUNGressre + W lessre + C& U essr2 + CTTHIW 3101572
< max{1, €2, 713 (10 evsso + I oo
= max{1,C%, 7 C3} V(. ,

N
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so that Ag o does indeed map X*® to Y°. We define the operator

2
a1 (oo 1
st (P 1)

and note that

I 0
BApo=ApoB = (0 I) ,
so that the inverse of A exists and Ag ¢ = B. Furthermore, as above,

IAGERI[. = 1A (7 T0.0¢ =) [jresass + A7 (=Goi0¢ = )00
< CA*17'403 ‘CH?{S+3/2 +Ca- ||¢||§15+1/2
+ Ca1CE ¢ + Camt ]
< oo max{L, 703, €&} (¢ v + 10113702 )
= Ca-r max{1,7C3,C2.,} Ry,

and Ag)(l) maps Y° to X?°. O

5. Analyticity of the Scattered Fields. At this point we establish the ana-
lyticity of the fields which define the DNOs, G and J, though, for brevity, we restrict
our attention to the one in the upper layer, G, and note that the considerations for
the lower layer DNO, J, are largely the same.

5.1. Change of Variables and Formal Expansions. For our rigorous demon-
stration we appeal to the Method of Transformed Field Expansions (TFE) [53, 56]
which begins with a domain—flattening change of variables (the o—coordinates of
oceanography [60] and the C—method of the dynamical theory of gratings [15, 14]) to
the governing equations, (3.2),

With this we can rewrite the DNO problem, (3.2), in terms of the transformed field

W (2, 2) = u (m <‘1_ZW) 7+ g(a:’)) ,

as (upon dropping primes)

(5.1a) Au 4+ 2iad,u+ (v*)*u = F(z, 2), 0<z<a,
(5.1b) u(z,0) =U(z), z=0,
(5.1c) o.u(z,a) — T"[u(z,a)] = P(x), z = a,
(5.1d) u(x +d, z) = u(zx, 2),

and the DNO itself, (3.3), as
(5.2) G(9)lU] = —0u(x,0) + H().

The forms for {F, P, H} have been derived and reported in [56] and, for brevity, we
do not repeat them here.

This manuscript is for review purposes only.
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A67 Following our HOPS/AWE philosophy we assume the joint boundary /frequency
468  perturbation

469 g(x) =¢ef(z), w=w+dw=(1+9)w,

170 and study the effect of this on (5.1) and (5.2). These become

471 (5.3a) Au+ 2iad,u+ (v*)u = F(z,2), 0<z<a,
472 (5.3b) u(x,0) = U(x), z=0,

173 (5.3¢) d.u(z,a) — T"[u(x,a)] = P(x), z = a,

474 (5:3d) u(z +d,z) = u(z, 2),

476 and

477 (5.4) G(ef)[U] = —d.u(z,0) + H(z),

178 where F, P, H = O (g) + O (). More specifically,

179 F = —ediv [A; (f)Vu] — 2div [As(f)Vu] — e By (f)Vu — e2By(f) Vu

480 — 2iad0,u — 6°(y"*)*u — 26(y"*)u

481 — 2ieS1(f)adyu — 2ieS1 (f)addu — eS1(f)6* (1) u

482 —2e51(f)6(v*)*u — S (f)(v*)*u

183 —2ieSo(f)ad,u — 2ieSa(f)addyu — 2S5 ( )% (v*)*u

BBS) 228000 — 25() ()

486 and

187 (5.6) P= f%(ef(x))T“ [u(z,a)],

188 and

189 (5.7) H = (9, f)dpu(x,0) + €£G(€f)[U] —&? f(%f) Opu(z,0) — e%(9,f)*0.u(x,0).

190 It is not difficult to see that the forms for the A;, B;, and S; are

191 (5.8a) A = <(1) (1)> ;

192 (5.8D) Ay(f) = (ﬁ?: féi) -2 (_(a :if(azf) (ag)(@f)) |
woes w0=(E ) =5 (o Jren 26T
495 and

o = () 1) mo- ()= 2 O)
497 and

108 (5.10) So=1, Si(f)= —gﬁ Sa(f) = %J@

This manuscript is for review purposes only.
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16 MATTHEW KEHOE AND DAVID P. NICHOLLS

At this point we posit the expansions

u(z,z;€,0) = i i Un,m (2, 2)e™0™, G(e,0) = i i Gr,me"d™,

n=0m=0 n=0m=0

and, upon insertion into (5.3) and (5.4), we find

(5.11a) Aty + 20005 U, m + (lu)2un,m =F,m(z, 2), 0<z<a,
(5.11b) Un,m (2, 0) = Uy m(2), z=0,
(5.11c¢) Ozt m (z,a) — T U, m(z,a)] = ﬁnm(x), z=a,
(5.11d) Un,m (T +d, 2) = Upm (2, 2),

and

(5.12) G (f) = =0t m(2,0) + Hy (7).

The formulas for F, ,,, Pnm and H, , can be readily derived from (5.5), (5.6), and
(5.7) giving
Fpom = —div [A1(f)Vn—1,m] — div [A2(f) Vitn_2.m]
— Bi(f)Vun—1,m — B2(f)Vtn—2.m
— 2000 U m—1 — (1“)2un7m_2 - 2(1")2un7m_1
— 2151 (f) 0z un—1,m — 2851 (f)a0stn—1,m-1 — S1(f)(ju)2un—1,m—2

- 2Sl(f)(lu)QUnflﬂnfl - Sl(f)(lu)zunfl,m
- QiSZ(f)gamunfzm - 2i52(f)gazun72,mfl - SZ(f)(lu)Qunflme
(5.13) =25 (/)Y un—2.m-1 — S2(£)(1*)*un—2,m,
and
(5.14) Py = —é F@)T" [ 1 (2, 0)],
and
I:In,m = (aa:f)amunfl,m(xy 0) + anfl,m(f)[U] - f(aazf) azunflm('r,())
(5.15) — (02 f)?02tn—2.m(x,0).

5.2. Geometric Analyticity of the Upper Field. To prove our joint analyt-
icity result we begin by stating the single, geometric, analyticity result for the field
u under boundary perturbation, ¢, alone. This was essentially established in [53] but
we present it here for completeness.

THEOREM 5.1. Given any integer s > 0, if f € C5+2([0,d]) and U, o € H**3/2((0,d))}]
such that

||Un,0||Hs+3/2 < KUB{}
for constants Ky, By > 0, then u, o € H*t2([0,d] x [0,a]) and
(5.16) ||un,0||Hs+2 < KB”,

for constants K, B > 0.

This manuscript is for review purposes only.
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To establish this we work by induction and the key estimate is the following Lemma.
LEMMA 5.2. Given an integer s > 0, if f € C*T2([0,d]) and

(5.17) ltunoll gsre < KB™, Vn <n,

for constants K, B > 0 then there erists a constant C > 0 such that

Fro

3

(5.18)  max {‘

P e, n—1 2 -2
| |ao]ons b < KC{1F1css B 11 s B2

Proof. [Lemma 5.2] We begin with Fi; o and note that from (5.13), (5.8), (5.9),
and (5.10) we have
1 0ll3re < AT 0num—1.0ll3041 + AT 0zum—1.0ll3041 + AT Outim—1,0l| 771
+ 14520 um 1 0l Fpes1 + | A5 Ontm 2.0l Fpes1 + | A570zum 2,01 301
+ | A5 Opum—,0ll7r+1 + |A57 0. um 2.0l Fross + | BY Ouum—1.0l %
+ | Bf 0-un 1.0l He + |1 B5 Ocum—2.0llErs + |1 B50-um—2,0l7
+ ||2S1ig3zuﬁ_17o||qu + ||S1(lu)2Uﬁ_1,OH%[s + H252ig6$uﬁ_270||%!5

+ 11S2(v*) *um—2,0l s -

We now estimate each of these by applying Lemmas 4.3 and 4.5. We begin with
AT Optum 1,0l eer = || = (2/a) fOrum—1. 0l o1
< (2/a)M|flgs+1l|um—1,0l s+2
< 2/a)M|flosss KB,

and in a similar fashion
[AT*0,um—1,0llzrs+1 = || = ((a — 2)/a)(0z f)Dzum—1,0[ rs+1
< (Za/a)M|0y f|cs+1||um—1,0l| s+
< (ZoJa)M|f|cer2KB™,
Also,
AT Opuz—10llgs+r = || — ((a — 2)/a) (0 f)Oxum—1,0| s+t
< (Za/a)M|0y flcs+1l|um—1,0l s+
< (Za/a)M|f|car2 KB,

and we recall that A7* = 0. Moving to the second order
145" Oaum—2,0ll ro+1 = [1(1/a®) f2Ostiz—2.0]l rro+2

< (1/a2)M2|f %‘s+l||uﬁ72,0||H5+2
< (1/a®>)M?|f|%. KB™ 2.

Also,

14520 um 20l o+r = [|((a = 2)/a®) (8 f)Dutiz—2,0|| rro+2
< (Za/GQ)M2|f|CS+1 |0z fl st ||Uﬁ—2,0||Hs+2
< (Za)a®) MP|f|Eer2 KB™2,
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18 MATTHEW KEHOE AND DAVID P. NICHOLLS

and
145" 0pun 2.0l e+ = [[((a = 2)/a®) f (Ou )Dtimi 2,0l grosr
< (Za/a2)/\/12|f Cs+1|6xf C5+1||uﬁ—270||H5+2
< (Za)a)M?|fI2s KB,
and
| A57 0 un—2.0ll me+1 = [|((a = 2)?/a®)(0x f)?Dzum—2,0] o+
<(Z2)a®) MP(0y fIEesr lum—2.0ll oo

2
)
< (22)@®)M?| [ KB72,

Next for the B; terms

|1BY Opum—1.0llms = [[(1/a) (0 f)Owun—1,0l s
< (1/a)M|0; f e+ |lum—1,0ll m
S (1/0,)M|f cs+2KBH_1,

and Bf = 0. Moving to the second order

= [[(=1/a®) f(uf)Dstim—2,0| 11
< (1/a®)MP| f| o1 |00 flootr [[um—2.0
< (1/a®)M?|f|%e2 KB™ 2,

| B3 Oxum—2,0| 1

|

and
1B50-um—2,0]| e = [[(=1/a)(a — 2)(0: f)*Ozum—2,0| =
< (Za)a®) M?|0; fl o |lum—2.0l| e
< (Zo/a®)M2|f[2is KBT2.
To address the Sy, S1, 52 terms we have
125110, um—1,0llrs = |[(—4/a)iafOrurn—10| ms
< (4/a)aM|f|cs[lum-1,0
< (4/a)aM|flcs KB",

Hs+1

and

151 (v*)?um—1,0llzrs = [[(=2/a)(v*)? fum—1.0l
< (2/a)(y*)* M| fles
< (2/a)(y")*M|f|c-KB" ™,

Uﬁ—l,@”Hs

and
1282100, um—a.0llms = [|(2/a*)iaf?Opun—_2,

< (2/a®)aM?|f

< (2/a®)aM?|f

| e

205 Ur—2,0| =41
& KB 2,
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614 and

o015 [1S2(v*) 2 um—2.0ll s = [1(1/a*)(v*)? FPum—2.0ll -

016 (1/‘1 )y u) M? |f‘CSHUn 20HHs
618 < (1/a*)(v*)* M?|f|2. KB" 2.

619 We satisfy the estimate for ||Fy oz provided that we choose

6, 3+ 27, +4a+2(1")? 2+ 32, + Z2 +2a + (y*)?
620 C>max{< i (7)>M,< ot 2+ 20+ (") el

a a?

621  The estimate for PEO follows from an elementary estimate on the order—one Fourier
622  multiplier T

623 ||13ﬁ,0||Hs+1/2 == (1/a) fT" [um—1,0] | zrs+1/2

624 < (1/a)M|f T [urr—1.0] || o112
625 < (M/a)M|f|gstr/24nCre|lum—1,0l go+s/2
(35 < (1/a)M|f|gs1/24nCru KB™ 1,

628 and provided that

629 C > (1/a)MCrpu,

630 we are done. O
631 With this information, we can now prove Theorem 5.1.

632 Proof. [Theorem 5.1] We proceed by induction and at order n = 0 and m = 0

633 Theorem 4.4 guarantees a unique solution such that
634 ||uO,o||Hs+2 < C€||U070||Hs+3/2.

635 So we choose K > C.||Up ol grs+3/2. We now assume the estimate (5.16) for all n <7
636 and study ugm,o. From Theorem 4.4 we have a unique solution satisfying

637 lumollze+2 < Ce{llEmollme + |1Unollessr + | Proll gasrse}s
638 and appealing to Lemmas 4.8 and 5.2 we find
639 |um ol re+2 < Ce{KuBp + 2KC [|flos+2B™ ' + | |32 B" 2]}

640 We are done provided we choose K > 3C. Ky and

611 B > max {Bg, 6C.C|f|cese, 6085|f|cs+2}. O

3

643 Analogous results hold in the lower field which we record here for completeness.

644 THEOREM 5.3. Given any integer s > 0, if f € C*+2([0,d]) and W, o € H**3/2([0,d))}
645  such that

646 ||Wn70||H5+3/2 < KwB{;LV

This manuscript is for review purposes only.



660

661

662

663

664

665
666
667
668
669
670
671

672

20 MATTHEW KEHOE AND DAVID P. NICHOLLS
for constants Ky, By > 0, then w,, o € H*2([0,d] x [-b,0]) and

||wn,0||Hs+2 < KB",
for constants K, B > 0.

5.3. Joint Analyticity of the Upper Field. We can now proceed to prove
our main result concerning joint analyticity of the transformed field.

THEOREM 5.4. Given any integer s > 0, if f € C*T2([0,d]) and Uy, € H*+3/2([0,d))|}
such that
sl 4372 < K BE D,
for constants Ky, By, Dy > 0, then uy, ., € H*72([0,d] x [0,a]) and
(5.19) tn,ml| gere < KB"D™,
for constants K, B, D > 0.

As before, we establish this result by induction.
LEMMA 5.5. Given an integer s > 0, if f € C*T2([0,d]) and

(5.20) ltn,mllrs+2 < KB"D™, ¥n>0,m <m,

for constants K, B, D > 0 then there exists a constant C > 0 such that

max{|| Fy 7| e,

‘pn)m||Hs+l/2} S Kc{a(fyu)anDml + (lu)QBnDﬁ72

+ g(lu)2|f|cs+an_1Dﬁ + g(lu)2|f|05+23n—lDﬁ—l
+ (lu)2|f CS+QBn—1DW—2 T )2|f|208+2Bn—2Dm

+a(y")’|f )?If

a(y"
%S+an—2Dﬁ—1 4 (lu

205+2 Bn—sz—z } I

Proof. [Lemma 5.5] We begin with F, 7 and note that from (5.13), (5.8), (5.9),
and (5.10) we have

[P mllire < AT Otin mlFrors + AT 0ctn 1wl Frosr + | AT Optin 1 [ 3o
+ | AT 0 un—1 mll3ess + | A5 Onttn—2m | Fess + [|AS*O:ttn—2 [ 40
+ ”Agwamunflﬁ”%{sﬂ + ”A;zazunflﬁ”i{sﬂ + HBfawunfl,ﬁ”%{S
+ |1 Bf 0z tin -1 mll7re + B3 Outin—2m | Fre +
+ 12000 unm—1 7 + 100" w2l Fe + 1200") 71 | e
+ 1281100 un—1 7w | Fs + 12810000 un—1m—1117- + [191(7*)*tn—1,m—2Fs
+ 11251 (v) un—1,m-1l1Fs + 151(3*)? tn—1m |5 + 1125926000 tn—2 7|77
+ (1282100, tn—2m-1 (s + [1S2(0") *tn—2,m 2|
+ 11282 (v") *un—om-1lF= + [1S2(7") tn—2mll7- -
We now estimate each of these by applying Lemmas 4.3 and 4.5. We begin with
AT Opun—1m a1 = [| = (2/a) fOrun—1,m mos
< 2/a)M|flcstrllun—1m re+e
< (2/a)M|f|cs+1 KB" D™,

| B30t 2 77
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and in a similar fashion
AT 017w s+ = || — ((a = 2)/a)(0u f)Oett—1,7 | o1

< (Za/a)M|0y f

< (Za/a)-/\/”f

cstrllun—1 7 o
cs+2 KB 1D™,

Also,

AT Optn 1l et = || = ((a = 2)/a) (02 f)Oxtin—1 m |l protr
< (Za/a)M|0z flost[[tin—1 || pr+2
< (Zy)a)M|f|csr2 KB" D™,

and we recall that A7* = 0. Moving to the second order
145" Oatin—2. 77| rro2 = [[(1/a®) f* Outin—2 | 141
< (1/a*)M?|f
< (1/a*)M?|f

QCsﬂ ||Un72,m||Hs+2

2. KB"2D™.

Also,
HAgzazunf?,ﬁ”HS“ = |l((a - Z)/ag)f(aa:f)ax“nf&ﬁ”H5+1
< (Za)a?) M| fleer1|0n floss [ tin—2m | rese
< (Za)a®) MP|f|Ees2 KB" 2D,
and
1A5" Outin 2 || reer = | ((a = 2)/a®) f (00 )Dtin—2 || o+
< (Za)a®)M?|flces1|0 fl oot |[tn—2. || pr+2
< (Zo)@®)MP|f2sn KB 2D,
and

HAgzazunflﬁHH”l = [((a— z)2/a2)(awf)2azunf2,ﬁ”Hs+l
< (27 ]a®)MP(0n f|Gsss [t 2,5 | o+
< (22/a*) M| f 2 2a K BP2 D

Next for the B; terms
|1 BY Oz un—1,ml 1 = [|(1/a) (0 f)Optin—1,7m mr=

< (/)Mo f

< (L/a)M(f

oo+t |[un—1m e

cor2 KB 1D™,

and Bf = 0. Moving to the second order
185 Outin—2m |l rre = [[(=1/0®) £ (0 ) Ot —2, | 12+
< (1/a®) M?|fl a2 |0 f
< (1/a®) M?|f|3es2 KB 2D,

oot ||un—2.m | He
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|B30:un—2m | Hs = H(—l/az)(a - Z)(a:rffazunflﬁ”Hs
< (Za)a®) M|y fl oot [[un—om | 1re
< (Za)a*)MP|f|Eera KB" 2D,

To address the Sp, S1, 52 terms we have

and

and

and

and

and

and

and

(12600 tn -1 || e < 20|t —1 || s
< 2aKB"D™ 1,

1(2*) 2 unm—all e < ()2 [|un -2 1o
S (lu)QKBanfa

1200") -1l e < 200" Jun -1 [+
< 2(lu)2}—(—BnDﬁ—l7

1281600y tn—1,mll s = [|(=4/a)icfOptin—1 ]| s
< (4/a)aM|flcs || un—1ml ge+
< (4/a)aM|f|c: KB" ' D™,

1251100 tun—1 m-1llm: = ||(—4/a)iafOrtn_1m—1| m:
< (4/a)aM|f
< (4/a)aM|f

o llun—1,m—1llgs

CSKBTL—le—l’

[(=2/a)(v*)? fin—1m—2|
/a)(v*)*M|f|cs
/a) (") M| f|cs KB" D™ 2,

||51( u)2un71,ﬁ72“Hs

< Un1m—2 i
<

2
2

1291 (V) un—1m-1llms = [(=4/a)(v*)? fun—1,m—-1 ms
< (4/a)( 2/\/”f Cs Un—l,m—1||Hs
< (4/a)(y*)’M|f|cs KB" ' D™,

1Y)
1Y)

191 (v*) -1 7wl e = [1(=2/a)(v*)? frin—1.m | s
< (2/a)(v"*)*M|f|cs
< (2/a)(v"*)*M|f|c: KB"'D™,

Un—l,m”HS
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and
1252000, un 2 e = ||(2/a®)iaf?Optin ol #rs
< (Q/GQ)QMQV %} Up—2 7| Frs+r
< (2/a*)aM?|f[3. KB 2D,
and
1282ia0stn—2m-11l5s = [(2/a®)iaf?Optin—27m—1 -
< (2/a®)aM?|f1E: lun—2m-1ll e+t
< (2/a®)aM?|f|3. KB "2 D™,
and
182 (3 un—2m—2llm= = 1(1/a*)(7*)? fPun—2m—2|| -
< (1/a®)(y")? M| f[&s [ un—2,m—2| =
< (1/a®)(y")* M?|f[& KB" 2 D72,
and
1282(v" ) un—om-1llmr = 1(2/a*)(v*)? FPun—2m-1 | e
< (2/a)(y ") SMPFIE osllun—2m—1llms
< (2/a®)(y")*M?| fl& KB" 2D,
and

1S2(v* 2 un—2mll e = 1(1/a*) (") fun—2.mll -
< (1/a*) (") M| 18 lun—2.mll 12+
< (1/a*)(y")*M?|f [ KB"2D™.

We satisfy the estimate for || F}, s ||+ provided that we choose

_ 3+2Z, +8a +8(y*)?
C>max{(2a+3(»yu)2)y< + +8a +8(7") >M,

a

<2+3Za + 72 +4a+4(7“)2> MQ}.

a2
The estimate for Ij’n,m follows from the mapping properties of T,
1Pollresire = || = (1/a) FT [un—1 ] || grosasa
< (1/a)M(f
< (Y a)M|flgst1/2enCre [un—1,7mll o+
< (1/a)M|f|gs+1/240Cpu KB" 1 D™

cs+1/24a || T [Unfl,m] ||Hs+1/2

and provided that

C > (1/a)MCru,

we are done. O
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With this information, we can now prove Theorem 5.4.

Proof. [Theorem 5.4] We proceed by induction and at order m = 0 Theorem 5.1
guarantees a unique solution such that

lunollgs+2 < KB™, ¥n>0.

We now assume the estimate (5.19) for all n, m < 7 and study w, 7. From Theorem
4.4 we have a unique solution satisfying

unmllzere < Ce{ll Fnmllars + 1Ungmllmrossrz + 1 Paall gosisa

and appealing to Lemmas 4.8 and 5.5 we find
Un gl gtz < Cold KyBEDW +2KC | a(v*)?B"D™ ! 4+ (4%)2B"D™ 2
, vu Y g

a(y" | flcw2 BY DT 4y flgese BY DT
(v“)?| fles+2B* ' D™ + a(y*)?| f|Gas2 B"2D™

+a(y)?If 205+an2sz> }

Os+2, 18C’66g(1“)2|f

+
_|_

203+2B"72Dm71 + (lu)2|f

We are done provided we choose K > 9C. Ky and
B > max {BU, 18C.Ca(1")?|f|ces2, 18C.C(y")2| f

18C.C(rIflows2 |

D > max {1,DU, 18C,Ca(y")? | /18065(1“)2}.

These inequalities are obtained from the bounds

Cst2,

B > max { By, 18C.Ca(y")?|flous2, 1/ 18C.Ca(y")2|flcws |,

D > max {DU, 18C,Ca(y™)?, | /18055(1“)2},

BD > 18C.Ca(y*)?|f|cs+2,  BD? > 18C.C(v")?|f|c+2,

B?D > 18C.Ca(y")?|fltsses  B?D? > 18C.C(v*)?| fltes2. 0

As before, a similar analysis will establish the joint analyticity of the lower field
which we now record.

THEOREM 5.6. Given any integer s > 0, if f € C*+2([0,d]) and W, ., € H*3/2(]0,d))}}
such that

Wamll gra+s2 < Kw By Dy,

for constants Ky, By, Dw > 0, then wy, m € H*+2([0,d] x [-b,0]) and

||wn,m||H5+z S I(Ban7

for constants K, B, D > 0.
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6. Analyticity of the Dirichlet—Neumann Operators. Now that we have
established the joint analyticity of the upper field u we move to establishing the
analyticity of the upper layer DNO, G(g) = G(ef). To begin we give a recursive
estimate of the H,, ,,, appearing in (5.15).

LEMMA 6.1. Given an integer s > 0, if f € C**2([0,d]) and
(6.1) tnm | o2 < KB"D™, |Gl etz < KB"D™, Y n < f,m,
for constants K,B.D.K,B,D > 0 where K > K,B > B,D > D, then there exists a

constant C > 0 such that

(62)  Hnmlgrz < KC{|floes B D™ +|f

2.a B 20" |
Proof. [Lemma 6.1] From (5.15) we estimate
||I:[ﬁ,m||Hs+1/2 < M|aacf|Cs+1/2+n||5xuﬁ—1,m($, 0)||Hs+1/2
£ 2 MIlgersiann |Gt m (DU serars
+ é./\/lz\f|cs+1/z+n |0z flos+1/24n | Opuzi—2,m (, 0) | got1/2
+ M0 f G120 102172, (2, 0) [ ot/
This gives
|rnllgessva < K{MIflga BT D™ 4 2 Miflguia BT D7

1 .
+ = MP|f[2a BT D 4 M2

2CS+ZB'TL—2Dm}7
and we are done provided
~ 1
C > <1 + ) max{M, M?}. 0
a

We now have everything we need to prove the analyticity of the upper layer DNO.

THEOREM 6.2. Given any integer s > 0, if f € C5*2([0,d]) and U,, ,, € H*+3/2([0,d))]
such that

|Un.mll grorss» < KuBEDYY,
for constants Ky, By, Dy > 0, then Gy, € H*1/2([0,d]) and
(6.3) |G| gges12 < KB"D™,

for constants K, B,D > 0.

Proof. [Theorem 6.2] As before, we work by induction. At n = 0 we have from
(5.12) that

GO,m - _8zu0,m(x; 0)7

and from Theorem 5.4 we have

|Gounllzessz = 10:0,m (@, 0) | sros1/2 < ltolles < KD™
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870 So we choose K > K and D > D. We now assume B > B and the estimate (6.3) for
871 all n <m; from (5.12) we have

872 1Gmm (DU o172 < 10w m (@, Ol gosase + | Hagn (@) | prosa 2

873 Using the inductive hypothesis, Lemma 6.1, and Theorem 5.4 we have

874 |G, () [U prss1/2 < KB"™D™ + KC {|f|cs+21§ﬁflbm + |f|205+2]§ﬁ’2Dm} .
875 We are done provided K > 2K, D > D, and

0
876 B ZmaX{B,4é|f|cs+2,2\/6|f‘cs+2}.
877 Finally, a similar approach will give the joint analyticity of the DNO in the lower
878 field.
879 THEOREM 6.3. Given any integer s > 0, if f € C*T2([0,d]) and W, ,,, € H*T3/2([0,d))}]
830  such that
881 [Waml grevs. < Kw By Dy,
882 for constants Ky, Bw,Dw > 0, then J,, m € HS+1/2([O,d]) and
883 (64) HJn,m||H3+1/2 < KBan7
884 for constants K, B, D > 0.
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