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Abstract. The scattering of linear waves by periodic structures is a crucial phenomena in many4
branches of applied physics and engineering. In this paper we establish rigorous analytic results neces-5
sary for the proper numerical analysis of a class of High–Order Perturbation of Surfaces/Asymptotic6
Waveform Evaluation (HOPS/AWE) methods for numerically simulating scattering returns from7
periodic diffraction gratings. More specifically, we prove a theorem on existence and uniqueness of8
solutions to a system of partial differential equations which model the interaction of linear waves with9
a periodic two–layer structure. Furthermore, we establish joint analyticity of these solutions with10
respect to both geometry and frequency perturbations. This result provides hypotheses under which11
a rigorous numerical analysis could be conducted on our recently developed HOPS/AWE algorithm.12
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1. Introduction. The scattering of linear waves by periodic structures is a cen-16

tral model in many problems of scientific and engineering interest. Examples arise in17

areas such as geophysics [64, 8], imaging [48], materials science [28], nanoplasmonics18

[61, 44, 24], and oceanography [10]. In the case of nanoplasmonics there are many19

such topics, for instance, extraordinary optical transmission [23], surface enhanced20

spectroscopy [47], and surface plasmon resonance (SPR) biosensing [31, 33, 42, 35].21

In all of these physical problems it is necessary to approximate scattering returns in22

a fast, robust, and highly accurate fashion.23

The most popular approaches to solving these problems numerically in the en-24

gineering literature are volumetric methods. These include formulations based on25

the Finite Difference [40], Finite Element [34], Discontinuous Galerkin [30], Spectral26

Element [20], and Spectral Methods [29, 9, 63]. However, these methods suffer from27

the requirement that they discretize the full volume of the problem domain which28

results in an unnecessarily large number of degrees of freedom for a periodic layered29

structure. There is also the additional difficulty of approximating far–field boundary30

conditions explicitly [7].31

For these reasons, surface methods are an appealing alternative, and we advocate32

the use of Boundary Integral Methods (BIM) [17, 37, 62] or High–Order Perturbation33

of Surfaces (HOPS) Methods [45, 46, 11, 12, 13, 54, 56]. Regarding the latter, we34

mention the classical Methods of Operator Expansions [45, 46] and Field Expansions35

[11, 12, 13], as well as the stabilized Method of Transformed Field Expansions [54, 56].36

All of these surface methods are greatly advantaged over the volumetric algorithms37

discussed above primarily due to the greatly reduced number of degrees of freedom38

that they require. Additionally the exact enforcement of the far–field boundary condi-39

tions is assured for both BIM and HOPS approaches. Consequently, these approaches40

are a favorable alternative and are becoming more widely used by practitioners.41

There has been a large amount of not only rigorous analysis of systems of partial42

differential equations which model these scattering phenomena, but also careful design43
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2 MATTHEW KEHOE AND DAVID P. NICHOLLS

of numerical schemes to simulate solutions of these. Most of these results utilize either44

Integral Equation techniques or weak formulations of the volumetric problem, each45

of which lead to a variety of natural numerical implementations. We recommend46

the Habilitationsschrift of T. Arens [3] as a definitive reference for periodic layered47

media problems in two and three dimensions. In particular, we refer the interested48

reader to Chapter 1 which discusses in great detail the state-of-the-art in uniqueness49

and existence results for scattering problems on biperiodic structures. For the two50

dimensional problem we further refer the reader to the work of Petit [59]; Bao, Cowsar,51

and Masters [5]; and Wilcox [65]. In three dimensions, results on the Helmholtz52

equation can be found in Abboud and Nedelec [1]; Bao [4]; Bao, Dobson, and Cox53

[6]; and Dobson [22]. In the context of Maxwell’s equations, we point out the work54

of Chen and Friedman [16], and Dobson and Friedman [21]. Of course the field has55

progressed from these classical contributions in a number of directions, and survey56

volumes like [5] give further details.57

Oftentimes in applications it is important to consider families of gratings interro-58

gated over a range of illumination frequencies. An example of this is the computation59

of the Reflectivity Map, R, which records the energy scattered by a layered structure60

with interface shaped by z = g(x) and illuminated by radiation of frequency ω (see,61

e.g., [39]). Taking the point of view that this configuration is simply one in a family62

with interface63

z = εf(x), ε ∈ R, ε� 1,64

illuminated by radiation of frequency65

ω = ω + δω, δ ∈ R, δ � 1,66

where ω is a distinguished frequency of interest, our novel High–Order Perturbation67

of Surfaces/Asymptotic Waveform Evaluation (HOPS/AWE) method [50, 36] is a68

compelling numerical algorithm. In short, this scheme studies a joint Taylor expansion69

of the solutions of the scattering problem in both ε and δ. Upon insertion of this70

expansion into relevant governing equations, the resulting recursions can be solved71

up to a prescribed number of Taylor orders once and then simply summed for (ε, δ)72

many times. Clearly, this is a most efficient and accurate method for approximating73

R = R(ε, δ), as we have demonstrated in our previous work [50, 36], provided that this74

joint expansion can be justified. The point of the current contribution is to provide75

this justification in the language of rigorous analysis (see Theorem 4.6). Not only is76

this of intrinsic interest, but it also provides hypotheses and estimates as the starting77

point for a rigorous numerical analysis of our HOPS/AWE scheme (see, e.g., [57] for78

a possible path) for this problem.79

The paper is organized as follows: In Section 2 we summarize the equations which80

govern the propagation of linear waves in a two–dimensional periodic structure, and81

in Section 2.1 we discuss how the outgoing wave conditions can be exactly enforced82

through the use of Transparent Boundary Conditions. Then in Section 3 we restate83

our governing equations in terms of interfacial quantities via a Non–Overlapping Do-84

main Decomposition phrased in terms of Dirichlet–Neumann Operators (DNOs). In85

Section 4 we discuss our analyticity result with a general theory in Section 4.1 and86

our specific result in Section 4.2. This requires a study of analyticity of the data in87

Section 4.3 and an investigation of the flat–interface situation in Section 4.4. We con-88

clude with the final piece required for the general theory: The analyticity of Dirichlet–89

Neumann Operators (Section 6). We accomplish this by first establishing analyticity90
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of the underlying fields (Section 5) requiring a special change of variables specified91

in Section 5.1. With this we demonstrate the analyticity of the scattered field in92

Sections 5.2 and 5.3. Given these theorems, we prove the analyticity of the DNOs in93

Section 6.94

2. The Governing Equations. An example of the geometry we consider is95

displayed in Figure 1: a y–invariant, doubly layered structure with a periodic interface

Fig. 1: A two-layer structure with a periodic interface, z = g(x), separating two
material layers, S(u) and S(w), illuminated by plane–wave incidence.

96

separating the two materials. The interface is specified by the graph of the function97

z = g(x) which is d–periodic so that g(x+d) = g(x). Dielectrics occupy both domains98

where an insulator (with refractive index nu) fills the region above the graph z = g(x)99

S(u) := {z > g(x)},100

and a second material (with index of refraction nw) occupies101

S(w) := {z < g(x)}.102

The superscripts are chosen to conform to the notation of the authors in previous103

work [49, 52]. The structure is illuminated from above by monochromatic plane–wave104

incident radiation of frequency ω and wavenumber ku = nuω/c0 = ω/cu (c0 is the105

speed of light) aligned with the grooves106

Ei(x, z, t) = Ae−iωt+iαx−iγ
uz, Hi(x, z, t) = Be−iωt+iαx−iγ

uz,107

α := ku sin(θ), γu := ku cos(θ).108109

We consider the reduced incident fields110

Ei(x, z) = eiωtEi(x, z, t), Hi(x, z) = eiωtHi(x, z, t),111
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4 MATTHEW KEHOE AND DAVID P. NICHOLLS

where the time dependence exp(−iωt) has been factored out. As shown in [59],112

the reduced electric and magnetic fields, like the reduced scattered fields, are α–113

quasiperiodic due to the incident radiation. To close the problem, we specify that114

the scattered radiation is “outgoing,” upward propagating in S(u) and downward115

propagating in S(w).116

It is well known (see, e.g., Petit [59]) that in this two–dimensional setting, the117

time–harmonic Maxwell equations decouple into two scalar Helmholtz problems which118

govern the Transverse Electric (TE) and Transverse Magnetic (TM) polarizations.119

We define the invariant (y) direction of the scattered (electric or magnetic) field by120

ũ = ũ(x, z) and w̃ = w̃(x, z) in S(u) and S(w), respectively. The incident radiation in121

the upper field is denoted by ũi(x, z).122

Following our previous work [50] we further factor out the phase exp(iαx) from123

the fields ũ and w̃124

u(x, z) = e−iαxũ(x, z), w(x, z) = e−iαxw̃(x, z),125

which, we note, are d–periodic. In light of all of this, we are led to seek outgoing,126

d–periodic solutions of127

∆u+ 2iα∂xu+ (γu)2u = 0, z > g(x),(2.1a)128

∆w + 2iα∂xw + (γw)2w = 0, z < g(x),(2.1b)129

u− w = ζ, z = g(x),(2.1c)130

∂Nu− iα(∂xg)u− τ2 [∂Nw − iα(∂xg)w] = ψ, z = g(x),(2.1d)131132

where N := (−∂xg, 1)T . The Dirichlet and Neumann data are133

ζ(x) := −e−iγ
ug(x),(2.1e)134

ψ(x) := (iγu + iα(∂xg))e−iγ
ug(x),(2.1f)135136

and137

τ2 =

{
1, TE,

(ku/kw)2 = (nu/nw)2, TM,
138

where kw = nwω/c0 = ω/cw and γw = kw cos(θ).139

2.1. Transparent Boundary Conditions. The Rayleigh expansions, which140

are derived through separation of variables [59], are the periodic, upward/downward141

propagating solutions of (2.1a) and (2.1b). In order to truncate the bi–infinite problem142

domain to one of finite size we use these to define Transparent Boundary Conditions.143

For this we choose values a and b such that144

a > |g|∞ , −b < − |g|∞ ,145

and define the artificial boundaries {z = a} and {z = −b}. In {z > a} the Rayleigh146

expansions tell us that upward propagating solutions of (2.1a) are147

(2.2) u(x, z) =

∞∑
p=−∞

âpe
ip̃x+iγup z,148
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while downward propagating solutions of (2.1b) in {z < −b} can be expressed as149

w(x, z) =

∞∑
p=−∞

d̂pe
ip̃x−iγwp z,150

where, for p ∈ Z and q ∈ {u,w},151

(2.3) p̃ :=
2πp

d
, αp := α+ p̃, γqp :=


√

(kq)2 − α2
p, p ∈ Uq,

i
√
α2
p − (kq)2, p 6∈ Uq,

152

and153

Uq := {p ∈ Z | α2
p < (kq)2},154

which are the propagating modes in the upper and lower layers. With these we can155

define the Transparent Boundary Conditions in the following way: we first rewrite156

(2.2) as157

u(x, z) =

∞∑
p=−∞

(
âpe

iγup a
)
eip̃x+iγup (z−a) =

∞∑
p=−∞

ξ̂pe
ip̃x+iγup (z−a),158

and observe that,159

u(x, a) =

∞∑
p=−∞

ξ̂pe
ip̃x =: ξ(x),160

and161

∂zu(x, a) =

∞∑
p=−∞

(iγup )ξ̂pe
ip̃x =: Tu[ξ(x)],162

which defines the order–one Fourier multiplier Tu. From this we state that upward–163

propagating solutions of (2.1a) satisfy the Transparent Boundary Condition at z = a164

(2.4) ∂zu(x, a)− Tu[u(x, a)] = 0, z = a.165

A similar calculation leads to the Transparent Boundary Condition at z = −b166

(2.5) ∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b,167

where168

Tw[ψ(x)] :=

∞∑
p=−∞

(−iγwp )ψ̂pe
ip̃x.169

We note that these conditions enforce the Upward and Downward Propagating Con-170

ditions described by Arens [3].171
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6 MATTHEW KEHOE AND DAVID P. NICHOLLS

With these we now state the full set of governing equations as172

∆u+ 2iα∂xu+ (γu)2u = 0, z > g(x),(2.6a)173

∆w + 2iα∂xw + (γw)2w = 0, z < g(x),(2.6b)174

u− w = ζ, z = g(x),(2.6c)175

∂Nu− iα(∂xg)u− τ2 [∂Nw − iα(∂xg)w] = ψ, z = g(x),(2.6d)176

∂zu(x, a)− Tu[u(x, a)] = 0, z = a,(2.6e)177

∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b,(2.6f)178

u(x+ d, z) = u(x, z),(2.6g)179

w(x+ d, z) = w(x, z).(2.6h)180181

3. A Non–Overlapping Domain Decomposition Method. We now rewrite182

our governing equations (2.6) in terms of surface quantities via a Non–Overlapping183

Domain Decomposition Method [43, 19, 18]. For this we define184

U(x) := u(x, g(x)), Ũ(x) := −∂Nu(x, g(x)),185

W (x) := w(x, g(x)), W̃ (x) := ∂Nw(x, g(x)),186187

where u is a d–periodic solution of (2.6a) and (2.6e), and w is a d–periodic solution of188

(2.6b) and (2.6f). In terms of these, our full governing equations (2.6) are equivalent189

to the pair of boundary conditions, (2.6c) and (2.6d),190

U −W = ζ,(3.1a)191

− Ũ − (iα)(∂xg)U − τ2
[
W̃ − (iα)(∂xg)W

]
= ψ.(3.1b)192

193

This set of two equations and four unknowns can be closed by noting that the pairs194

{U, Ũ} and {W, W̃} are connected, e.g., by Dirichlet–Neumann Operators (DNOs),195

which [56] showed are well–defined under the hypotheses presently listed.196

Definition 3.1. Given an integer s ≥ 0, if g ∈ Cs+2 then the unique solution of197

198

∆u+ 2iα∂xu+ (γu)2u = 0, z > g(x),(3.2a)199

u = U, z = g(x),(3.2b)200

∂zu(x, a)− Tu[u(x, a)] = 0, z = a,(3.2c)201

u(x+ d, z) = u(x, z),(3.2d)202203

defines the upper layer DNO204

(3.3) G : U → Ũ.205

Definition 3.2. Given an integer s ≥ 0, if g ∈ Cs+2 then the unique solution of206

207

∆w + 2iα∂xw + (γw)2w = 0, z < g(x),(3.4a)208

w = W, z = g(x),(3.4b)209

∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b,(3.4c)210

w(x+ d, z) = w(x, z).(3.4d)211212

defines the lower layer DNO213

(3.5) J : W → W̃.214
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The interfacial reformulation of our governing equations (3.1) now becomes215

(3.6) AV = R,216

where217

(3.7) A =

(
I −I

G+ (∂xg)(iα) τ2J − τ2(∂xg)(iα)

)
, V =

(
U
W

)
, R =

(
ζ
−ψ

)
.218

4. Joint Analyticity of Solutions. There are many possible ways to analyze219

(3.6) rigorously. Following our recent work [36], we select a jointly perturbative ap-220

proach based on two smallness assumptions:221

1. Boundary Perturbation: g(x) = εf(x), ε ∈ R, ε� 1,222

2. Frequency Perturbation: ω = (1 + δ)ω = ω + δω, δ ∈ R, δ � 1.223

We point out that possibly one or both of these smallness requirements can be relaxed,224

provided that the parameters (ε and/or δ) are real (c.f., [55, 58]). The frequency225

perturbation has the following important consequences226

kq = ω/cq = (1 + δ)ω/cq =: (1 + δ)kq = kq + δkq, q ∈ {u,w},227

α = ku sin(θ) = (1 + δ)ku sin(θ) =: (1 + δ)α = α+ δα,228

γq = kq cos(θ) = (1 + δ)γq cos(θ) =: (1 + δ)γq = γq + δγq, q ∈ {u,w}.229230

This, in turn, delivers231

αp = α+ p̃ = α+ δα+ p̃ =: αp + δα.232

We now pursue this perturbative approach to establish the existence, uniqueness,233

and analyticity of solutions to (3.6). To accomplish this we will presently show the234

joint analytic dependence of A = A(ε, δ) and R = R(ε, δ) upon ε and δ, and then235

appeal to the regular perturbation theory for linear systems of equations outlined in236

[51] to discover the analyticity of the unique solution V = V(ε, δ). More precisely,237

we view (3.6) as238

A(ε, δ)V(ε, δ) = R(ε, δ),239

establish the analyticity of A and R so that240

(4.1) {A,R}(ε, δ) =

∞∑
n=0

∞∑
m=0

{An,m,Rn,m}εnδm,241

and seek a solution of the form242

(4.2) V(ε, δ) =

∞∑
n=0

∞∑
m=0

Vn,mε
nδm,243

which we will show converges in a function space. To pursue this we insert (4.2) and244

(4.1) into (3.6) and find, at each perturbation order (n,m), that we must solve245

A0,0Vn,m = Rn,m −
n−1∑
`=0

An−`,0V`,m −
m−1∑
r=0

A0,m−rVn,r246

−
n−1∑
`=0

m−1∑
r=0

An−`,m−rV`,r.(4.3)247

248
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A brief inspection of the formulas for A and R, (3.7), reveals that249

A0,0 =

(
I −I

G0,0 τ2J0,0

)
,(4.4a)250

An,m =

(
0 0

Gn,m τ2Jn,m

)
251

+ δn,1 {1 + δm,1} (∂xf)(iα)

(
0 0
1 −τ2

)
, n 6= 0 or m 6= 0,(4.4b)252

Rn,m =

(
ζn,m
−ψn,m

)
,(4.4c)253

254

where δp,q is the Kronecker delta function. Formulas for the terms {ζn,m, ψn,m} can255

be found in [36] or by using the recursions described in Section 4.3. The terms Gn,m256

and Jn,m are the (n,m)–th corrections of the DNOs G and J , respectively, in a Taylor257

series expansion of each jointly in ε and δ. This is explained in Section 6, together258

with precise estimates of the coefficients, Gn,m and Jn,m, in the appropriate Sobolev259

spaces. Finally, in Section 4.4 we utilize expressions for the flat–interface DNOs, G0,0260

and J0,0, to investigate the mapping properties of the linearized operator, A0,0, and261

its inverse.262

4.1. A General Analyticity Theory. Given these estimates, existence, unique-263

ness, and analyticity of solutions can be deduced in a rather straightforward fashion264

using the following result from one of the authors’ previous papers [51] (Theorem 3.2).265

This result uses multi–index notation [25], in particular266

ε̃ :=

 ε1

...
εM

 , ñ :=

 n1

...
nM

 ,267

and the convention268

∞∑
ñ=0

Añ ε̃
ñ =

∞∑
n1=0

· · ·
∞∑

nM=0

An1,...,nM ε
n1
1 · · · ε

nM
M .269

270

Theorem 4.1. Given two Banach spaces, X̃ and Ỹ , suppose that:271

1. Rñ ∈ Ỹ for all ñ ≥ 0, and there exist multi–indexed constants CR > 0,272

BR > 0 such that273

‖Rñ‖Ỹ ≤ CRB
ñ
R,274

2. Añ : X̃ → Ỹ for all ñ ≥ 0, and there exist multi–indexed constants CA > 0,275

BA > 0 such that276

‖Añ‖X̃→Ỹ ≤ CAB
ñ
A,277

3. A−1
0 : Ỹ → X̃, and there exists a constant Ce > 0 such that278 ∥∥A−1

0

∥∥
Ỹ→X̃ ≤ Ce.279
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Then the equation (3.6) has a unique solution,280

(4.5) V(ε̃) =

∞∑
ñ=0

Vñε̃
ñ,281

and there exist multi–indexed constants CV > 0 and BV > 0 such that282

‖Vñ‖X̃ ≤ CVB
ñ
V ,283

for all ñ ≥ 0 and any284

CV ≥ 2CeCR, BV ≥ max {BR, 2BA, 4CeCABA} ,285

enforced componentwise. This implies that, for any multi–indexed constant 0 ≤ ρ̃ < 1,286

(4.5), converges for all ε̃ such that Bε̃ < ρ̃, i.e., ε̃ < ρ̃/B.287

Remark 4.2. In the current context we will use this result in the case M = 2 and288

ε̃ =

(
ε
δ

)
, ñ =

(
n
m

)
, ρ̃ =

(
ρ
σ

)
.289

4.2. Analyticity of Solutions to the Two–Layer Problem. To state our290

theorem precisely we briefly define and recall classical properties of the L2–based291

Sobolev spaces, Hs, of laterally periodic functions [37]. We know that any d–periodic292

L2 function can be expressed in a Fourier series as293

µ(x) =

∞∑
p=−∞

µ̂pe
ip̃x, µ̂p =

1

d

∫ d

0

µ(x)e−ip̃x,294

[37]. We define the symbol 〈p̃〉2 := 1 + |p̃|2 so that laterally periodic norms for surface295

and volumetric functions are defined by296

‖µ‖2Hs :=

∞∑
p=−∞

〈p̃〉2s |µ̂p|2 ,297

and298

‖u‖2Hs :=

s∑
`=0

∞∑
p=−∞

〈p̃〉2(s−`)
∫ a

0

|ûp(z)|2 dz =

s∑
`=0

∞∑
p=−∞

〈p̃〉2(s−`) ‖ûp‖2L2(0,a) ,299

respectively. With these we define the laterally d–periodic Sobolev spaces Hs as the300

L2 functions for which ‖·‖Hs is finite. For our present use we define the vector–valued301

spaces for s ≥ 0302

Xs :=

{
V =

(
U
W

)∣∣∣∣U,W ∈ Hs+3/2([0, d])

}
,303

and304

Y s :=

{
R =

(
ζ
−ψ

)∣∣∣∣ ζ ∈ Hs+3/2([0, d]), ψ ∈ Hs+1/2([0, d])

}
.305
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These have the norms306

‖V‖2Xs =

∥∥∥∥(UW
)∥∥∥∥2

Xs
:= ‖U‖2Hs+3/2 + ‖W‖2Hs+3/2 ,307

‖R‖2Y s =

∥∥∥∥( ζ
−ψ

)∥∥∥∥2

Y s
:= ‖ζ‖2Hs+3/2 + ‖ψ‖2Hs+1/2 .308

309

In addition to these function spaces we also require the following three results from310

the classical theory of Sobolev spaces [2, 41] and elliptic partial differential equations311

[38, 26, 27, 25]. (See also [53, 32] in the context of HOPS methods.)312

Lemma 4.3. Given an integer s ≥ 0 and any η > 0, there exists a constant313

M =M(s) such that if f ∈ Cs([0, d]) and u ∈ Hs([0, d]× [0, a]) then314

(4.6) ‖fu‖Hs ≤M|f |Cs ‖u‖Hs ,315

and if f̃ ∈ Cs+1/2+η([0, d]) and ũ ∈ Hs+1/2([0, d]) then316

(4.7)
∥∥∥f̃ ũ∥∥∥

Hs+1/2
≤M

∣∣∣f̃ ∣∣∣
Cs+1/2+η

‖ũ‖Hs+1/2 .317

Theorem 4.4. Given an integer s ≥ 0, if F ∈ Hs([0, d])×[0, a]), U ∈ Hs+3/2([0, d]),318

P ∈ Hs+1/2([0, d]), then the unique solution of319

∆u(x, z) + 2iα∂xu(x, z) + (γu)2u(x, z) = F (x, z), 0 < z < a,320

u(x, 0) = U(x, 0), z = 0,321

∂zu(x, a)− Tu[u(x, a)] = P (x), z = a,322

u(x+ d, z) = u(x, z),323324

satisfies325

(4.8) ‖u‖Hs+2 ≤ Ce {‖F‖Hs + ‖U‖Hs+3/2 + ‖P‖Hs+1/2} ,326

for some constant Ce > 0.327

Lemma 4.5. Given an integer s ≥ 0, if F ∈ Hs([0, d]) × [0, a]), then (a − z)F ∈328

Hs([0, d])× [0, a]) and there exists a positive constant Za = Za(s) such that329

‖(a− z)F‖Hs ≤ Za ‖F‖Hs .330

We now state our main result.331

Theorem 4.6. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) then the equation (3.6)332

has a unique solution, (4.2), and there exist constants B,C,D > 0 such that333

‖Vn,m‖Xs ≤ CB
nDm,334

for all n,m ≥ 0. This implies that for any 0 ≤ ρ, σ < 1, (4.2) converges for all ε such335

that Bε < ρ, i.e., ε < ρ/B and all δ such that Dδ < σ, i.e., δ < σ/D.336

Proof. As mentioned above, our strategy is to invoke Theorem 4.1 and thus we337

must verify its hypotheses. To begin, we consider the spaces338

X̃ = Xs, Ỹ = Y s.339
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In Section 4.3 we will show that the vector Rn,m, consisting of ζn,m and ψn,m, is340

bounded in Y s for any s ≥ 0 provided that f ∈ Cs+2([0, d]). (This implies that the341

Rn,m satisfies the estimates of Item 1 in Theorem 4.1.)342

Then in Section 6 we show that the operators Gn,m and Jn,m in the Taylor series343

expansions of the DNOs satisfy appropriate bounds provided that f ∈ Cs+2([0, d]).344

With this, it is clear that the An,m satisfy the estimates of Item 2 in Theorem 4.1.345

Finally, in Section 4.4 we show that the estimates and mapping properties of A−1
0,0346

for Item 3 in Theorem 4.1 hold.347

4.3. Analyticity of the Surface Data. To establish the analyticity of the348

Dirichlet and Neumann data we begin by defining349

E(x; ε, δ) := e−i(1+δ)γuεf(x),350

and note that we can write (2.1e) and (2.1f) as351

ζ(x) = ζ(x; ε, δ) = −E(x; ε, δ),352

ψ(x) = ψ(x; ε, δ) =
{
i(1 + δ)γu + i(1 + δ)α(ε∂xf)

}
E(x; ε, δ).353354

We will now demonstrate that the function E is jointly analytic in ε and δ, which355

clearly demonstrates the joint analytic dependence of the data, ζ(x; ε, δ) and ψ(x; ε, δ).356

Lemma 4.7. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) then the function357

E(x; ε, δ) is jointly analytic in ε and δ. Therefore358

(4.9) E(x; ε, δ) =

∞∑
n=0

∞∑
m=0

En,m(x)εnδm,359

and, for constants CE , BE , DE > 0,360

(4.10) ‖En,m‖Hs+3/2 ≤ CEBnEDm
E ,361

for all n,m ≥ 0.362

Proof. By evaluating at ε = 0 we find that363

E(x; 0, δ) = 1,364

so that365

E0,m(x) =

{
1, m = 0,

0, m > 0.
366

For ε > 0 we use the straightforward computation367

∂εE =
{
−i(1 + δ)γuf

}
E ,368

and the expansion (4.9) to learn that, for m = 0,369

(4.11) En+1,0 =

(−iγuf
n+ 1

)
En,0,370

and, for m > 0,371

(4.12) En+1,m =

(−iγuf
n+ 1

)
{En,m + En,m−1} .372
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We work by induction in n and begin by establishing (4.10) at n = 0 for all m ≥ 0.373

This is immediate as374

‖E0,0‖Hs+3/2 = 1, ‖E0,m‖Hs+3/2 = 0.375

We now assume (4.10) for all n < n̄ and all m ≥ 0, and seek this estimate in the case376

n = n̄ and all m ≥ 0. For this we conduct another induction on m, and for m = 0 we377

use (4.11) (together with Lemma 4.3 with s̃ = s+ 1) to discover378

‖En̄,0‖Hs+3/2 ≤M

(∣∣γu∣∣ |f |Cs+3/2+η

n̄

)
‖En̄−1,0‖Hs+3/2379

≤M

(∣∣γu∣∣ |f |Cs+2

n̄

)
CEB

n̄−1
E ≤ CEBn̄E ,380

381

provided that382

BE ≥M
∣∣γu∣∣ |f |Cs+2 ≥M

(∣∣γu∣∣ |f |Cs+2

n̄

)
.383

Finally, we assume the estimate (4.10) for n = n̄ and m < m̄, and use (4.12) to learn384

that385

‖En̄,m̄‖Hs+3/2 ≤M

(∣∣γu∣∣ |f |Cs+3/2+η

n̄

){
‖En̄−1,m̄‖Hs+3/2 + ‖En̄−1,m̄−1‖Hs+3/2

}
386

≤M

(∣∣γu∣∣ |f |Cs+2

n̄

)
CE
{
Bn̄−1
E Dm̄

E +Bn̄−1
E Dm̄−1

E
}

387

≤ CEBn̄EDm̄
E ,388389

provided that390

M

(∣∣γu∣∣ |f |Cs+2

n̄

)
≤ BE

2
, M

(∣∣γu∣∣ |f |Cs+2

n̄

)
≤ BEDE

2
,391

which can be accomplished, e.g., with392

BE ≥ 2M
∣∣γu∣∣ |f |Cs+2 ≥ 2M

(∣∣γu∣∣ |f |Cs+2

n̄

)
, DE ≥ 1,393

and we are done.394

With Lemma 4.7 it is straightforward to prove the following analyticity result for395

the Dirichlet and Neumann data.396

Lemma 4.8. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) then the functions397

ζ(x; ε, δ) and ψ(x; ε, δ) are jointly analytic in ε and δ. Therefore398

(4.13) {ζ, ψ}(x; ε, δ) =

∞∑
n=0

∞∑
m=0

{ζn,m, ψn,m}(x)εnδm399

and, for constants Cζ , Bζ , Dζ > 0, and Cψ, Bψ, Dψ > 0,400

(4.14) ‖ζn,m‖Hs+3/2 ≤ CζBnζDm
ζ , ‖ψn,m‖Hs+3/2 ≤ CψBnψDm

ψ ,401

for all n,m ≥ 0.402
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4.4. Invertibility of the Flat–Interface Operator. The final hypothesis to403

be verified in order to invoke Theorem 4.1 is the existence and mapping properties404

of the linearized (flat–interface) operator A0,0. In our previous work [36] we showed405

that406

(4.15) A0,0 =

(
I −I

G0,0 τ2J0,0

)
,407

where408

(4.16) G0,0 = −iγuD, J0,0 = −iγwD,409

are order–one Fourier multipliers defined by410

(4.17) G0,0[U ] =

∞∑
p=−∞

(−iγup )Ûpe
ip̃x, J0,0[W ] =

∞∑
p=−∞

(−iγwp )Ŵpe
ip̃x.411

Lemma 4.9. The linear operator A0,0 maps Xs to Y s, is invertible, and its inverse412

maps Y s to Xs.413

Proof. We begin by defining the operator414

∆ := G0,0 + τ2J0,0 = (−iγuD) + τ2(−iγwD),415

which has Fourier symbol416

∆̂p = (−iγup ) + τ2(−iγwp ),417

and noting that there exist positive constants CG, CJ , and C∆ such that418 ∣∣−iγup ∣∣ ≤ CG 〈p̃〉 , ∣∣−iγwp ∣∣ ≤ CJ 〈p̃〉 , ∣∣∣∆̂p

∣∣∣ ≤ C∆ 〈p̃〉 .419

Importantly, provided that nu 6= nw, it is not difficult to establish that ∆̂p 6= 0.420

Finally, one can also find a positive constant C∆−1 such that421 ∣∣∣∣∣ 1

∆̂p

∣∣∣∣∣ ≤ C∆−1 〈p̃〉−1
.422

With this it is a simple matter to realize that ∆−1 exists and that423

∆ : Hs+3/2 → Hs+1/2, ∆−1 : Hs+1/2 → Hs+3/2.424

Next, we write generic elements of Xs and Y s as425

V =

(
U
W

)
∈ Xs, R =

(
ζ
−ψ

)
∈ Y s.426

Using the definitions of the norms of Xs and Y s we find that427

‖A0,0V‖2Y s = ‖U −W‖2Hs+3/2 +
∥∥G0,0U + τ2J0,0W

∥∥2

Hs+1/2428

≤ ‖U‖2Hs+3/2 + ‖W‖2Hs+3/2 + C2
G ‖U‖

2
Hs+3/2 + C2

Jτ
4 ‖W‖2Hs+3/2429

≤ max{1, C2
G, τ

4C2
J}
(
‖U‖2Hs+3/2 + ‖W‖2Hs+3/2

)
430

= max{1, C2
G, τ

4C2
J} ‖V‖

2
Xs ,431432

This manuscript is for review purposes only.



14 MATTHEW KEHOE AND DAVID P. NICHOLLS

so that A0,0 does indeed map Xs to Y s. We define the operator433

B := ∆−1

(
τ2J0,0 I
−G0,0 I

)
,434

and note that435

BA0,0 = A0,0B =

(
I 0
0 I

)
,436

so that the inverse of A0,0 exists and A−1
0,0 = B. Furthermore, as above,437 ∥∥A−1

0,0R
∥∥2

Xs
=
∥∥∆−1(τ2J0,0ζ − ψ)

∥∥2

Hs+3/2 +
∥∥∆−1(−G0,0ζ − ψ)

∥∥2

Hs+3/2438

≤ C∆−1τ4C2
J ‖ζ‖

2
Hs+3/2 + C∆−1 ‖ψ‖2Hs+1/2439

+ C∆−1C2
G ‖ζ‖

2
Hs+3/2 + C∆−1 ‖ψ‖2Hs+1/2440

≤ C∆−1 max{1, τ4C2
J , C

2
G}
(
‖ζ‖2Hs+3/2 + ‖ψ‖2Hs+1/2

)
441

= C∆−1 max{1, τ4C2
J , C

2
G, } ‖R‖Y s ,442443

and A−1
0,0 maps Y s to Xs.444

5. Analyticity of the Scattered Fields. At this point we establish the ana-445

lyticity of the fields which define the DNOs, G and J , though, for brevity, we restrict446

our attention to the one in the upper layer, G, and note that the considerations for447

the lower layer DNO, J , are largely the same.448

5.1. Change of Variables and Formal Expansions. For our rigorous demon-449

stration we appeal to the Method of Transformed Field Expansions (TFE) [53, 56]450

which begins with a domain–flattening change of variables (the σ–coordinates of451

oceanography [60] and the C–method of the dynamical theory of gratings [15, 14]) to452

the governing equations, (3.2),453

x′ = x, z′ = a

(
z − g(x)

a− g(x)

)
.454

With this we can rewrite the DNO problem, (3.2), in terms of the transformed field455

u′(x′, z′) := u

(
x′,

(
a− g(x′)

a

)
z′ + g(x′)

)
,456

as (upon dropping primes)457

∆u+ 2iα∂xu+ (γu)2u = F (x, z), 0 < z < a,(5.1a)458

u(x, 0) = U(x), z = 0,(5.1b)459

∂zu(x, a)− Tu[u(x, a)] = P (x), z = a,(5.1c)460

u(x+ d, z) = u(x, z),(5.1d)461462

and the DNO itself, (3.3), as463

(5.2) G(g)[U ] = −∂zu(x, 0) +H(x).464

The forms for {F, P,H} have been derived and reported in [56] and, for brevity, we465

do not repeat them here.466
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Following our HOPS/AWE philosophy we assume the joint boundary/frequency467

perturbation468

g(x) = εf(x), ω = ω + δω = (1 + δ)ω,469

and study the effect of this on (5.1) and (5.2). These become470

∆u+ 2iα∂xu+ (γu)2u = F̃ (x, z), 0 < z < a,(5.3a)471

u(x, 0) = U(x), z = 0,(5.3b)472

∂zu(x, a)− Tu[u(x, a)] = P̃ (x), z = a,(5.3c)473

u(x+ d, z) = u(x, z),(5.3d)474475

and476

(5.4) G(εf)[U ] = −∂zu(x, 0) + H̃(x),477

where F̃, P̃, H̃ = O (ε) +O (δ). More specifically,478

F̃ = −εdiv [A1(f)∇u]− ε2div [A2(f)∇u]− εB1(f)∇u− ε2B2(f)∇u479

− 2iαδ∂xu− δ2(γu)2u− 2δ(γu)2u480

− 2iεS1(f)α∂xu− 2iεS1(f)αδ∂xu− εS1(f)δ2(γu)2u481

− 2εS1(f)δ(γu)2u− εS1(f)(γu)2u482

− 2iε2S2(f)α∂xu− 2iε2S2(f)αδ∂xu− ε2S2(f)δ2(γu)2u483

− 2ε2S2(f)δ(γu)2u− ε2S2(f)(γu)2u,(5.5)484485

and486

(5.6) P̃ = −1

a
(εf(x))Tu [u(x, a)] ,487

and488

(5.7) H̃ = ε(∂xf)∂xu(x, 0) + ε
f

a
G(εf)[U ]− ε2 f(∂xf)

a
∂xu(x, 0)− ε2(∂xf)2∂zu(x, 0).489

It is not difficult to see that the forms for the Aj , Bj , and Sj are490

A0 =

(
1 0
0 1

)
,(5.8a)491

A1(f) =

(
Axx1 Axz1

Azx1 Azz1

)
=

1

a

(
−2f −(a− z)(∂xf)

−(a− z)(∂xf) 0

)
,(5.8b)492

A2(f) =

(
Axx2 Axz2

Azx2 Azz2

)
=

1

a2

(
f2 (a− z)f(∂xf)

(a− z)f(∂xf) (a− z)2(∂xf)2

)
,(5.8c)493

494

and495

(5.9) B1(f) =

(
Bx1
Bz1

)
=

1

a

(
∂xf

0

)
, B2(f) =

(
Bx2
Bz2

)
=

1

a2

(
−f(∂xf)

−(a− z)(∂xf)2

)
,496

and497

(5.10) S0 = 1, S1(f) = −2

a
f, S2(f) =

1

a2
f2.498

This manuscript is for review purposes only.



16 MATTHEW KEHOE AND DAVID P. NICHOLLS

At this point we posit the expansions499

u(x, z; ε, δ) =

∞∑
n=0

∞∑
m=0

un,m(x, z)εnδm, G(ε, δ) =

∞∑
n=0

∞∑
m=0

Gn,mε
nδm,500

and, upon insertion into (5.3) and (5.4), we find501

∆un,m + 2iα∂xun,m + (γu)2un,m = F̃n,m(x, z), 0 < z < a,(5.11a)502

un,m(x, 0) = Un,m(x), z = 0,(5.11b)503

∂zun,m(x, a)− Tu[un,m(x, a)] = P̃n,m(x), z = a,(5.11c)504

un,m(x+ d, z) = un,m(x, z),(5.11d)505506

and507

(5.12) Gn,m(f) = −∂zun,m(x, 0) + H̃n,m(x).508

The formulas for F̃n,m, P̃n,m and H̃n,m can be readily derived from (5.5), (5.6), and509

(5.7) giving510

F̃n,m = −div [A1(f)∇un−1,m]− div [A2(f)∇un−2,m]511

−B1(f)∇un−1,m −B2(f)∇un−2,m512

− 2iα∂xun,m−1 − (γu)2un,m−2 − 2(γu)2un,m−1513

− 2iS1(f)α∂xun−1,m − 2iS1(f)α∂xun−1,m−1 − S1(f)(γu)2un−1,m−2514

− 2S1(f)(γu)2un−1,m−1 − S1(f)(γu)2un−1,m515

− 2iS2(f)α∂xun−2,m − 2iS2(f)α∂xun−2,m−1 − S2(f)(γu)2un−2,m−2516

− 2S2(f)(γu)2un−2,m−1 − S2(f)(γu)2un−2,m,(5.13)517518

and519

(5.14) P̃n,m = −1

a
f(x)Tu [un−1,m(x, a)] ,520

and521

H̃n,m = (∂xf)∂xun−1,m(x, 0) +
f

a
Gn−1,m(f)[U ]− f(∂xf)

a
∂xun−2,m(x, 0)522

− (∂xf)2∂zun−2,m(x, 0).(5.15)523524

5.2. Geometric Analyticity of the Upper Field. To prove our joint analyt-525

icity result we begin by stating the single, geometric, analyticity result for the field526

u under boundary perturbation, ε, alone. This was essentially established in [53] but527

we present it here for completeness.528

Theorem 5.1. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Un,0 ∈ Hs+3/2([0, d])529

such that530

‖Un,0‖Hs+3/2 ≤ KUB
n
U531

for constants KU , BU > 0, then un,0 ∈ Hs+2([0, d]× [0, a]) and532

(5.16) ‖un,0‖Hs+2 ≤ KBn,533

for constants K,B > 0.534
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To establish this we work by induction and the key estimate is the following Lemma.535

Lemma 5.2. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) and536

(5.17) ‖un,0‖Hs+2 ≤ KBn, ∀n < n,537

for constants K,B > 0 then there exists a constant C > 0 such that538

(5.18) max
{∥∥∥F̃n,0∥∥∥

Hs
,
∥∥∥P̃n,0∥∥∥

Hs+1/2

}
≤ KC

{
|f |Cs+2 B

n−1 + |f |2Cs+2 B
n−2
}
.539

Proof. [Lemma 5.2] We begin with F̃n,0 and note that from (5.13), (5.8), (5.9),540

and (5.10) we have541

‖F̃n,0‖2Hs ≤ ‖Axx1 ∂xun−1,0‖2Hs+1 + ‖Axz1 ∂zun−1,0‖2Hs+1 + ‖Azx1 ∂xun−1,0‖2Hs+1542

+ ‖Azz1 ∂zun−1,0‖2Hs+1 + ‖Axx2 ∂xun−2,0‖2Hs+1 + ‖Axz2 ∂zun−2,0‖2Hs+1543

+ ‖Azx2 ∂xun−2,0‖2Hs+1 + ‖Azz2 ∂zun−2,0‖2Hs+1 + ‖Bx1∂xun−1,0‖2Hs544

+ ‖Bz1∂zun−1,0‖2Hs + ‖Bx2∂xun−2,0‖2Hs + ‖Bz2∂zun−2,0‖2Hs545

+ ‖2S1iα∂xun−1,0‖2Hs + ‖S1(γu)2un−1,0‖2Hs + ‖2S2iα∂xun−2,0‖2Hs546

+ ‖S2(γu)2un−2,0‖2Hs .547548

We now estimate each of these by applying Lemmas 4.3 and 4.5. We begin with549

‖Axx1 ∂xun−1,0‖Hs+1 = ‖ − (2/a)f∂xun−1,0‖Hs+1550

≤ (2/a)M|f |Cs+1‖un−1,0‖Hs+2551

≤ (2/a)M|f |Cs+1KBn−1,552553

and in a similar fashion554

‖Axz1 ∂zun−1,0‖Hs+1 = ‖ − ((a− z)/a)(∂xf)∂zun−1,0‖Hs+1555

≤ (Za/a)M|∂xf |Cs+1‖un−1,0‖Hs+2556

≤ (Za/a)M|f |Cs+2KBn−1.557558

Also,559

‖Azx1 ∂xun−1,0‖Hs+1 = ‖ − ((a− z)/a)(∂xf)∂xun−1,0‖Hs+1560

≤ (Za/a)M|∂xf |Cs+1‖un−1,0‖Hs+2561

≤ (Za/a)M|f |Cs+2KBn−1,562563

and we recall that Azz1 ≡ 0. Moving to the second order564

‖Axx2 ∂xun−2,0‖Hs+1 = ‖(1/a2)f2∂xun−2,0‖Hs+1565

≤ (1/a2)M2|f |2Cs+1‖un−2,0‖Hs+2566

≤ (1/a2)M2|f |2Cs+1KBn−2.567568

Also,569

‖Axz2 ∂zun−2,0‖Hs+1 = ‖((a− z)/a2)f(∂xf)∂xun−2,0‖Hs+1570

≤ (Za/a
2)M2|f |Cs+1 |∂xf |Cs+1‖un−2,0‖Hs+2571

≤ (Za/a
2)M2|f |2Cs+2KBn−2,572573
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and574

‖Azx2 ∂xun−2,0‖Hs+1 = ‖((a− z)/a2)f(∂xf)∂zun−2,0‖Hs+1575

≤ (Za/a
2)M2|f |Cs+1 |∂xf |Cs+1‖un−2,0‖Hs+2576

≤ (Za/a
2)M2|f |2Cs+2KBn−2,577578

and579

‖Azz2 ∂zun−2,0‖Hs+1 = ‖((a− z)2/a2)(∂xf)2∂zun−2,0‖Hs+1580

≤ (Z2
a/a

2)M2|∂xf |2Cs+1‖un−2,0‖Hs+2581

≤ (Z2
a/a

2)M2|f |2Cs+2KBn−2.582583

Next for the B1 terms584

‖Bx1∂xun−1,0‖Hs = ‖(1/a)(∂xf)∂xun−1,0‖Hs585

≤ (1/a)M|∂xf |Cs+1‖un−1,0‖Hs586

≤ (1/a)M|f |Cs+2KBn−1,587588

and Bz1 ≡ 0. Moving to the second order589

‖Bx2∂xun−2,0‖Hs = ‖(−1/a2)f(∂xf)∂xun−2,0‖Hs590

≤ (1/a2)M2|f |Cs+1 |∂xf |Cs+1‖un−2,0‖Hs591

≤ (1/a2)M2|f |2Cs+2KBn−2,592593

and594

‖Bz2∂zun−2,0‖Hs = ‖(−1/a2)(a− z)(∂xf)2∂zun−2,0‖Hs595

≤ (Za/a
2)M2|∂xf |Cs+1‖un−2,0‖Hs596

≤ (Za/a
2)M2|f |2Cs+2KBn−2.597598

To address the S0, S1, S2 terms we have599

‖2S1iα∂xun−1,0‖Hs = ‖(−4/a)iαf∂xun−1,0‖Hs600

≤ (4/a)αM|f |Cs‖un−1,0‖Hs+1601

≤ (4/a)αM|f |CsKBn−1,602603

and604

‖S1(γu)2un−1,0‖Hs = ‖(−2/a)(γu)2fun−1,0‖Hs605

≤ (2/a)(γu)2M|f |Cs‖un−1,0‖Hs606

≤ (2/a)(γu)2M|f |CsKBn−1,607608

and609

‖2S2iα∂xun−2,0‖Hs = ‖(2/a2)iαf2∂xun−2,0‖Hs610

≤ (2/a2)αM2|f |2Cs‖un−2,0‖Hs+1611

≤ (2/a2)αM2|f |2CsKBn−2,612613
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and614

‖S2(γu)2un−2,0‖Hs = ‖(1/a2)(γu)2f2un−2,0‖Hs615

≤ (1/a2)(γu)2M2|f |2Cs‖un−2,0‖Hs616

≤ (1/a2)(γu)2M2|f |2CsKBn−2.617618

We satisfy the estimate for ‖F̃n,0‖Hs provided that we choose619

C > max

{(
3 + 2Za + 4α+ 2(γu)2

a

)
M,

(
2 + 3Za + Z2

a + 2α+ (γu)2

a2

)
M2

}
.620

The estimate for P̃n,0 follows from an elementary estimate on the order–one Fourier621

multiplier Tu622

‖P̃n,0‖Hs+1/2 = ‖ − (1/a)fTu [un−1,0] ‖Hs+1/2623

≤ (1/a)M|f |Cs+1/2+η‖Tu [un−1,0] ‖Hs+1/2624

≤ (1/a)M|f |Cs+1/2+ηCTu‖un−1,0‖Hs+3/2625

≤ (1/a)M|f |Cs+1/2+ηCTuKB
n−1,626627

and provided that628

C > (1/a)MCTu ,629

we are done.630

With this information, we can now prove Theorem 5.1.631

Proof. [Theorem 5.1] We proceed by induction and at order n = 0 and m = 0632

Theorem 4.4 guarantees a unique solution such that633

‖u0,0‖Hs+2 ≤ Ce‖U0,0‖Hs+3/2 .634

So we choose K ≥ Ce‖U0,0‖Hs+3/2 . We now assume the estimate (5.16) for all n < n635

and study un,0. From Theorem 4.4 we have a unique solution satisfying636

‖un,0‖Hs+2 ≤ Ce{‖F̃n,0‖Hs + ‖Un,0‖Hs+3/2 + ‖P̃n,0‖Hs+1/2},637

and appealing to Lemmas 4.8 and 5.2 we find638

‖un,0‖Hs+2 ≤ Ce{KUB
n
U + 2KC

[
|f |Cs+2Bn−1 + |f |2Cs+2Bn−2

]
}.639

We are done provided we choose K ≥ 3CeKU and640

B > max
{
Bζ , 6CeC|f |Cs+2 ,

√
6CeC|f |Cs+2

}
.641

642

Analogous results hold in the lower field which we record here for completeness.643

Theorem 5.3. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Wn,0 ∈ Hs+3/2([0, d])644

such that645

‖Wn,0‖Hs+3/2 ≤ KWB
n
W646
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for constants KW , BW > 0, then wn,0 ∈ Hs+2([0, d]× [−b, 0]) and647

‖wn,0‖Hs+2 ≤ KBn,648

for constants K,B > 0.649

5.3. Joint Analyticity of the Upper Field. We can now proceed to prove650

our main result concerning joint analyticity of the transformed field.651

Theorem 5.4. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Un,m ∈ Hs+3/2([0, d])652

such that653

‖Un,m‖Hs+3/2 ≤ KUB
n
UD

m
U ,654

for constants KU , BU , DU > 0, then un,m ∈ Hs+2([0, d]× [0, a]) and655

(5.19) ‖un,m‖Hs+2 ≤ KBnDm,656

for constants K,B,D > 0.657

As before, we establish this result by induction.658

Lemma 5.5. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) and659

(5.20) ‖un,m‖Hs+2 ≤ KBnDm, ∀n ≥ 0,m < m,660

for constants K,B,D > 0 then there exists a constant C > 0 such that661

max{‖F̃n,m‖Hs , ‖P̃n,m‖Hs+1/2} ≤ KC
{
α(γu)2BnDm−1 + (γu)2BnDm−2

662

+ α(γu)2|f |Cs+2Bn−1Dm + α(γu)2|f |Cs+2Bn−1Dm−1
663

+ (γu)2|f |Cs+2Bn−1Dm−2 + α(γu)2|f |2Cs+2Bn−2Dm
664

+ α(γu)2|f |2Cs+2Bn−2Dm−1 + (γu)2|f |2Cs+2Bn−2Dm−2

}
.665

666

Proof. [Lemma 5.5] We begin with F̃n,m and note that from (5.13), (5.8), (5.9),667

and (5.10) we have668

‖F̃n,m‖2Hs ≤ ‖Axx1 ∂xun−1,m‖2Hs+1 + ‖Axz1 ∂zun−1,m‖2Hs+1 + ‖Azx1 ∂xun−1,m‖2Hs+1669

+ ‖Azz1 ∂zun−1,m‖2Hs+1 + ‖Axx2 ∂xun−2,m‖2Hs+1 + ‖Axz2 ∂zun−2,m‖2Hs+1670

+ ‖Azx2 ∂xun−2,m‖2Hs+1 + ‖Azz2 ∂zun−2,m‖2Hs+1 + ‖Bx1∂xun−1,m‖2Hs671

+ ‖Bz1∂zun−1,m‖2Hs + ‖Bx2∂xun−2,m‖2Hs + ‖Bz2∂zun−2,m‖2Hs672

+ ‖2iα∂xun,m−1‖2Hs + ‖(γu)2un,m−2‖2Hs + ‖2(γu)2un,m−1‖2Hs673

+ ‖2S1iα∂xun−1,m‖2Hs + ‖2S1iα∂xun−1,m−1‖2Hs + ‖S1(γu)2un−1,m−2‖2Hs674

+ ‖2S1(γu)2un−1,m−1‖2Hs + ‖S1(γu)2un−1,m‖2Hs + ‖2S2iα∂xun−2,m‖2Hs675

+ ‖2S2iα∂xun−2,m−1‖2Hs + ‖S2(γu)2un−2,m−2‖2Hs676

+ ‖2S2(γu)2un−2,m−1‖2Hs + ‖S2(γu)2un−2,m‖2Hs .677678

We now estimate each of these by applying Lemmas 4.3 and 4.5. We begin with679

‖Axx1 ∂xun−1,m‖Hs+1 = ‖ − (2/a)f∂xun−1,m‖Hs+1680

≤ (2/a)M|f |Cs+1‖un−1,m‖Hs+2681

≤ (2/a)M|f |Cs+1KBn−1Dm,682683
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and in a similar fashion684

‖Axz1 ∂zun−1,m‖Hs+1 = ‖ − ((a− z)/a)(∂xf)∂zun−1,m‖Hs+1685

≤ (Za/a)M|∂xf |Cs+1‖un−1,m‖Hs+2686

≤ (Za/a)M|f |Cs+2KBn−1Dm.687688

Also,689

‖Azx1 ∂xun−1,m‖Hs+1 = ‖ − ((a− z)/a)(∂xf)∂xun−1,m‖Hs+1690

≤ (Za/a)M|∂xf |Cs+1‖un−1,m‖Hs+2691

≤ (Za/a)M|f |Cs+2KBn−1Dm,692693

and we recall that Azz1 ≡ 0. Moving to the second order694

‖Axx2 ∂xun−2,m‖Hs+1 = ‖(1/a2)f2∂xun−2,m‖Hs+1695

≤ (1/a2)M2|f |2Cs+1‖un−2,m‖Hs+2696

≤ (1/a2)M2|f |2Cs+1KBn−2Dm.697698

Also,699

‖Axz2 ∂zun−2,m‖Hs+1 = ‖((a− z)/a2)f(∂xf)∂xun−2,m‖Hs+1700

≤ (Za/a
2)M2|f |Cs+1 |∂xf |Cs+1‖un−2,m‖Hs+2701

≤ (Za/a
2)M2|f |2Cs+2KBn−2Dm,702703

and704

‖Azx2 ∂xun−2,m‖Hs+1 = ‖((a− z)/a2)f(∂xf)∂zun−2,m‖Hs+1705

≤ (Za/a
2)M2|f |Cs+1 |∂xf |Cs+1‖un−2,m‖Hs+2706

≤ (Za/a
2)M2|f |2Cs+2KBn−2Dm,707708

and709

‖Azz2 ∂zun−2,m‖Hs+1 = ‖((a− z)2/a2)(∂xf)2∂zun−2,m‖Hs+1710

≤ (Z2
a/a

2)M2|∂xf |2Cs+1‖un−2,m‖Hs+2711

≤ (Z2
a/a

2)M2|f |2Cs+2KBn−2Dm.712713

Next for the B1 terms714

‖Bx1∂xun−1,m‖Hs = ‖(1/a)(∂xf)∂xun−1,m‖Hs715

≤ (1/a)M|∂xf |Cs+1‖un−1,m‖Hs716

≤ (1/a)M|f |Cs+2KBn−1Dm,717718

and Bz1 ≡ 0. Moving to the second order719

‖Bx2∂xun−2,m‖Hs = ‖(−1/a2)f(∂xf)∂xun−2,m‖Hs720

≤ (1/a2)M2|f |Cs+1 |∂xf |Cs+1‖un−2,m‖Hs721

≤ (1/a2)M2|f |2Cs+2KBn−2Dm,722723
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and724

‖Bz2∂zun−2,m‖Hs = ‖(−1/a2)(a− z)(∂xf)2∂zun−2,m‖Hs725

≤ (Za/a
2)M2|∂xf |Cs+1‖un−2,m‖Hs726

≤ (Za/a
2)M2|f |2Cs+2KBn−2Dm.727728

To address the S0, S1, S2 terms we have729

‖2iα∂xun,m−1‖Hs ≤ 2α‖un,m−1‖Hs+1730

≤ 2αKBnDm−1,731732

and733

‖(γu)2un,m−2‖Hs ≤ (γu)2‖un,m−2‖Hs734

≤ (γu)2KBnDm−2,735736

and737

‖2(γu)2un,m−1‖Hs ≤ 2(γu)2‖un,m−1‖Hs738

≤ 2(γu)2KBnDm−1,739740

and741

‖2S1iα∂xun−1,m‖Hs = ‖(−4/a)iαf∂xun−1,m‖Hs742

≤ (4/a)αM|f |Cs‖un−1,m‖Hs+1743

≤ (4/a)αM|f |CsKBn−1Dm,744745

and746

‖2S1iα∂xun−1,m−1‖Hs = ‖(−4/a)iαf∂xun−1,m−1‖Hs747

≤ (4/a)αM|f |Cs‖un−1,m−1‖Hs+1748

≤ (4/a)αM|f |CsKBn−1Dm−1,749750

and751

‖S1(γu)2un−1,m−2‖Hs = ‖(−2/a)(γu)2fun−1,m−2‖Hs752

≤ (2/a)(γu)2M|f |Cs‖un−1,m−2‖Hs753

≤ (2/a)(γu)2M|f |CsKBn−1Dm−2,754755

and756

‖2S1(γu)2un−1,m−1‖Hs = ‖(−4/a)(γu)2fun−1,m−1‖Hs757

≤ (4/a)(γu)2M|f |Cs‖un−1,m−1‖Hs758

≤ (4/a)(γu)2M|f |CsKBn−1Dm−1,759760

and761

‖S1(γu)2un−1,m‖Hs = ‖(−2/a)(γu)2fun−1,m‖Hs762

≤ (2/a)(γu)2M|f |Cs‖un−1,m‖Hs763

≤ (2/a)(γu)2M|f |CsKBn−1Dm,764765
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and766

‖2S2iα∂xun−2,m‖Hs = ‖(2/a2)iαf2∂xun−2,m‖Hs767

≤ (2/a2)αM2|f |2Cs‖un−2,m‖Hs+1768

≤ (2/a2)αM2|f |2CsKBn−2Dm,769770

and771

‖2S2iα∂xun−2,m−1‖Hs = ‖(2/a2)iαf2∂xun−2,m−1‖Hs772

≤ (2/a2)αM2|f |2Cs‖un−2,m−1‖Hs+1773

≤ (2/a2)αM2|f |2CsKBn−2Dm−1,774775

and776

‖S2(γu)2un−2,m−2‖Hs = ‖(1/a2)(γu)2f2un−2,m−2‖Hs777

≤ (1/a2)(γu)2M2|f |2Cs‖un−2,m−2‖Hs778

≤ (1/a2)(γu)2M2|f |2CsKBn−2Dm−2,779780

and781

‖2S2(γu)2un−2,m−1‖Hs = ‖(2/a2)(γu)2f2un−2,m−1‖Hs782

≤ (2/a2)(γu)2M2|f |2Cs‖un−2,m−1‖Hs783

≤ (2/a2)(γu)2M2|f |2CsKBn−2Dm−1,784785

and786

‖S2(γu)2un−2,m‖Hs = ‖(1/a2)(γu)2f2un−2,m‖Hs787

≤ (1/a2)(γu)2M2|f |2Cs‖un−2,m‖Hs788

≤ (1/a2)(γu)2M2|f |2CsKBn−2Dm.789790

We satisfy the estimate for ‖F̃n,m‖Hs provided that we choose791

C > max

{(
2α+ 3(γu)2

)
,

(
3 + 2Za + 8α+ 8(γu)2

a

)
M,792 (

2 + 3Za + Z2
a + 4α+ 4(γu)2

a2

)
M2

}
.793

794

The estimate for P̃n,m follows from the mapping properties of Tu,795

‖P̃n,m‖Hs+1/2 = ‖ − (1/a)fTu [un−1,m] ‖Hs+1/2796

≤ (1/a)M|f |Cs+1/2+η‖Tu [un−1,m] ‖Hs+1/2797

≤ (1/a)M|f |Cs+1/2+ηCTu‖un−1,m‖Hs+3/2798

≤ (1/a)M|f |Cs+1/2+ηCTuKB
n−1Dm,799800

and provided that801

C > (1/a)MCTu ,802

we are done.803
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With this information, we can now prove Theorem 5.4.804

Proof. [Theorem 5.4] We proceed by induction and at order m = 0 Theorem 5.1805

guarantees a unique solution such that806

‖un,0‖Hs+2 ≤ KBn, ∀n ≥ 0.807

We now assume the estimate (5.19) for all n,m < m and study un,m. From Theorem808

4.4 we have a unique solution satisfying809

‖un,m‖Hs+2 ≤ Ce{‖F̃n,m‖Hs + ‖Un,m‖Hs+3/2 + ‖P̃n,m‖Hs+1/2},810

and appealing to Lemmas 4.8 and 5.5 we find811

‖un,m‖Hs+2 ≤ Ce

{
KUB

n
UD

m
U + 2KC

(
α(γu)2BnDm−1 + (γu)2BnDm−2

812

+ α(γu)2|f |Cs+2Bn−1Dm + α(γu)2|f |Cs+2Bn−1Dm−1
813

+ (γu)2|f |Cs+2Bn−1Dm−2 + α(γu)2|f |2Cs+2Bn−2Dm
814

+ α(γu)2|f |2Cs+2Bn−2Dm−1 + (γu)2|f |2Cs+2Bn−2Dm−2

)}
.815

816

We are done provided we choose K ≥ 9CeKU and817

B > max
{
BU , 18CeCα(γu)2|f |Cs+2 , 18CeC(γu)2|f |Cs+2 ,

√
18CeCα(γu)2|f |Cs+2 ,818 √

18CeC(γu)2|f |Cs+2

}
,819

D > max
{

1, DU , 18CeCα(γu)2,
√

18CeC(γu)2
}
.820

821

These inequalities are obtained from the bounds822

B > max
{
BU , 18CeCα(γu)2|f |Cs+2 ,

√
18CeCα(γu)2|f |Cs+2

}
,823

D > max
{
DU , 18CeCα(γu)2,

√
18CeC(γu)2

}
,824

BD > 18CeCα(γu)2|f |Cs+2 , BD2 > 18CeC(γu)2|f |Cs+2 ,825

B2D > 18CeCα(γu)2|f |2Cs+2 , B2D2 > 18CeC(γu)2|f |2Cs+2 .826827

As before, a similar analysis will establish the joint analyticity of the lower field828

which we now record.829

Theorem 5.6. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Wn,m ∈ Hs+3/2([0, d])830

such that831

‖Wn,m‖Hs+3/2 ≤ KWB
n
WD

m
W ,832

for constants KW , BW , DW > 0, then wn,m ∈ Hs+2([0, d]× [−b, 0]) and833

‖wn,m‖Hs+2 ≤ KBnDm,834

for constants K,B,D > 0.835
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6. Analyticity of the Dirichlet–Neumann Operators. Now that we have836

established the joint analyticity of the upper field u we move to establishing the837

analyticity of the upper layer DNO, G(g) = G(εf). To begin we give a recursive838

estimate of the H̃n,m appearing in (5.15).839

Lemma 6.1. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) and840

(6.1) ‖un,m‖Hs+2 ≤ KBnDm, ‖Gn,m‖Hs+1/2 ≤ K̃B̃nD̃m, ∀ n < n,m,841

for constants K,B,D, K̃, B̃, D̃ > 0 where K̃ ≥ K, B̃ ≥ B, D̃ ≥ D, then there exists a842

constant C̃ > 0 such that843

(6.2) ‖H̃n,m‖Hs+1/2 ≤ K̃C̃
{
|f |Cs+2B̃n−1D̃m + |f |2Cs+2B̃n−2D̃m

}
.844

Proof. [Lemma 6.1] From (5.15) we estimate845

‖H̃n,m‖Hs+1/2 ≤M|∂xf |Cs+1/2+η‖∂xun−1,m(x, 0)‖Hs+1/2846

+
1

a
M|f |Cs+1/2+η‖Gn−1,m(f)[U ]‖Hs+1/2847

+
1

a
M2|f |Cs+1/2+η |∂xf |Cs+1/2+η‖∂xun−2,m(x, 0)‖Hs+1/2848

+M2|∂xf |2Cs+1/2+η‖∂zun−2,m(x, 0)‖Hs+1/2 .849850

This gives851

‖H̃n,m‖Hs+1/2 ≤ K̃
{
M|f |Cs+2B̃n−1D̃m +

1

a
M|f |Cs+2B̃n−1D̃m

852

+
1

a
M2|f |2Cs+2B̃n−2D̃m +M2|f |2Cs+2B̃n−2D̃m

}
,853

854

and we are done provided855

C̃ ≥
(

1 +
1

a

)
max{M,M2}.856

857

We now have everything we need to prove the analyticity of the upper layer DNO.858

Theorem 6.2. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Un,m ∈ Hs+3/2([0, d])859

such that860

‖Un,m‖Hs+3/2 ≤ KUB
n
UD

m
U ,861

for constants KU , BU , DU > 0, then Gn,m ∈ Hs+1/2([0, d]) and862

(6.3) ‖Gn,m‖Hs+1/2 ≤ K̃B̃nD̃m,863

for constants K̃, B̃, D̃ > 0.864

Proof. [Theorem 6.2] As before, we work by induction. At n = 0 we have from865

(5.12) that866

G0,m = −∂zu0,m(x, 0),867

and from Theorem 5.4 we have868

‖G0,m‖Hs+1/2 = ‖∂zu0,m(x, 0)‖Hs+1/2 ≤ ‖u0,m‖Hs+2 ≤ KDm.869
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So we choose K̃ ≥ K and D̃ ≥ D. We now assume B̃ ≥ B and the estimate (6.3) for870

all n < n; from (5.12) we have871

‖Gn,m(f)[U ]‖Hs+1/2 ≤ ‖∂zun,m(x, 0)‖Hs+1/2 + ‖H̃n,m(x)‖Hs+1/2 .872

Using the inductive hypothesis, Lemma 6.1, and Theorem 5.4 we have873

‖Gn,m(f)[U ]‖Hs+1/2 ≤ KBnDm + K̃C̃
{
|f |Cs+2B̃n−1D̃m + |f |2Cs+2B̃n−2D̃m

}
.874

We are done provided K̃ ≥ 2K, D̃ ≥ D, and875

B̃ ≥ max
{
B, 4C̃|f |Cs+2 , 2

√
C̃|f |Cs+2

}
.876

Finally, a similar approach will give the joint analyticity of the DNO in the lower877

field.878

Theorem 6.3. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Wn,m ∈ Hs+3/2([0, d])879

such that880

‖Wn,m‖Hs+3/2 ≤ KWB
n
WD

m
W ,881

for constants KW , BW , DW > 0, then Jn,m ∈ Hs+1/2([0, d]) and882

(6.4) ‖Jn,m‖Hs+1/2 ≤ K̃B̃nD̃m,883

for constants K̃, B̃, D̃ > 0.884
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Thèse, Université de Paris IX (Dauphine), Paris, 1991.929

[20] M. O. Deville, P. F. Fischer, and E. H. Mund, High-order methods for incompressible930
fluid flow, vol. 9 of Cambridge Monographs on Applied and Computational Mathematics,931
Cambridge University Press, Cambridge, 2002.932

[21] D. Dobson and A. Friedman, The time-harmonic Maxwell equations in a doubly periodic933
structure, J. Math. Anal. Appl., 166 (1992), pp. 507–528.934

[22] D. C. Dobson, A variational method for electromagnetic diffraction in biperiodic structures,935
RAIRO Modél. Math. Anal. Numér., 28 (1994), pp. 419–439.936

[23] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary937
optical transmission through sub-wavelength hole arrays, Nature, 391 (1998), pp. 667–669.938

[24] S. Enoch and N. Bonod, Plasmonics: From Basics to Advanced Topics, Springer Series in939
Optical Sciences, Springer, New York, 2012.940

[25] L. C. Evans, Partial differential equations, American Mathematical Society, Providence, RI,941
second ed., 2010.942

[26] G. B. Folland, Introduction to partial differential equations, Princeton University Press,943
Princeton, N.J., 1976. Preliminary informal notes of university courses and seminars in944
mathematics, Mathematical Notes.945

[27] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,946
Springer-Verlag, Berlin, second ed., 1983.947

[28] Solids far from equilibrium, Cambridge University Press, Cambridge, 1992.948
[29] D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods: theory and applica-949

tions, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977. CBMS-NSF950
Regional Conference Series in Applied Mathematics, No. 26.951

[30] J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods, vol. 54 of Texts952
in Applied Mathematics, Springer, New York, 2008. Algorithms, analysis, and applications.953

[31] J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species,954
Chemical Reviews, 108 (2008), pp. 462–493.955

[32] Y. Hong and D. P. Nicholls, A rigorous numerical analysis of the transformed field expansion956
method for diffraction by periodic, layered structures, SIAM Journal on Numerical Analysis,957
59 (2021), pp. 456–476.958

[33] H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J.959
Norris, and S.-H. Oh, Template-stripped smooth Ag nanohole arrays with silica shells for960
surface plasmon resonance biosensing, ACS Nano, 5 (2011), pp. 6244–6253.961

[34] C. Johnson, Numerical solution of partial differential equations by the finite element method,962
Cambridge University Press, Cambridge, 1987.963

[35] J. Jose, L. R. Jordan, T. W. Johnson, S. H. Lee, N. J. Wittenberg, and S.-H. Oh,964
Topographically flat substrates with embedded nanoplasmonic devices for biosensing, Adv965
Funct Mater, 23 (2013), pp. 2812–2820.966

[36] M. Kehoe and D. P. Nicholls, A stable high–order perturbation of surfaces/asymptotic wave-967
form evaluation method for the numerical solution of grating scattering problems, SIAM968
Journal on Scientific Computing (submitted), (2021).969

[37] R. Kress, Linear integral equations, Springer-Verlag, New York, third ed., 2014.970
[38] O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and quasilinear elliptic equations, Aca-971

demic Press, New York, 1968.972
[39] N. Lassaline, R. Brechbühler, S. Vonk, K. Ridderbeek, M. Spieser, S. Bisig,973

B. le Feber, F. Rabouw, and D. Norris, Optical fourier surfaces, Nature, 582 (2020),974

This manuscript is for review purposes only.



28 MATTHEW KEHOE AND DAVID P. NICHOLLS

pp. 506–510.975
[40] R. J. LeVeque, Finite difference methods for ordinary and partial differential equations, Soci-976

ety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007. Steady-state977
and time-dependent problems.978

[41] E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, American979
Mathematical Society, Providence, RI, second ed., 2001.980

[42] N. C. Lindquist, T. W. Johnson, J. Jose, L. M. Otto, and S.-H. Oh, Ultrasmooth metallic981
films with buried nanostructures for backside reflection-mode plasmonic biosensing, An-982
nalen der Physik, 524 (2012), pp. 687–696.983

[43] P.-L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdo-984
mains, in Third International Symposium on Domain Decomposition Methods for Partial985
Differential Equations (Houston, TX, 1989), SIAM, Philadelphia, PA, 1990, pp. 202–223.986

[44] S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007.987
[45] D. M. Milder, An improved formalism for rough-surface scattering of acoustic and electromag-988

netic waves, in Proceedings of SPIE - The International Society for Optical Engineering989
(San Diego, 1991), vol. 1558, Int. Soc. for Optical Engineering, Bellingham, WA, 1991,990
pp. 213–221.991

[46] D. M. Milder, An improved formalism for wave scattering from rough surfaces, J. Acoust.992
Soc. Am., 89 (1991), pp. 529–541.993

[47] M. Moskovits, Surface–enhanced spectroscopy, Reviews of Modern Physics, 57 (1985), pp. 783–994
826.995
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