Solutions to HW 5
Chapter 7:

1. (a) It equals fy,. It is true for n = 1. Now the induction step:

fitfatF fonpr =i+ f3+ -+ fono1) + font1 = fon + font1 = font2 = fomsr)

(b) It equals fa,4+1 — 1. It is true for n = 0. Now the induction step:

fot+fo+ -+ fong2=(fo+ fo+ -+ fon) + font2 = font1 — 1+ font2 = fonts — 1.

(c) When n is odd the sum is —(f,—1 + 1) and when n is even the sum is f,—1 — 1. The
cases n = 0, and n = 1 hold. Now first suppose that n > 2 is even. Then n — 1 is odd so
by induction

fo—fi+-+fo=Uo—fr+ - —foci)+ fo=—fo2—14+fu=fn1— 1L

On the other hand, if n > 3 is odd, then n — 1 is even and

fo—fH+—fa=(fo—fi+Ffo1)—fo=fo2o—1—frn=—fn1— L

(d) The sum of the squares of the first n fibonacci numbers is f,, f,+1. The induction step
follows since

o+t =+ Sl + fa = faoifa+ 2 = falfae1 + fo) = Fafusa

5. Using the fibonacci recurrence repeatedly, one obtains f,+g8 = 21f, 42 + 13f,. Thus if
7 divides f,, then 7 also divides f,,+g. Since 7 divides fy, we conclude that 7 divides f,
when n is a multiple of 8. On the other hand, if 7 divides f,+s, then 7 divides 13f,,, but
(7,13) = 1, therefore 7 divides f,. Clearly 7 does not divide f, for 1 < n < 7, therefore
we conclude that 7 divides f,, if and only if n is a multiple of 8.

8. If the last square is red, then the second last last square must be blue, and there
are h,_o ways to color the first n — 2 squares. If the last square is blue, then there is
no restriction on the second last square, and there are h,,_; ways to color the remaining
squares. Thus h, = h,_1 + hn_o. Clearly hy = 2 and he = 3, from which we conclude
that hg = 1. Thus hg = fo2, and h,, = fn42, where f; is given in (7.11) page 198.

9. If the last square is red, then the second last last square must be blue or white, and
there are h,,_5 ways to color the first n — 2 squares for each of these two possibilities. If the
last square is blue (or white), then there is no restriction on the second last square, and
there are h,,_1 ways to color the remaining squares. Thus h,, = 2h,,_1 + 2h,,_o. Clearly
hy = 3 and he = 8, from which we conclude that hg = 1. The characteristic equation for
the recurrence is 2 — 2 + 2, from which we get h,, = A(1 +v/3)” + B(1 —v/3)". The
initial values yield A = (v/3 4+ 2)/2v/3 and B = (V3 — 2)/2V/3.
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16. How many positive integer solutions to @ + b+ ¢ + d = n where a € {0,1,2},b €
{0,2,4,6},c € {0,2,4,6,..},d € {1,2,3,..}. The answer is the coefficient of 2™ in the
generating function given

17. glz) = 1+ 22+ )1+ 2+ 2*) (1 + 2%+ 2%+ ---)(1 + ). This simplifies to
(1—2)"2=>"(n+ 1)a2™. Hence the answer is n + 1.

21. Let C be a convex (n + 2)-gon with vertices x1,...,Z, 2. Removing z; yields an
(n+1)-gon C’ with h,,_; regions. Putting 1 back yields n new regions formed by diagonals
containing z; and the diagonal xox,12. However, the diagonals from x; cut certain old
regions into two parts, thus creating new regions. Thus h,, = h,—1 +n + R, where R is
the number of regions in C” that are cut by a diagonal containing x1. There are two ways
to compute R. We may bijectively map each region in R to a set of three vertices in C’
as follows: Let the diagonal x;z; first encounter the region in the diagonal z;z;. Then we
associate the three points {x;,z;,z;}. It is easy to check that this mapping is bijective,
so R = (”;’1) On the other hand, for fixed 7, the regions in R cut by xiz; correspond to
the number of diagonals x;xj, where j < i < k, so R = Z?jsl(z -2)(n+2—-1)= (";rl).
Using generating functions, we obtain g(z) = 22/(1 — x)° + x/(1 — x)3. This gives h,, =

("+2) + ("3Y) for n > 2. in class: (1+ )"

26. The exponential generating function is
([e* +e77]/2)%e* = (e*® 4 2e** + 1) /4.

The coefficient of 2™ /n! is 47~1 4 2n—1,

33. The characteristic equation is z® — 22 — 9z + 9 which has roots 1,43. Thus h, =
A+ B3"™ 4+ C(—3)". The initial values give the equations A+ B+ C =0,A+ 3B —3C =
1,A+ 9B+ 9C = 2, and we obtain A = —-1/4,B=1/3,C = —1/12.

34. The characteristic equation is % — 8z + 16, so the general solution is (A + Bn)4™. The
initial values give A = -1, B = 1.

42. The particular solution is Bn, since 4 is a root of the characteristic equation of
multiplicity 1. Running it through the equation gives B = 1. Thus h,, = (A + n)4". The
initial value gives A = 3.

47. The particular solution is C' 4+ Dn, and running it through the equation yields C' =
13,D = 3. The general solution to the nonhomogeneous part is (A + Bn)2"™. Thus
hy, = (A4 Bn)2"™ + 13 + 3n. Using the initial values gives A = —12, B = 5.



