Solutions to HW 5

Chapter 7:

1. (a) It equals f_{2n} . It is true for n = 1. Now the induction step:

$$f_1 + f_3 + \dots + f_{2n+1} = (f_1 + f_3 + \dots + f_{2n-1}) + f_{2n+1} = f_{2n} + f_{2n+1} = f_{2n+2} = f_{2(n+1)}.$$

(b) It equals $f_{2n+1} - 1$. It is true for n = 0. Now the induction step:

$$f_0 + f_2 + \dots + f_{2n+2} = (f_0 + f_2 + \dots + f_{2n}) + f_{2n+2} = f_{2n+1} - 1 + f_{2n+2} = f_{2n+3} - 1.$$

(c) When n is odd the sum is $-(f_{n-1}+1)$ and when n is even the sum is $f_{n-1}-1$. The cases n = 0, and n = 1 hold. Now first suppose that $n \ge 2$ is even. Then n - 1 is odd so by induction

$$f_0 - f_1 + \dots + f_n = (f_0 - f_1 + \dots - f_{n-1}) + f_n = -f_{n-2} - 1 + f_n = f_{n-1} - 1.$$

On the other hand, if $n \ge 3$ is odd, then n-1 is even and

$$f_0 - f_1 + \dots - f_n = (f_0 - f_1 + \dots + f_{n-1}) - f_n = f_{n-2} - 1 - f_n = -f_{n-1} - 1.$$

(d) The sum of the squares of the first n fibonacci numbers is $f_n f_{n+1}$. The induction step follows since

$$f_0^2 + \dots + f_n^2 = (f_0^2 + \dots + f_{n-1}^2) + f_n^2 = f_{n-1}f_n + f_n^2 = f_n(f_{n-1} + f_n) = f_nf_{n+1}.$$

5. Using the fibonacci recurrence repeatedly, one obtains $f_{n+8} = 21f_{n+2} + 13f_n$. Thus if 7 divides f_n , then 7 also divides f_{n+8} . Since 7 divides f_0 , we conclude that 7 divides f_n when n is a multiple of 8. On the other hand, if 7 divides f_{n+8} , then 7 divides $13f_n$, but (7,13) = 1, therefore 7 divides f_n . Clearly 7 does not divide f_n for $1 \le n \le 7$, therefore we conclude that 7 divides f_n if and only if n is a multiple of 8.

8. If the last square is red, then the second last last square must be blue, and there are h_{n-2} ways to color the first n-2 squares. If the last square is blue, then there is no restriction on the second last square, and there are h_{n-1} ways to color the remaining squares. Thus $h_n = h_{n-1} + h_{n-2}$. Clearly $h_1 = 2$ and $h_2 = 3$, from which we conclude that $h_0 = 1$. Thus $h_0 = f_2$, and $h_n = f_{n+2}$, where f_i is given in (7.11) page 198.

9. If the last square is red, then the second last last square must be blue or white, and there are h_{n-2} ways to color the first n-2 squares for each of these two possibilities. If the last square is blue (or white), then there is no restriction on the second last square, and there are h_{n-1} ways to color the remaining squares. Thus $h_n = 2h_{n-1} + 2h_{n-2}$. Clearly $h_1 = 3$ and $h_2 = 8$, from which we conclude that $h_0 = 1$. The characteristic equation for the recurrence is $x^2 - 2x + 2$, from which we get $h_n = A(1 + \sqrt{3})^n + B(1 - \sqrt{3})^n$. The initial values yield $A = (\sqrt{3} + 2)/2\sqrt{3}$ and $B = (\sqrt{3} - 2)/2\sqrt{3}$.

16. How many positive integer solutions to a + b + c + d = n where $a \in \{0, 1, 2\}, b \in \{0, 2, 4, 6\}, c \in \{0, 2, 4, 6, ..\}, d \in \{1, 2, 3, ..\}$. The answer is the coefficient of x^n in the generating function given

17. $g(x) = (1 + x^2 + \cdots)(1 + x + x^2)(1 + x^3 + x^6 + \cdots)(1 + x)$. This simplifies to $(1 - x)^{-2} = \sum (n+1)x^n$. Hence the answer is n + 1.

21. Let C be a convex (n + 2)-gon with vertices x_1, \ldots, x_{n+2} . Removing x_1 yields an (n+1)-gon C' with h_{n-1} regions. Putting x_1 back yields n new regions formed by diagonals containing x_1 and the diagonal x_2x_{n+2} . However, the diagonals from x_1 cut certain old regions into two parts, thus creating new regions. Thus $h_n = h_{n-1} + n + R$, where R is the number of regions in C' that are cut by a diagonal containing x_1 . There are two ways to compute R. We may bijectively map each region in R to a set of three vertices in C' as follows: Let the diagonal x_1x_i first encounter the region in the diagonal x_jx_k . Then we associate the three points $\{x_i, x_j, x_k\}$. It is easy to check that this mapping is bijective, so $R = \binom{n+1}{3}$. On the other hand, for fixed i, the regions in R cut by x_1x_i correspond to the number of diagonals x_jx_k , where j < i < k, so $R = \sum_{i=3}^{n+1} (i-2)(n+2-i) = \binom{n+1}{3}$. Using generating functions, we obtain $g(x) = x^2/(1-x)^5 + x/(1-x)^3$. This gives $h_n = \binom{n+2}{4} + \binom{n+1}{2}$ for $n \geq 2$. in class: $(1+x)^n$

26. The exponential generating function is

$$([e^{x} + e^{-x}]/2)^{2}e^{2x} = (e^{4x} + 2e^{2x} + 1)/4.$$

The coefficient of $x^n/n!$ is $4^{n-1} + 2^{n-1}$.

33. The characteristic equation is $x^3 - x^2 - 9x + 9$ which has roots $1, \pm 3$. Thus $h_n = A + B3^n + C(-3)^n$. The initial values give the equations A + B + C = 0, A + 3B - 3C = 1, A + 9B + 9C = 2, and we obtain A = -1/4, B = 1/3, C = -1/12.

34. The characteristic equation is $x^4 - 8x + 16$, so the general solution is $(A + Bn)4^n$. The initial values give A = -1, B = 1.

42. The particular solution is Bn, since 4 is a root of the characteristic equation of multiplicity 1. Running it through the equation gives B = 1. Thus $h_n = (A + n)4^n$. The initial value gives A = 3.

47. The particular solution is C + Dn, and running it through the equation yields C = 13, D = 3. The general solution to the nonhomogeneous part is $(A + Bn)2^n$. Thus $h_n = (A + Bn)2^n + 13 + 3n$. Using the initial values gives A = -12, B = 5.