
Solutions to HW 5
Chapter 7:

1. (a) It equals f2n. It is true for n = 1. Now the induction step:

f1 + f3 + · · ·+ f2n+1 = (f1 + f3 + · · ·+ f2n−1) + f2n+1 = f2n + f2n+1 = f2n+2 = f2(n+1).

(b) It equals f2n+1 − 1. It is true for n = 0. Now the induction step:

f0 + f2 + · · ·+ f2n+2 = (f0 + f2 + · · ·+ f2n) + f2n+2 = f2n+1 − 1 + f2n+2 = f2n+3 − 1.

(c) When n is odd the sum is −(fn−1 + 1) and when n is even the sum is fn−1 − 1. The
cases n = 0, and n = 1 hold. Now first suppose that n ≥ 2 is even. Then n− 1 is odd so
by induction

f0 − f1 + · · ·+ fn = (f0 − f1 + · · · − fn−1) + fn = −fn−2 − 1 + fn = fn−1 − 1.

On the other hand, if n ≥ 3 is odd, then n− 1 is even and

f0 − f1 + · · · − fn = (f0 − f1 + · · ·+ fn−1)− fn = fn−2 − 1− fn = −fn−1 − 1.

(d) The sum of the squares of the first n fibonacci numbers is fnfn+1. The induction step
follows since

f2
0 + · · ·+ f2

n = (f2
0 + · · · f2

n−1) + f2
n = fn−1fn + f2

n = fn(fn−1 + fn) = fnfn+1.

5. Using the fibonacci recurrence repeatedly, one obtains fn+8 = 21fn+2 + 13fn. Thus if
7 divides fn, then 7 also divides fn+8. Since 7 divides f0, we conclude that 7 divides fn

when n is a multiple of 8. On the other hand, if 7 divides fn+8, then 7 divides 13fn, but
(7, 13) = 1, therefore 7 divides fn. Clearly 7 does not divide fn for 1 ≤ n ≤ 7, therefore
we conclude that 7 divides fn if and only if n is a multiple of 8.

8. If the last square is red, then the second last last square must be blue, and there
are hn−2 ways to color the first n − 2 squares. If the last square is blue, then there is
no restriction on the second last square, and there are hn−1 ways to color the remaining
squares. Thus hn = hn−1 + hn−2. Clearly h1 = 2 and h2 = 3, from which we conclude
that h0 = 1. Thus h0 = f2, and hn = fn+2, where fi is given in (7.11) page 198.

9. If the last square is red, then the second last last square must be blue or white, and
there are hn−2 ways to color the first n−2 squares for each of these two possibilities. If the
last square is blue (or white), then there is no restriction on the second last square, and
there are hn−1 ways to color the remaining squares. Thus hn = 2hn−1 + 2hn−2. Clearly
h1 = 3 and h2 = 8, from which we conclude that h0 = 1. The characteristic equation for
the recurrence is x2 − 2x + 2, from which we get hn = A(1 +

√
3)n + B(1 − √3)n. The

initial values yield A = (
√

3 + 2)/2
√

3 and B = (
√

3− 2)/2
√

3.
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16. How many positive integer solutions to a + b + c + d = n where a ∈ {0, 1, 2}, b ∈
{0, 2, 4, 6}, c ∈ {0, 2, 4, 6, ..}, d ∈ {1, 2, 3, ..}. The answer is the coefficient of xn in the
generating function given

17. g(x) = (1 + x2 + · · ·)(1 + x + x2)(1 + x3 + x6 + · · ·)(1 + x). This simplifies to
(1− x)−2 =

∑
(n + 1)xn. Hence the answer is n + 1.

21. Let C be a convex (n + 2)-gon with vertices x1, . . . , xn+2. Removing x1 yields an
(n+1)-gon C ′ with hn−1 regions. Putting x1 back yields n new regions formed by diagonals
containing x1 and the diagonal x2xn+2. However, the diagonals from x1 cut certain old
regions into two parts, thus creating new regions. Thus hn = hn−1 + n + R, where R is
the number of regions in C ′ that are cut by a diagonal containing x1. There are two ways
to compute R. We may bijectively map each region in R to a set of three vertices in C ′

as follows: Let the diagonal x1xi first encounter the region in the diagonal xjxk. Then we
associate the three points {xi, xj , xk}. It is easy to check that this mapping is bijective,
so R =

(
n+1

3

)
. On the other hand, for fixed i, the regions in R cut by x1xi correspond to

the number of diagonals xjxk, where j < i < k, so R =
∑n+1

i=3 (i − 2)(n + 2 − i) =
(
n+1

3

)
.

Using generating functions, we obtain g(x) = x2/(1 − x)5 + x/(1 − x)3. This gives hn =(
n+2

4

)
+

(
n+1

2

)
for n ≥ 2. in class: (1 + x)n

26. The exponential generating function is

([ex + e−x]/2)2e2x = (e4x + 2e2x + 1)/4.

The coefficient of xn/n! is 4n−1 + 2n−1.

33. The characteristic equation is x3 − x2 − 9x + 9 which has roots 1,±3. Thus hn =
A + B3n + C(−3)n. The initial values give the equations A + B + C = 0, A + 3B − 3C =
1, A + 9B + 9C = 2, and we obtain A = −1/4, B = 1/3, C = −1/12.

34. The characteristic equation is x4−8x+16, so the general solution is (A+Bn)4n. The
initial values give A = −1, B = 1.

42. The particular solution is Bn, since 4 is a root of the characteristic equation of
multiplicity 1. Running it through the equation gives B = 1. Thus hn = (A + n)4n. The
initial value gives A = 3.

47. The particular solution is C + Dn, and running it through the equation yields C =
13, D = 3. The general solution to the nonhomogeneous part is (A + Bn)2n. Thus
hn = (A + Bn)2n + 13 + 3n. Using the initial values gives A = −12, B = 5.
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