## Homework Set 1

1) Prove that if there is a real $p, 0 \leq p \leq 1$ such that

$$
\binom{n}{k} p^{\binom{k}{2}}+\binom{n}{t}(1-p)^{\binom{t}{2}}<1
$$

then $R(k, t)>n$. Conclude that

$$
R(4, t)>c t^{3 / 2} /(\log t)^{3 / 2}
$$

for an absolute constant $c$.
2) Suppose $n \geq 4$ and $H$ is an $n$-uniform hypergraph with at most $4^{n-1} / 3^{n}$ edges. Prove that there is a coloring of the vertices of $H$ by four colors so that all four colors appear in every edge.
3) Let $\left\{\left(A_{i}, B_{i}\right), 1 \leq i \leq h\right\}$ be a family of pairs of subsets of the set of integers such that $\left|A_{i}\right|=k$ for all $i$ and $\left|B_{i}\right|=l \mathrm{fr}$ all $i, A_{i} \cap B_{i}=\emptyset$ and $\left(A_{i} \cap B_{j}\right) \cup\left(A_{j} \cap B_{i}\right) \neq \emptyset$ for all $i \neq j$. Prove that

$$
h \leq \frac{(k+l)^{k+l}}{k^{k} l^{l}}
$$

4) (Hard) Show that there is an absolute constant $c$ so that for each $k>1$, every tournament that satisfies $S_{k}$ has at least $c k 2^{k}$ vertices. Hint: Show that for every set $W$ of at most $k-1$ vertices, there are at least $k+1$ vertices that all point to each vertex of $W$.
