Homework Set 3

1) For integers $1<k<n$, prove that $(n / k)^{k}<\binom{n}{k}<(n e / k)^{k}$ and n ! $>$ $(n / e)^{n}$.
2) Prove that there is an absolute constant $c>0$ such that: Every n by n matrix A with pairwise distinct entries has a permutation of its rows so that no column of the permuted matrix contains an increasing subsequence of length at least $c \sqrt{n}$.
Hint: Prove that the probability that a fixed column, after permuting, has a long increasing subsequence is less than $1 / n$. Use the estimates in Problem 1.
3) Prove, via the alteration method, that $R(k, k)>(1+o(1))(k / e) 2^{k / 2}$ and $R(4, k)>\Omega\left((k / \ln k)^{2}\right)$. (this improves the bound in a previous homework)
4) Prove that every three uniform hypergraph with n vertices and $m \geq n / 3$ edges contains an independent set of size at least $(2 / \sqrt{m})(n / 3)^{3 / 2}$.
