Homework Set 4

1) Let F be a family of subsets of $N=\{1,2, \ldots, n\}$, and suppose that there are no two distinct $A, B \in F$ with $A \subset B$. Let $\sigma \in S_{n}$ be a random permutation of the elements of N and consider the random variable

$$
X=|\{i:\{\sigma(1), \sigma(2), \ldots, \sigma(i)\} \in F\}| .
$$

By considering the expectation of X prove that $|F| \leq\binom{ n}{\lfloor n / 2\rfloor}$.
2) Let $v_{i}=\left(x_{i}, y_{i}\right), i=1, \ldots, n$ be n two-dimensional vectors, where each x_{i} and each y_{i} is an integer whose absolute value does not exceed $2^{n / 2} /(100 \sqrt{n})$. Show that there are two disjoint sets $I, J \subset[n]$ such that

$$
\sum_{i \in I} v_{i}=\sum_{j \in J} v_{j} .
$$

Hint: Chebyshev's inequality
3) Let $G=(V, E)$ be a bipartite graph with n vertices and a list $S(v)$ of more than $\log _{2} n$ colors associated with each vertex $v \in V$. Prove that there is a proper coloring of G assigning to each vertex v a color from its list $S(v)$.
4) Let X be a random variable taking integral nonnegative values, let $E\left(X^{2}\right)$ denote the expectation of its square, and let $\operatorname{Var}(X)$ denote its variance. Prove that

$$
P(X=0) \leq \frac{\operatorname{Var}(X)}{E\left(X^{2}\right)}
$$

You may use the Cauchy-Schwarz inequality which states that $E(A B)^{2} \leq$ $E\left(A^{2}\right) E\left(B^{2}\right)$. Note that in class we proved this result with $E(X)^{2}$ in the denominator so this result is stronger (since $E(X)^{2} \leq E\left(X^{2}\right)$).

