Homework Set 5

1) Prove that $G(n, p)$ has minimum degree at most one whp if

$$
p(n)=\frac{\ln n+\ln \ln n-w(n)}{n}
$$

and has minimum degree at least two whp if $p(n)=(\ln n+\ln \ln n+w(n)) / n$. Here $w(n) \rightarrow \infty$ as $n \rightarrow \infty$.
2) Let H be a graph, and let $n>|V(H)|$ be an integer. Suppose that there is a graph on n vertices and t edges containing no copy of H, and suppose that $t k>n^{2} \log _{e} n$. Show that there is a coloring of the edges of the complete graph on n vertices by k colors with no monochromatic copy of H.
3) Let $e, f_{1}, \ldots f_{t}$ be edges in a k-uniform hypergraph $H=(V, E)$ such that $e \cap f_{i} \neq \emptyset$ for all i. Suppose that V is randomly and independently two colored with red and blue. Let R_{e} be the event that e is red and $R_{f_{i}}$ be the event that f_{i} is red. Prove that

$$
P\left(R_{e} \mid \bigwedge_{i} \bar{R}_{f_{i}}\right) \leq P\left(R_{e}\right)
$$

4) Let $G=(V, E)$ be a simple graph and suppose each $v \in V$ is associated with a set $S(v)$ of colors of size at least $10 d$, where $d \geq 1$. Suppose, in addition, that for each $v \in V$ and $c \in S(v)$ there are at most d neighbors u of v such that $c \in S(v)$. Prove that there is a proper coloring of G assigning to each vertex v a color from its class $S(v)$.
