Homework Set 7

1) Let $d \geq 3$ be a constant and $\rho = p(n-1)$. Prove the following: If $\rho \ll n^{-1/d}$ then G(n,p) does not have a vertex of degree d almost surely and if $\rho \gg n^{-1/d}$ then G(n,p) has a vertex of degree d almost surely.

2) Let p be a prime congruent to 1 mod 4 and G_p the graph with vertex set GF(p) and ij forming an edge iff i - j is a quadratic residue mod p. Show that G_p is well-defined and is regular of degree (p-1)/2. Let B and C be disjoint sets of vertices in G_p . Prove that

$$\left| e(B,C) - \frac{1}{2} |B| |C| \right| \le \frac{1}{2} |B|^{1/2} |C|^{1/2} p^{1/2}.$$

3) Let G = (V, E) be an (n, d, λ) -graph and k|n. Suppose that c is a k-coloring of V so that each color appears precisely n/k times. Prove that there is a vertex of G which has a neighbor of each of the k colors, provided $k\lambda \leq d$.

4) Let \mathcal{F} be a family of graphs on vertex set [2t] and suppose that for every two graphs in \mathcal{F} there is a perfect matching in their intersection (of their edge sets). Prove that

$$|\mathcal{F}| \le 2^{\binom{2t}{2}-t}.$$