Homework Set 7

1) Let $d \geq 3$ be a constant and $\rho=p(n-1)$. Prove the following: If $\rho \ll n^{-1 / d}$ then $G(n, p)$ does not have a vertex of degree d almost surely and if $\rho \gg n^{-1 / d}$ then $G(n, p)$ has a vertex of degree d almost surely.
2) Let p be a prime congruent to $1 \bmod 4$ and G_{p} the graph with vertex set $G F(p)$ and $i j$ forming an edge iff $i-j$ is a quadratic residue $\bmod p$. Show that G_{p} is well-defined and is regular of degree $(p-1) / 2$. Let B and C be disjoint sets of vertices in G_{p}. Prove that

$$
\left|e(B, C)-\frac{1}{2}\right| B \| C| | \leq \frac{1}{2}|B|^{1 / 2}|C|^{1 / 2} p^{1 / 2} .
$$

3) Let $G=(V, E)$ be an (n, d, λ)-graph and $k \mid n$. Suppose that c is a k coloring of V so that each color appears precisely n / k times. Prove that there is a vertex of G which has a neighbor of each of the k colors, provided $k \lambda \leq d$.
4) Let \mathcal{F} be a family of graphs on vertex set $[2 t]$ and suppose that for every two graphs in \mathcal{F} there is a perfect matching in their intersection (of their edge sets). Prove that

$$
|\mathcal{F}| \leq 2^{\binom{2 t}{2}-t} .
$$

