Homework 1

- 1) Let $d = d_1 \ge d_2 \ge \cdots \ge d_n \ge 1$ be a sequence of integers with sum 2(n-1). Prove that there is a tree with vertex set $\{v_1, \ldots, v_n\}$ and $d(v_i) = d_i$.
- 2) Prove the Erdős-Sós conjecture for P_3 , the path with three edges. In other words, prove that an n vertex graph with no copy of P_3 has at most n edges. Can you prove a similar result for P_4 (3n/2 edges) and more generally for P_k ((k-1)n/2 edges)? (the general case of k is hard, extra credit)
- 3) Prove that every n vertex graph with e edges has at least (e/3)(4e/n-n) triangles.
- 4) Use the Local Lemma to prove the following: there is a positive constant c such that for all n there is an edge-coloring of K_n with at most $c\sqrt{n}$ colors such that every copy of K_4 receives at least three colors (on its six edges).
- 5) Prove that every connected graph G contains a path of length at least $\min\{2\delta(G), n(G) 1\}$ (here $\delta(G)$ is the minimum degree in G).
- 6) Let m be given. Show that if n is large enough, then every n by n (0, 1)-matrix has a principal submatrix of size m in which all elements below the diagonal are the same, and all elements above the diagonal are the same.
- 7) Let G be a graph such that every two odd cycles in G have a vertex in common. Prove that $\chi(G) \leq 5$.