## Homework 2

1) Fix integers $2 \leq s \leq t$. Prove that there is a constant $c=c(s, t)$ such that $\operatorname{ex}\left(n, K_{s, t}\right)<c n^{2-1 / t}$.
2) Let $S=[m n]$ and suppose that $S$ is partitioned into $m$ sets $A_{1}, \ldots, A_{m}$ each of size $n$. Suppose that $B_{1}, \ldots, B_{m}$ is another partition of $[\mathrm{mn}$ ] into sets of size $n$. Show that the sets $A_{i}$ can be renumbered in such a way that $A_{i} \cap B_{i} \neq \emptyset$.
3) Let $\mathcal{A} \subset 2^{[n]}$ be an intersecting sperner family such that $A \cup B \neq[n]$ for every $A, B \in \mathcal{A}$. Prove that

$$
|\mathcal{A}| \leq\binom{ n-1}{\lfloor n / 2\rfloor-1} .
$$

4) Let $x_{1}, \ldots, x_{n}$ be a collection of reals numbers each at least 1 . For $A \subset[n]$, let $x_{A}=\sum_{i \in A} x_{i}$. What is the maximum number of such sums that pairwise differ by less than one.
5) Let $n^{2}+1$ points be given in $R^{2}$. Prove that among them there is a sequence of $n+1$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n+1}, y_{n+1}\right)$ for which $x_{1} \leq \cdots \leq x_{n+1}$ and $y_{1} \geq \cdots \geq y_{n+1}$, or a sequence of $n+1$ points for which $x_{1} \leq \cdots \leq x_{n+1}$ and $y_{1} \leq \cdots \leq y_{n+1}$.
6) Let $k \geq 1$ be an integer and $G=(A, B, E)$ be a bipartite graph with parts $A, B$. Suppose that for every $S \subset A$ we have $|N(S)| \geq k|S|$. Prove that there is a collection of $|A|$ pairwise vertex disjoint stars, each with $k$ edges and centers in $A$.
