Homework 3

1) Let $[S, T]$ and $\left[S^{\prime}, T^{\prime}\right]$ be source/sink cuts in a network.
a) Prove that $c\left(S \cup S^{\prime}, T \cap T^{\prime}\right)+c\left(S \cap S^{\prime}, T \cup T^{\prime}\right) \leq c(S, T)+c\left(S^{\prime}, T^{\prime}\right)$.
b) Suppose that $[S, T]$ and $\left[S^{\prime}, T^{\prime}\right]$ are minimum cuts. Show that no edge between $S-S^{\prime}$ and $S^{\prime}-S$ has positive capacity.
2) Find a circular ternary sequence of length 27 so that each possible ternary ordered triple occurs as three consecutive positions of the sequence.
3) Determine $N\left(C_{2 n}\right)$, the minimum length of vectors with entries from $\{0,1, *\}$ that provide an addressing for $C_{2 n}$.
4) Determine $f(x)=\sum_{n=1}^{x} \mu(n)\lfloor x / n\rfloor$ for all positive integers x.
5) Let a and b be integers with $2 a \leq b$ and b even. Suppose that χ is a proper edge-coloring of K_{a} with $b-1$ colors. Prove that there is a proper edge-coloring χ^{\prime} of K_{b} with $b-1$ colors such that the restriction of χ^{\prime} to some subgraph of K_{b} isomorphic to K_{a} is identical to χ.
