Homework Set 4

1) Let H be a graph, and let $n>|V(H)|$ be an integer. Suppose that there is a graph on n vertices and t edges containing no copy of H, and suppose that $t k>n^{2} \log _{e} n$. Show that there is a coloring of the edges of the complete graph on n vertices by k colors with no monochromatic copy of H.
2) Let F be a family of subsets of $N=\{1,2, \ldots, n\}$, and suppose that there are no two distinct $A, B \in F$ with $A \subset B$. Let $\sigma \in S_{n}$ be a random permutation of the elements of N and consider the random variable

$$
X=|\{i:\{\sigma(1), \sigma(2), \ldots, \sigma(i)\} \in F\}| .
$$

By considering the expectation of X prove that $|F| \leq\binom{ n}{\lfloor n / 2\rfloor}$.
3) Let $G=(V, E)$ be a bipartite graph with n vertices and a list $S(v)$ of more than $\log _{2} n$ colors associated with each vertex $v \in V$. Prove that there is a proper coloring of G assigning to each vertex v a color from its list $S(v)$.
4) Let X be a random variable taking integral nonnegative values, let $E\left(X^{2}\right)$ denote the expectation of its square, and let $\operatorname{Var}(X)$ denote its variance. Prove that

$$
P(X=0) \leq \frac{\operatorname{Var}(X)}{E\left(X^{2}\right)} .
$$

