Homework Set 5

1) Let F be a finite collection of binary strings of finite lengths and assume no member of F is a prefix of another one. Let N_{i} denote the number of strings of length i in F. Prove that $\sum_{i} N_{i} / 2^{i} \leq 1$.
2) Let $v_{i}=\left(x_{i}, y_{i}\right), i=1, \ldots, n$ be n two-dimensional vectors, where each x_{i} and each y_{i} is an integer whose absolute value does not exceed $2^{n / 2} /(100 \sqrt{n})$. Show that there are two disjoint sets $I, J \subset[n]$ such that

$$
\sum_{i \in I} v_{i}=\sum_{j \in J} v_{j} .
$$

Hint: Chebyshev's inequality
3) Prove that for every integer $d>1$, there is a finite $c(d)$ such that the edges of any bipartite graph with maximum degree d in which every cycle has at least $c(d)$ edges can be colored by $d+1$ colors so that there are no two adjacent edges with the same color and there is no two-colored cycle. Hint: Use König's theorem, that the edges can be partitioned into d matchings.
4) Let $G=(V, E)$ be a simple graph and suppose each $v \in V$ is associated with a set $S(v)$ of colors of size at least $10 d$, where $d \geq 1$. Suppose, in addition, that for each $v \in V$ and $c \in S(v)$ there are at most d neighbors u of v such that $c \in S(v)$. Prove that there is a proper coloring of G assigning to each vertex v a color from its class $S(v)$.

